APPLICATION OF MEDIA COMPOSITION, TEMPERATURE ADJUSTMENTS, AND SILVER COMPOUNDS TO IMPROVE SOMATIC EMBRYOGENESIS IN CHINESE CHESTNUTS

Jacqueline Lemmon, Undergraduate, Oregon State University
 Susanna Keriö, The Connecticut Agricultural Experiment Station (CAES)

INTRODUCTION
The American Chestnut (Castanea dentata) was a dominant tree species in the Eastern US, until an invasive chestnut blight pathogen (Cryphonectria parasitica) came over from Asia hitchhiking on Chinese chestnut (Castanea mollissima) tree imports. The disease was first detected in the US in 1904, but the pathogen was likely introduced here earlier.1 Now the American chestnut is virtually extinct in the wild. Chinese chestnuts and European chestnuts (Castanea sativa) have more blight resistance than the American; crosses of these trees have been established to introduce the resistance genes from Chinese chestnut to American chestnut.2 To expedite the resistance screening efforts in chestnuts, an efficient method to mass propagate the desirable genetic material is needed. Somatic embryogenesis (SE) is a tissue culture process which has the potential to allow the propagation of hundreds of tree seedlings with desirable genetic background for genetic study.2,3 In SE, somatic plant cells are grown on artificial media with plant growth regulators to induce callus production, embryo initiation, and embryo maturation. After cold storage, the embryos are then germinated in tissue culture media to induce conversion to plantlets. However, SE application is currently limited by low conversion rates, especially with Chinese chestnuts.2 This project aims to optimize SE for Chinese chestnuts by adjusting the composition of the tissue medium.

CURRENTLY IN THE LAB
- 6 cell lines from the AD227xGR119 chestnut cross were acquired from S. Merkle and plated on media according to established SE protocols.2 Prior to arrival to Keriö lab, S. Merkle2 initiated cell cultures using immature chestnut burrs (Figure 2).
 - Every three weeks, cell culture clusters—called calluses—have been observed, sized noted, and then replated on fresh media according to protocol.2 (Figure 1).
 - Once calluses grow to 1 cm³ the cells will be ready for transfer to suspension culture, where their growth will be more rapid.2
 - Experiment prep.

PROJECT GOALS
The overall goal for this project is to test different media composition and temperatures on the SE of Chinese chestnuts once calluses have been established.2 Chinese chestnuts have shown less success in cell initiation during SE than European or American chestnuts.2 Since Chinese chestnuts have the most blight resistance of the three trees, it is important to establish a successful protocol for SE.
 - How does temperature affect SE in Chinese chestnut hybrids?
 - What are the effects of using woody plant medium vs. Murashige-Skoog medium vs. Driver & Kuniyuki walnut medium?
 - Does the use of silver nanoparticles improve germination rate?

ACKNOWLEDGEMENTS
I would like to give thanks to the E.S. Jackman Friends and Alumni Internship Support Program for providing funding for this undergraduate experience. I would also like to thank my mentor Dr. Susanna Keriö of CAES for her support and taking me on as an undergraduate researcher. Professor Scott Merkle and Mr. Ryan Tull in the Warnell School of Forestry and Natural Resources at the University of Georgia are thanked for providing the Chinese chestnut cell lines for the experiments. The project has also received funding from the American Chestnut Foundation through the External Grants Program.

REFERENCES