INTRODUCTION

- Wastewater biosolids applied as fertilizers for soils
- Wastewater effluent as a source of irrigation water
- Impact on antibiotic resistance in soil bacteria remains unclear
- BioCycle Farm in Eugene, Oregon
- Organic chemical "fingerprints"
- Relationship between antibiotics, groundwater, and soils
- Inform the future of the BioCycle facility management

METHODS

- **Sampling**: quarterly sampling, shallow groundwater wells on-site
- **Lab processing**: stripping organic chemicals from samples
- **Mass spectrometry**: chemical signature data
- **Computation**: machine learning to categorize and identify contaminants

MY ROLE IN THE PROJECT

- Introduced to the world of environmental chemistry!
- Gained technical lab analysis skills
- "A day in the life" of an environmental sampling technician
- Collected samples during field work
- Increased coding and computation skills
- Formed collaborations with professors and read their work
- Completed final project with professors
- Received formalized lab and research skills
- Coauthored a technical lab and research skills
- Introduced to the world of environmental chemistry

CONCLUSIONS

- Samples processed in the OSU Mass Spectrometry Center on October 29th and 30th
- Revealing antibiotics or neighboring groundwater contamination sources
- Improving safety and health practices of land-applied biosolids
- Wastewater byproduct use benefits agricultural and wastewater sectors

ACKNOWLEDGEMENTS

- Special thanks to the E.R. Jackman Friends & Alumni, faculty mentors Dr. Gerrad Jones and Dr. Tala Daneshmand, and Emmanuel Davila-Santiago.
- This project was made possible by the College of Agricultural Sciences Beginner Researchers Support Program, with funding from E.R. Jackman Friends & Alumni.

FILTERING SAMPLES

We can answer how the BioCycle farm is impacting local groundwater and soils by matching sample chemical fingerprints to sources. Machine learning techniques:

- Support Vector Classification (SVC)
- Confusion matrix

THE POINT

Above: Code for generating a confusion matrix; next steps will include training and testing the support vector machine algorithm.

Right: Predicted vs. actual classifications confusion matrix.

INTRODUCTION

Applying ecotoxicology and chemical fingerprinting with groundwater and biosolids to document antibiotic resistance at the BioCycle Farm.

College of Agricultural Sciences | Dept. of Biological & Ecological Eng. | Dept. of Chemical, Biological, & Environmental Eng.