Comparative Developmental Toxicity of Flavonoids Using an Integrative Zebrafish System.

TitleComparative Developmental Toxicity of Flavonoids Using an Integrative Zebrafish System.
Publication TypeJournal Article
Year of Publication2016
AuthorsBugel, SM, Bonventre, JA, Tanguay, RL
JournalToxicol Sci
Date Published2016 Nov

Flavonoids are a large, structurally diverse class of bioactive naturally occurring chemicals commonly detected in breast milk, soy based infant formulas, amniotic fluid, and fetal cord blood. The potential for pervasive early life stage exposures raises concerns for perturbation of embryogenesis, though developmental toxicity and bioactivity information is limited for many flavonoids. Therefore, we evaluated a suite of 24 flavonoid and flavonoid-like chemicals using a zebrafish embryo-larval toxicity bioassay-an alternative model for investigating developmental toxicity of environmentally relevant chemicals. Embryos were exposed to 1-50 µM of each chemical from 6 to 120 h postfertilization (hpf), and assessed for 26 adverse developmental endpoints at 24, 72, and 120 hpf. Behavioral changes were evaluated in morphologically normal animals at 24 and 72 hpf, at 120 hpf using a larval photomotor response (LPR) assay. Gene expression was comparatively evaluated for all compounds for effects on biomarker transcripts indicative of AHR (cyp1a) and ER (cyp19a1b, esr1, lhb, vtg) pathway bioactivity. Overall, 15 of 24 flavonoids elicited adverse effects on one or more of the developmental or behavioral endpoints. Hierarchical clustering and principle component analyses compared toxicity profiles and identified 3 distinct groups of bioactive flavonoids. Despite robust induction of multiple estrogen-responsive biomarkers, co-exposure with ER and GPER antagonists did not ameliorate toxicity, suggesting ER-independence and alternative modes of action. Taken together, these studies demonstrate that development is sensitive to perturbation by bioactive flavonoids in zebrafish that are not related to traditional estrogen receptor mode of action pathways. This integrative zebrafish platform provides a useful framework for evaluating flavonoid developmental toxicity and hazard prioritization.

Alternate JournalToxicol. Sci.
PubMed ID27492224
PubMed Central IDPMC5091365
Grant ListK99 ES025280 / ES / NIEHS NIH HHS / United States
P30 ES000210 / ES / NIEHS NIH HHS / United States
P42 ES016465 / ES / NIEHS NIH HHS / United States
T32 ES007060 / ES / NIEHS NIH HHS / United States