TitleComparative laboratory toxicity of neem pesticides to honey bees (Hymenoptera: Apidae), their mite parasites Varroa jacobsoni (Acari: Varroidae) and Acarapis woodi (Acari: Tarsonemidae), and brood pathogens Paenibacillus larvae and Ascophaera apis.
Publication TypeJournal Article
Year of Publication2000
AuthorsMelathopoulos, AP, Winston, ML, Whittington, R, Smith, T, Lindberg, C, Mukai, A, Moore, M
JournalJ Econ Entomol
Date Published2000 Apr
KeywordsAnimals, Bacillus, Bees, Biological Assay, Glycerides, Insect Repellents, Larva, Mites, Plant Extracts, Plant Oils, Terpenes

Laboratory bioassays were conducted to evaluate neem oil and neem extract for the management of key honey bee (Apis mellifera L.) pests. Neem pesticides inhibited the growth of Paenibacillus larvae (Ash, Priest & Collins) in vitro but had no effect on the growth of Ascophaera apis (Olive & Spiltoir). Azadirachtin-rich extract (neem-aza) was 10 times more potent than crude neem oil (neem oil) against P. larvae suggesting that azadirachtin is a main antibiotic component in neem. Neem-aza, however, was ineffective at controlling the honey bee mite parasites Varroa jacobsoni (Ouduemans) and Acarapis woodi (Rennie). Honey bees also were deterred from feeding on sucrose syrup containing > 0.01 mg/ml of neem-aza. However, neem oil applied topically to infested bees in the laboratory proved highly effective against both mite species. Approximately 50-90% V. jacobsoni mortality was observed 48 h after treatment with associated bee mortality lower than 10%. Although topically applied neem oil did not result in direct A. woodi mortality, it offered significant protection of bees from infestation by A. woodi. Other vegetable and petroleum-based oils also offered selective control of honey bee mites, suggesting neem oil has both a physical and a toxicological mode of action. Although oils are not as selective as the V. jacobsoni acaricide tau-fluvalinate, they nonetheless hold promise for the simultaneous management of several honey bee pests.

Alternate JournalJ. Econ. Entomol.
PubMed ID10826163