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Abstract 

This paper reconsiders Suri’s (2011) analysis of hybrid maize seed and fertilizer adoption in 

Kenya. Using a correlated random coefficient (CRC) production function model, Suri estimated 

a counterfactual gross relative return to hybrid adoption for permanent non-adopters averaging 

over 100 percent, at least 70 percent higher than the estimated average return to hybrid adopters. 

Suri argued this result was explained by high fixed costs of market access, proxied by distance to 

market, and concluded that policies reducing those costs could increase adoption rates and 

“increase yields dramatically.” This finding contradicts research showing relatively poor 

performance of modern maize varieties in marginal areas where most permanent non-adopters 

are located, due to a lack of investment in breeding targeted to such areas. In this paper I 

reconsider Suri’s data and methods, and find that Suri’s results are the consequence of two 

errors. First, a mathematical error in the derivation of Suri’s adoption model led to a mis-

specified empirical relationship between hybrid returns and distance to market; second, estimates 

of the CRC model’s parameters were biased by the use of data that violate the common support 

condition required for identification. A corrected CRC analysis based on data stratified by agro-

ecological zones, satisfying common support, reverses Suri’s results. I also present results from 

an additive error switching regression model that is computationally simpler and more flexible 

than the CRC model. This model produces results similar to the CRC model estimated by zone, 

and also shows that observed adoption behavior may be explained, in part, by the risk attributes 

of the hybrid seed and fertilizer technology.  

  



1 
 

1. INTRODUCTION 

THE CENTRAL ROLE of agricultural growth in economic growth (World Bank 2007) has led 

to a rich literature of econometric studies of agricultural technology adoption (Feder, Just and 

Zilberman 1985; Sunding and Zilberman 2001; Foster and Rosenzweig 2010). In both more and 

less developed areas of the world with suitable agronomic conditions, technologies such as 

hybrid maize seed varieties and mineral fertilizers are much more productive and profitable than 

non-hybrids, and adoption rates are high. Yet, in some areas of the developing world where 

conditions are less favorable, relatively low rates of adoption of agricultural technologies such as 

improved seed and mineral fertilizers persist.  These less favorable agricultural areas are also 

populated by some of the poorest, most food insecure people in the world.  

This technology under-adoption “puzzle” has led to many studies attempting to explain it. 

In addition to widely varying agro-ecological conditions including soils and climate, researchers 

have identified various farm-specific factors affecting technology adoption (e.g., risk attitudes, 

human capital, financial constraints) as well as external factors such as market access and 

policies. The World Development Report (World Bank 2007) identifies adverse agro-ecological 

conditions and limited market access as two key factors constraining technology adoption in 

regions with low rates of technology adoption.  

Underlying the adoption question is the challenge of quantifying the productivity effect 

of a technology while accounting for the heterogeneous agro-ecological, economic and social 

conditions typical of small-scale farm households in many parts of the developing world. Suri’s 

analysis (2011) contributed to this literature by showing how a production function could be 

specified and estimated as a structural correlated random coefficient (CRC) model with panel 

data to account for unobserved heterogeneity in the presence of technology self-selection (i.e., 
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adoption). Consistent with many agronomic and economic studies, Suri’s analysis provided 

evidence of heterogeneous productivity of hybrid and non-hybrid maize varieties. However, 

Suri’s CRC model estimates produced a result that runs counter to conventional agronomic and 

economic understanding. Suri found that non-adopters were estimated to have high 

counterfactual returns to hybrid maize seed technology relative to non-hybrid, averaging over 

100 percent, far higher than the returns to farmers that are permanent adopters.  Suri argued that 

this finding can be explained by high costs of market access for non-adopters, and has important 

policy implications (2011, pp. 162-163): 

The estimated mean gross return from my approach is 60%, but some farmers have returns 

as high as 150%, while there are many who have returns either close to zero or (in some 

cases) negative. These estimated returns control for input use, but do not account for other 

costs (such as the costs of accessing the technology) and are therefore gross, rather than 

fully net returns. The joint distribution of estimated returns and adoption decisions displays 

some remarkable features….A small group of farmers has extremely high counterfactual 

returns to hybrid (about 150%), yet they choose not to adopt. This is rather striking and 

seems to deepen the initial puzzle, but is well explained by supply and infrastructure 

constraints, such as long distances to seed and fertilizer distributors….The heterogeneity in 

returns to this technology has important implications for policy…. For example, for 

farmers who would have high returns but are constrained on the supply side, alleviating 

their constraints by targeted distribution of inputs and infrastructure improvements could 

improve yields dramatically.  

 

Thus, if valid and generalizable, Suri’s findings would have important implications for 

development policy, implying an allocation of resources away from agronomic research, such as 

breeding crop varieties targeted to regions with low adoption rates of existing varieties, towards 

investments in market infrastructure. However, Suri’s results appear to contradict studies of 

agricultural research investments which show that the performance of modern crop varieties such 

as hybrid maize depends on their adaptation to local agro-ecological conditions, and that most 

breeding efforts have been directed toward development of varieties suited to high potential 
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areas (Evenson and Gollin 2003). Suri’s results also seem to contradict analysis by Mathenge, 

Smale and Olwande (2014) with the same Kenyan data, who find larger impacts of hybrid maize 

use on indicators of economic welfare in the more productive maize growing regions, and 

smaller impacts of hybrid use in other regions.  

In sections 2-4 of this paper, I reconsider Suri’s analysis and its implications, using the 

same data as Suri from 1997 and 2004, supplemented with data from 2000, 2007 and 2010. The 

first striking feature of these data is the spatial pattern of hybrid and fertilizer use: in agro-

ecological zones favorable to maize production, adoption rates exceed 80 percent, and exceed 90 

percent in the most suitable areas. Moreover, consistent with agronomic understanding, the data 

show that low adoption rates are confined largely to unfavorable areas where productivity of 

both non-hybrid and hybrid maize varieties is low. The data also show that the majority of 

permanent non-adopting farms are located in these low-productivity areas, and they are farther 

from input markets, by about 3 kilometers on average. Could the high returns to hybrid seed and 

fertilizer estimated by Suri among permanent non-adopters – who are mostly located in these low 

productivity areas – be explained by this difference in distance to markets?  

My analysis provides a negative answer to this question. I show that Suri’s findings are 

the consequence of two errors, and are reversed in a correct analysis. The first error is 

mathematical and occurs in Suri’s theoretical analysis of the adoption decision by farmers. This 

error leads to an incorrect decision rule for hybrid adoption by a profit maximizer that compares 

the gross returns to hybrid measured in relative (unit free) terms to the cost of the technology 

measured in yield units (i.e. kilograms of maize per acre). This error led Suri to correlate the 

relative returns to hybrid with the cost of market access (proxied by distance to market) to 

explain the spatial variation in hybrid returns. I show that the correct adoption rule compares 
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gross hybrid returns to the cost of the technology, with both gross returns and costs measured in 

the same units.  

The confounding of units of measurement in Suri’s adoption analysis has important 

consequences for the empirical analysis Suri presented to explain the spatial distributions of 

hybrid returns. The Kenyan data show that most permanent non-adopters of hybrid are located in 

low-productivity zones where maize yields for both hybrid and non-hybrid varieties are 50-70 

percent lower than in the areas where hybrid is widely adopted. Thus, a high relative 

counterfactual return for non-adopters does not necessarily imply a high return when translated 

into yield units, and there is no reason for a systematic relationship between relative hybrid 

returns and the cost of market access across low and high productivity areas.1  

Consistent with these facts, I find that a correctly formulated analysis does not show a 

positive or statistically significant relationship between gross hybrid returns and distance to 

market infrastructure. My replication of Suri’s analysis shows that distance variables explain a 

very small share of the variation in hybrid returns, whether in relative or absolute units, and that 

agro-ecological zones provide a better explanation for spatial productivity patterns than distance 

to market. Thus, my replication contradicts Suri’s claim that the spatial pattern of hybrid 

                                                           
1 For example, farm A that is 8 km from the market in a low productivity zone could have a relative return of 100 

percent, whereas farm B that is 4 km from the market in a higher productivity zone could have a relative return of 50 

percent, implying a positive correlation between gross relative returns and distance. But because farm A’s non-

hybrid yield is very low, say 300 kg/ac, its gross return to hybrid adoption in yield units would be 300 kg/ac; 

whereas if farm B in a high productivity zone has a non-hybrid yield of 1000 kg/ac, its gross return to hybrid 

adoption would be 500 kg/ac, implying a negative correlation between gross hybrid returns (in yield units) and 

distance to market.  
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productivity is “…well explained by supply and infrastructure constraints, such as long distances 

to seed and fertilizer distributors.”2  

My analysis of the Kenyan data and the CRC model shows that Suri’s estimate of a high 

counterfactual return to non-adopters is explained by biases caused by lack of identification in 

the data, combined with properties of the structural CRC model. I show that the Kenyan data fail 

to satisfy the common support or “overlap” condition required for identification of average 

treatment effects from data (Wooldridge 2010). The lack of common support is due to Suri’s use 

of data pooled across extremely different agro-ecological zones. The data show that virtually all 

farms that are permanent adopters of hybrid seed and fertilizer are located in agro-ecological 

zones favorable to maize production, and in these zones there are virtually no permanent non-

adopters. Thus, in these zones, a counterfactual return for non-adopters cannot be identified or 

reliably estimated. Virtually all farms that are permanent non-adopters are located in areas 

unfavorable to maize production, and in these areas there are virtually no permanent adopters, 

thus, the returns to permanent adopters cannot be identified or reliably estimated in these areas. 

Under these conditions, “apparent” structural identification may be possible when the data 

provide a small number of observations satisfying the common support condition, but too few 

observations to provide an unbiased or reliable estimate of a causal effect. My analysis shows 

that the use of an over-identified nonlinear structural form under these conditions can result in an 

unstable model that is sensitive to the data, specification and estimation method, and can result in 

large parameter biases and erroneous inferences.3  

                                                           
2 Suri (2011) did not report goodness-of-fit statistics for the regressions on which this claim was based. See section 4 

and Table IV for further discussion. The R2 in the first column of Table IV was obtained in a personal 

communication. 
3 Similarly, Heckman (2010, p. 357) notes, “There have been many demonstrations of the sensitivity of estimates of 

structural models to assumptions about functional forms and distributions of unobservables.” He cites various 
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Although the CRC model cannot be identified with the data pooled across agro-ecozones, 

I show that it can be identified and used to estimate agro-ecozone-specific effects of hybrid 

adoption. I do this by using transitory non-adopters as controls for permanent adopters in the 

high and medium productivity zones, and using transitory adopters as controls for permanent 

non-adopters in the low productivity zone. The CRC models estimated by agro-ecozone show 

very different patterns of relative hybrid returns from Suri’s analysis, with returns to permanent 

non-adopters lower on average than returns to permanent adopters. Moreover, when gross 

relative returns are translated into returns in maize yield units (kg/ac), returns to permanent 

adopters in the medium and high productivity zones are much higher than the returns to 

permanent non-adopters in the low-productivity zone. The CRC models estimated by zones also 

show that most permanent adopters earn a gross return to hybrid that exceeds the additional cost 

of seed and fertilizer including transportation costs, whereas the gross returns to most non-

adopters are less than the cost of the technology, as implied by profit maximization.  

Interestingly, the results from the zone-specific CRC models also show that some of the 

farms that are adopting hybrid technology may be earning gross returns that are less than the cost 

of the hybrid seed and fertilizer used.  Thus, if there is an adoption “puzzle” among Kenyan 

maize producers, it is why some farmers with low returns to hybrid are adopting, rather than why 

farms with potentially high returns are not adopting. Using the same data to estimate a yield 

function, Sheahan, Ariga, and Jayne (2016) similarly found that the return to fertilizer may 

actually be less than its cost for some Kenyan farmers in the higher-productivity zones.  

                                                           
authors who “…gave early warnings about the fragility of standard econometric estimates of explicit economic 

models.” However, he does not relate this fragility to the application of structural models to data that violate the 

common support condition.  
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In sections 4 and 5, I discuss several limitations of the CRC model used by Suri, related 

to its log-linear functional form and multiplicative error specification, and then present an 

additive-error switching regression (AES) model that does not impose these restrictions. I show 

that this model can be identified using observables if two conditions are met: first, that 

permanent adoption behavior is determined by observables (a condition supported by the data); 

and second, that transitory adoption (or switching) behavior is determined by factors randomly 

distributed across farms and independent of technology. Estimating this model for the two years 

used by Suri (1997 and 2004) as well as for the 5-year panel data for 1997, 2000, 2004, 2007 and 

2010, I obtain results consistent with the CRC models estimated by agro-ecozone for 1997 and 

2004. I use the additive-error switching regression model to estimate the risk characteristics of 

the hybrid technology, and find that risk may help explain the observed spatial pattern of 

adoption across low and high productivity zones. 

2. TEGEMEO HOUSEHOLD SURVEY: IMPLICATIONS FOR RESEARCH DESIGN 

In this section I describe some key features of the data derived from the Tegemeo Rural 

Household Surveys, conducted in 1997, 2000, 2004, 2007 and 2010, referred to henceforth as the 

full panel. The original survey contained over 1500 maize-producing households, but due to 

attrition and missing values, the full panel contains 1045 households. The balanced 1997 and 

2004 sample used by Suri to estimate the CRC model contains 1202 households, although as 

discussed below, Suri dropped observations from two districts with high HIV rates for the 

analysis of hybrid returns distributions and distance to market. Although Suri did not describe 

this “low HIV” sample in detail or identify the number of observations, in my analysis dropping 



8 
 

these two districts resulted in a sample of 1061 households.4  Due to data sharing restrictions of 

the Tegemeo Institute, Suri could not provide the data used in her analysis, and did not provide 

the computer code used to construct the data used for model estimation and analysis, but did 

provide a description of how the variables were constructed. I was able to reasonably 

approximate the summary statistics presented by Suri for the 1997 and 2004 samples with 1202 

observations. Further details about the data are in Suri (2011), Sheahan, Ariga and Jayne (2016), 

and the Supplemental Material for this study.   

2.1 Agro-ecological Zones, Yields and Hybrid and Fertilizer Use 

Table 1 presents summary statistics for some key variables, for the full panel and 

stratified by three agro-ecozones that I refer to as high-productivity, medium productivity and 

low productivity. The high zone is identified by the Kenyan government as “high maize 

potential,” the medium zone is comprised of somewhat less productive highland areas, and the 

low zone is comprised of lowland areas with soils and climate not well suited to maize 

production (see the Supplemental Material for further details). The data show three types of 

hybrid adoption behavior: farms that always use hybrid seed in the data (permanent adopters, 

referred to Suri as “hybrid stayers”); farms that never use hybrid (permanent non-adopters, 

referred to by Suri as “non-hybrid stayers”); and farms that are transitory users of hybrid seed, 

meaning that they use it in some growing seasons and not in others. As noted in the Introduction, 

the data show large differences in maize yields between the agro-ecological zones (also see 

Figure 1). These differences reflect the well-known causal relationship between soils, climate 

and maize productivity.  

                                                           
4 This is the same number reported by Suri in a personal communication. 
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A key feature of the data is the distribution of adopter types across the three zones (Table 

1 and Figure 1). Hybrid adoption rates are high in the medium and high zones (80 and 93 

percent), and low in the low productivity zone (30 percent).  2 percent of farms in the low zone 

are permanent hybrid users, compared to 58 percent in the medium zone and about 75 percent in 

the high zone. 25 percent of the low-zone farms are permanent non-adopters, and this represents 

77 percent of all non-adopters. In the medium zone, only 4.5 percent of farms are permanent 

non-adopters (about 22 percent of all non-adopters), and less than 0.1 percent of farms in the 

high zone never used hybrid in the five years of data. In contrast, transitory users are observed in 

all zones, with the largest proportion in the low zone.  

In Suri’s CRC analysis, transitory users were divided into “joiners” who did not use 

hybrid in 1997 but did in 2004, and “leavers” who did the opposite. The full panel shows that 

about 9 percent of the observations are joiners over the 1997-2010 period, and 2 percent of farms 

were “leavers.” Some of the farms classified as “permanent” may be switchers in intervening 

years, but it seems reasonable to assume that a farm that shows the same behavior over 13 years  

is exhibiting stable behavior. The joiner and leaver data suggest a modest trend towards 

increased hybrid use over time, although there is no evidence of a trend in the overall use of 

hybrid, equal to 66, 68, 60, 68 and 72 percent of farms in the five years.  

2.2 The Importance of Agro-ecological Zones 

In contrast to hybrid use, there is a clear trend in fertilizer use in the data, with 50 percent of 

farms using fertilizer in 1997, increasing each year to about 70 percent in 2010. Figure 1 

illustrates the trend in fertilizer use and yields, by zone and by type of maize variety. This figure 

also shows the large differences between the low productivity agro-ecozones and the medium 

and high zones. Figure 1 also shows that in the low zone, hybrid outperforms non-hybrid by a 
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small absolute amount, although this difference increases in 2010 when fertilizer use also 

increased. In contrast, in the medium and high zones, hybrid varieties performed much better 

than non-hybrid, with much higher fertilizer applications that increased over time.  

Table II demonstrates the importance of agro-ecological zones using linear probability 

models for hybrid seed and fertilizer use for the full panel (model estimates are presented in the 

Supplementary Material), and contrasts the behavior of farmers exhibiting permanent adoption 

behavior with those exhibiting transitory behavior. These models demonstrate that agro-

ecological zone dummy variables explain a larger share of the variation in hybrid and fertilizer 

use than any other observables. This is particularly true for the sub-sample of farms that show 

permanent behavior, where the zone dummies alone explain 67 percent of the variation, whereas 

province dummy variables alone explain only 25 percent, and all covariates together explain 71 

percent. It is notable that Suri used province dummies to represent spatial fixed effects in 

describing the spatial features of the data and in some econometric analysis, but did not use agro-

ecological zones.   

 Production functions for maize yield estimated using the same covariates as the linear 

probability models confirm the importance of agro-ecological zones as the most important 

covariate explaining yields (see the Supplementary Material). For example, across all farms, the 

agro-ecological zone dummies explain the largest share of the variation, 24 percent, compared to 

11 percent explained by province dummies and 38 percent explained by all observables. 

Statistical tests also confirm that the parameter differences between zones are highly significant.  

 A key issue that will be discussed below is the relationship between productivity and 

distance to market infrastructure. A regression of yield on distance variables alone confirms a 

negative correlation, but the production functions in the Supplementary Material show that this  
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Table I. Selected Summary Statistics for Tegemeo Household Survey Data, 1997, 2000, 

2004, 2007 and 2010 (means with standard deviations in parentheses) 

 

Note: (0/1) indicates variable equal to 1 if true and 0 otherwise. These data represent the full panel. 

Results presented in the paper utilize various combinations of the data according to the model and sample 

specification.   

  

All Farms Low Medium High

Maize yield (kg/ac) 797 394 868 1119

(655) (368) (667) (661)

Hybrid Use (0/1) 0.693 0.303 0.804 0.927

(0.461) (0.460) (0.397) (0.260)

Permanent Hybrid (0/1) 0.466 0.020 0.582 0.752

(0.499) (0.142) (0.493) (0.432)

Perm Non-Hybrid (0/1) 0.093 0.253 0.045 0.004

(0.291) (0.435) (0.207) (0.062)

Seed (kg/ac) 8.897 7.479 9.069 10.180

(5.724) (6.654) (5.486) (4.561)

Fertilizer (kg/ac) 40.182 5.553 50.122 60.597

(63.861) (16) (79.121) (47.876)

Fertilizer Use (0/1) 0.670 0.245 0.822 0.862

(0.470) (0.430) (0.383) (0.345)

Permanent Fertilizer (0/1) 0.462 0.072 0.572 0.698

(0.499) (0.258) (0.495) (0.459)

Perm Non-Fertilizer (0/1) 0.191 0.576 0.037 0.0465

(0.393) (0.494) (0.188) (0.211)

Maize Area (ac) 2.113 2.115 1.168 3.919

(4.249) (2.472) (1.335) (7.602)

Farm Size (ac) 3.784 3.644 2.853 5.721

(5.153) (3.644) (2.845) (8.458)

Distance to Fertilizer Market (km) 4.445 7.725 2.692 4.061

(6.183) (9.027) (3.294) (4.808)

High HIV District (0/1) 0.115 0.409 0.000 0.000

(0.319) (0.492) (0) (0)

Sasonal Rainfall (mm) 667 491 749 712

(279) (259) (270) (208)

No. Observations 5225 1470 2465 1290

Agro-eco Zone



12 
 

 

Figure 1. Kenya maize yield and fertilizer use by agro-ecological zone and hybrid use, 1997-

2010 full panel.  Dashed line is a constant elasticity curve fitted to the data with elasticity 0.37. 

 

Table II. Percent of Variation Explained by Agro-ecozone Dummies, Province Dummies and 

Other Covariates in Linear Probability Models for Hybrid and Fertilizer Use. All Farms in Full 

Panel, and Farms with Permanent and Transitory Hybrid Seed and Fertilizer Use  

 

Note: Linear probability models were estimated with an intercept and the variables indicated. Values in 

the table are R2 statistics from each model.   
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correlation is weak and largely disappears when other covariates are in the model, suggesting 

that the causal relationship between distance to market and productivity is weak. In contrast, the 

agro-ecozone variables remain highly significant in explaining hybrid use, fertilizer use, and 

yield in the presence of all other covariates including distance to market.  

2.3 Common Support and Covariate Balance 

Table 1 and the other data presented above suggest that selection behavior has a large 

effect on the pattern of hybrid use and non-use behavior across the agro-ecozones in Kenya. 

These patterns in turn induce the lack of overlap in the data between treated and control 

observations that is needed to identify treatment effects of hybrid adoption. Figure 2 illustrates 

the problem using propensity scores estimated with logistic regressions using the same 

covariates as in the linear probability models presented in the Supplementary Material. The 

upper two panels show the lack of overlap for the data pooled across zones for permanent users 

and non-users (upper left), but with better overlap for transitory users (upper right) due to the 

fact that a substantial share of farms in each zone exhibit transitory behavior. The lower panels 

suggest an identification strategy based on stratification of the data that I utilize in the analysis 

presented below. The lower left panel suggests that the counterfactual hybrid productivity of 

permanent non-users in the low zone can be identified with transitory hybrid users as controls. 

The lower right-hand panel indicates that the productivity of permanent hybrid users in the 

medium and high zones can be identified with transitory non-adopters as controls.  

 Analysis of covariate balance for the full panel using standardized differences confirms 

that balance is poor for a number of variables, particularly for climatic variables (mean 

temperature and rainfall) that are associated with agro-ecological conditions, for agronomic 

factors such as the use of inter-cropping, and for other activities on the farm such as dairy  
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Figure 2. Histograms of Propensity Scores for Hybrid Use, 1997-2010 Full Panel 

 

production that are likely to interact with maize production (e.g., by making manure available for 

use as an organic fertilizer). Stratification clearly improves balance, and propensity score 

matching further reduces standardized differences for most covariates to less than 0.25.  

3. THE CRC PRODUCTION MODEL 

In this section I briefly summarize the derivation of the CRC production model 

developed by Suri (2011) and then use it to demonstrate the issues that arise in Suri’s  

interpretation of the model for technology adoption, the identification issues created by the use  

of data violating common support, and how the model can be identified and estimated with data 

stratified by agro-ecozone. I use (Sx) to denote equation x of Suri (2011). The model is:  

(S8)  𝑦𝑖𝑡
𝐻 = 𝛽𝑡

𝐻+ 𝑥𝑖𝑡
′  𝐻 +  𝑢𝑖𝑡

 𝐻 
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(S9) 𝑦𝑖𝑡
𝑁 = 𝛽𝑡

𝑁 + 𝑥𝑖𝑡
′  𝑁 +  𝑢𝑖𝑡

 𝑁 

where 𝑦𝑖𝑡
𝑠  is the log of maize yield for production system s = H (hybrid), N (non-hybrid), 𝑥𝑖𝑡 is a 

 

vector of inputs and other covariates in logs, and 𝑢𝑖𝑡
 𝑠  are random errors.5 

The error terms are further decomposed as 𝑢𝑖𝑡
 𝐻 = 𝑖

 𝐻 + 
𝑖𝑡
 𝐻

 and 𝑢𝑖𝑡
 𝑁 = 𝑖

 𝑁 + 
𝑖𝑡
 𝑁

. The 

individual productivity components are assumed to follow 𝑖
 𝑘 =  𝑏𝑘(𝑖

 𝐻 − 𝑖
 𝑁) +  𝑖, k = H,N, 

where 𝑖 is an individual-specific productivity component that does not vary by system. The 

parameter 𝑖  𝑏𝑁(𝑖
 𝐻 −  𝑖

 𝑁
) is interpreted as the farmer’s comparative advantage in using 

hybrid. Defining   
𝑏𝐻

𝑏𝑁
− 1,  it follows that 𝑖

 𝐻 = (1 + )𝑖 + 𝑖  and 𝑖
 𝑁 = 𝑖 + 𝑖. The sign of 

 indicates selection on gain, with  < 0 indicating negative selection, i.e., farms with low initial 

productivity have highest gain from adoption.  Combining with (S8) and (S9) gives6: 

(S17)  𝑦𝑖𝑡
𝐻 = 𝛽𝑡

𝐻+ 𝑖 + ( + 1)𝑖
 + 𝑥𝑖𝑡

′  𝐻 +  
𝑖𝑡
 𝐻

 

 

(S18) 𝑦𝑖𝑡
𝑁 = 𝛽𝑡

𝑁 + 𝑖 + 𝑖
 + 𝑥𝑖𝑡

′  𝑁 +  
𝑖𝑡
 𝑁  

 
Defining ℎ𝑖𝑡 as an indicator variable equal to 1 for hybrid and zero for non-hybrid, the log of 

yield can be expressed as 𝑦𝑖𝑡 =  ℎ𝑖𝑡 𝑦𝑖𝑡
𝐻 + (1 − ℎ𝑖𝑡)𝑦𝑖𝑡

𝑁.  Combining this equation with the 

production functions for hybrid and non-hybrid gives Suri’s estimation model 

(S20) 𝑦𝑖𝑡= 𝛽𝑡
𝑁  + 𝑖 + (𝛽𝑡 + 𝑖)ℎ𝑖𝑡 +  𝑥𝑖𝑡

′ 𝑁 +  ℎ𝑖𝑡𝑥𝑖𝑡
′  +  𝑢𝑖𝑡, 

where 𝛽𝑡  𝛽𝑡
𝐻 −  𝛽𝑡

𝑁,    𝐻 −  𝑁, 𝑢𝑖𝑡  𝑖 +  ℎ𝑖𝑡 
𝑖𝑡
𝐻 + (1 − ℎ𝑖𝑡)

𝑖𝑡
𝐻

, 𝑖   𝑖
 𝐻 −  𝑖

 𝑁
.  

 

                                                           
5 As discussed below, Suri actually estimated the CRC model with inputs in non-log form, apparently to 

accommodate the estimation method used and the presence of zeros in the data. See section 4.4 below.  
6 Note Suri’s equations (S17) and (S18) as printed contain a typographical error, as they show the inputs in non-log 

form 𝑋𝑖𝑡 , whereas they should be in log form 𝑥𝑖𝑡
′  (the same error appears in equation S20). 
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3.1. Quantifying the Returns to Hybrid Adoption 

 Suri refers to 𝛽𝑡 + 𝑖 as an individual-specific estimate of the “gross return to hybrid” 

under the assumption that the production function parameters for hybrid and non-hybrid are the 

same, implying  = 0. From (S17) and (S18),  

(1) 𝐸[𝑦𝑖𝑡
𝐻 − 𝑦𝑖𝑡

𝑁] =  𝛽𝑡 + 𝑖 + 𝑥𝑖𝑡
′  .  

Thus 𝛽𝑡 + 𝑖 is equal to the difference in log yield between hybrid and non-hybrid when  = 0. 

In this section I show that  𝛽𝑡 + 𝑖 can be interpreted as an approximate relative or unit-free 

measure of hybrid productivity, under the additional assumption that the technology shocks to 

the hybrid and non-hybrid systems follow the same distribution.  

Using (S17) and (S18), expected yields are 

(2)  𝐸[𝑌𝑖𝑡
𝐻] = 𝐸[exp(𝑦𝑖𝑡

𝐻)] = exp (𝛽𝑡
𝐻+ 𝑖 + ( + 1)𝑖

 + 𝑥𝑖𝑡
′  𝐻)𝐸[exp(

𝑖𝑡
 𝐻)] 

 

(3) 𝐸[𝑌𝑖𝑡
𝑁] = 𝐸[exp (𝑦𝑖𝑡

𝑁)] = exp (𝛽𝑡
𝑁 + 𝑖 + 𝑖

 + 𝑥𝑖𝑡
′  𝑁)𝐸[exp(

𝑖𝑡
 𝑁)] 

Noting that ℎ𝑖𝑡 is a discrete variable, the percentage change in expected yield with respect to a 

change in ℎ𝑖𝑡 from zero to 1 is thus:  

(4) 𝑟𝑖𝑡
𝐻 ≡

𝐸[𝑌𝑖𝑡
𝐻]−𝐸[𝑌𝑖𝑡

𝑁]

𝐸[𝑌𝑖𝑡
𝑁]

= exp(𝛽𝑡 +  𝜃𝑖 + 𝑥𝑖𝑡
′ ) 𝐸[exp(

𝑖𝑡
 𝐻)]/𝐸[exp(

𝑖𝑡
 𝑁)] − 1. 

For  = 0, rearranging (4) gives 

(5) 𝛽𝑡 + 𝜃𝑖 = ln( 𝑟𝑖𝑡
𝐻 + 1) + ln(𝐸[exp(

𝑖𝑡
 𝑁)]) − ln(𝐸[exp(

𝑖𝑡
 𝐻)]). 

Thus, under these assumption that the 
𝑖𝑡
 𝑠

 follow the same distributions, we have 𝛽𝑡  +  𝜃𝑖 = 

ln( 𝑟𝑖𝑡
𝐻 + 1) which is approximately equal to 𝑟𝑖𝑡

𝐻 for small values of 𝑟𝑖𝑡
𝐻,  and we can interpret 
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𝛽𝑡 + 𝜃𝑖 as an approximate unit-free measure of the relative productivity effect of hybrid on 

yield. Using (4), an appropriate measure of the hybrid returns in yield units is 𝑟𝑖𝑡
𝐻 𝐸[𝑌𝑖𝑡

𝑁]. 

3.2. Analysis of the Adoption Decision 

Define 𝑝𝑖𝑡 as the expected maize output price; the price of hybrid and non-hybrid seed is 

𝑏𝑡 and 𝑐𝑖𝑡; 𝑎𝑖𝑡 is the fixed cost of acquiring hybrid seed and fertilizer (e.g., transportation cost); 

𝑠𝑖𝑡 is the quantity of seed (assumed by Suri to be the same for hybrid and non-hybrid); and 𝑤𝑗𝑖𝑡 is 

the price of other inputs 𝑋𝑗𝑖𝑡. Also define 𝐴𝑖𝑡  𝑎𝑖𝑡/𝑝𝑖𝑡 and 𝑖𝑡
𝑠  (𝑏𝑡 − 𝑐𝑖𝑡)𝑠𝑖𝑡

∗ /𝑝𝑖𝑡, which are 

measures of fixed transportation cost and cost of seed at the profit maximum, both measured in 

units of maize yield. Denoting profit-maximizing values with an asterisk, the hybrid technology 

is adopted if: 

(S4) (𝑌𝑖𝑡
∗𝐻 −  ∑

𝑤𝑗𝑖𝑡

𝑝𝑖𝑡
𝑋𝑗𝑖𝑡

∗𝐻𝐽
𝑗=1 ) − (𝑌𝑖𝑡

∗𝑁 −  ∑
𝑤𝑗𝑖𝑡

𝑝𝑖𝑡
𝑋𝑗𝑖𝑡

∗𝑁𝐽
𝑗=1 ) > 𝐴𝑖𝑡 + 𝑖𝑡

𝑠   

Suri additionally assumed:  𝐻  𝑁 and  𝑋𝑖𝑡
∗𝐻 𝑋𝑖𝑡

∗𝑁 (except for fertilizer used with hybrid seed); 

and that fertilizer is used in fixed proportions to hybrid seed and can be incorporated into 𝑖𝑡
𝑠 . 

Under these assumptions, it follows that hybrid is used if: 

 (S5) 𝑌𝑖𝑡
∗𝐻 −  𝑌𝑖𝑡

∗𝑁 > 𝐴𝑖𝑡 +  𝑖𝑡
𝑠 . 

Importantly, (S5) is expressed in yield units on both sides of the inequality.  

In section 4.3, Suri (2011) attempts to manipulate (S5) to derive a relationship between 

the individual-specific measure of productivity, 𝑖, and the cost of acquiring the technology 

given on the right-hand side of (S5). Suri (2011, page 179) asserts the following: 

“Rewriting (S4) in log output and using (S8) and (S9), a farmer uses hybrid if 
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(S21) 𝐸(𝑢𝑖𝑡
𝐻 − 𝑢𝑖𝑡

𝑁) > 𝐴𝑖𝑡 + 𝑖𝑡
𝑠 +  𝛽𝑡

𝐻 −  𝛽𝑡
𝑁 +  ∑ (𝛾𝑗

𝑁𝑋𝑗𝑖𝑡
∗𝑁 − 𝛾𝑗

𝐻𝑋𝑗𝑖𝑡
∗𝐻)𝐽

𝑗=1 ” 

Given the assumptions that  𝐻  𝑁 and 𝑋𝑖𝑡
∗𝐻 𝑋𝑖𝑡

∗𝑁, the last term on the right-hand side of (S21) 

is zero, leading to:  

(S24) 𝑖
 > (𝐴𝑖𝑡 +  𝑖𝑡

𝑠 ) − (𝛽𝑡
𝐻 −  𝛽𝑡

𝑁), 

However, as demonstrated by equation (1), the left-hand side of (S24) and (𝛽𝑡
𝐻 −  𝛽𝑡

𝑁) are 

defined in log yield units, whereas the two terms 𝐴𝑖𝑡 and 𝑖𝑡
𝑠  on the right-hand side of (S24) are 

defined in yield units, as is apparent from (S5). Thus equation (S24) relates variables in 

incommensurable units and thus is erroneous.  

The error in (S24) is due to the fact that in equation (S21) Suri equated the terms 𝑌𝑖𝑡
∗𝐻 and 

𝑌𝑖𝑡
∗𝑁 in (S5) with expectations of the logs of yield, 𝑦𝑖𝑡

𝐻 and  𝑦𝑖𝑡
𝑁, whereas they should be equated 

with 𝑌𝑖𝑡
∗𝐻 = 𝐸[𝑌𝑖𝑡

𝐻] = E[exp(𝑦𝑖𝑡
𝐻)] and 𝑌𝑖𝑡

∗𝑁 = 𝐸[𝑌𝑖𝑡
𝑁] = E[exp(𝑦𝑖𝑡

𝑁)]. Using (S5), the correct 

condition for hybrid adoption, under the assumptions noted above, is: 

(6) 𝑌𝑖𝑡
∗𝐻 −  𝑌𝑖𝑡

∗𝑁 = 𝐸[𝑌𝑖𝑡
𝐻] − 𝐸[𝑌𝑖𝑡

𝑁] =  (
𝐸[𝑌𝑖𝑡

𝐻]

𝐸[𝑌𝑖𝑡
𝑁]

− 1) 𝐸[𝑌𝑖𝑡
𝑁] =  𝑟𝑖𝑡

𝐻𝐸[𝑌𝑖𝑡
𝑁] > (𝐴𝑖𝑡 +  𝑖𝑡

𝑠 ). 

Alternatively, using the assumptions discussed below equation (5), it follows that 𝛽𝑡 + 𝑖
    𝑟𝑖𝑡

𝐻 

and the adoption condition can be approximated in relative terms by: 

(7) 𝛽𝑡 + 𝑖
 > (𝐴𝑖𝑡 +  𝑖𝑡

𝑠 )/ 𝐸[𝑌𝑖𝑡
𝑁],   

or in yield units by: 

(8) (𝛽𝑡 + 𝑖
 )𝐸[𝑌𝑖𝑡

𝑁] > (𝐴𝑖𝑡 +  𝑖𝑡
𝑠 ). 
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Thus, (7) and (8) show that the site-specific productivity of the non-hybrid technology 𝐸[𝑌𝑖𝑡
𝑁] 

must be taken into account to relate 𝛽𝑡 + 𝑖
 
 to the cost of the technology.  

 Suri (2011) wrote the fixed cost term in (S24) as 𝐴𝑖𝑡= 𝛼𝑖 + 𝜗𝑖𝑡, to obtain 

(S25) 𝑖
 + 𝑖

 > 𝑖𝑡
𝑠 − (𝛽𝑡

𝐻 −  𝛽𝑡
𝑁) + 𝜗𝑖𝑡 

Equation (S25) is the basis for Suri’s regressions of 𝑖
 
 on distance to market and other variables 

discussed in section 4 below. Observe that the two terms on the left-hand side of (S25) are 

incommensurate, because 𝑖
 
 is unit-free whereas 𝑖

  is in maize yield units. Equation (8) shows 

that the correct relationship has 𝑖
 𝐸[𝑌𝑖𝑡

𝑁] + 𝑖
  on the left-hand side and 𝐸[𝑌𝑖𝑡

𝑁] multiplying 

(𝛽𝑡
𝐻 − 𝛽𝑡

𝑁) on the right-hand side. It follows that the correlation between 𝑖
 
 and a proxy for the 

fixed cost of accessing markets, such as the distance to market, would confound cost of access 

with the effects of site-specific productivity represented by 𝐸[𝑌𝑖𝑡
𝑁]. 

3.3. Identification and Estimation of the CRC Model 

Equation (S20) is a CRC model because the effect of hybrid on yield, (𝛽𝑡 + 𝑖), is 

random across farms indexed by i.  Estimation must account for the expected correlation 

between 𝑖 and 𝑢𝑖𝑡. Suri used the Chamberlin (1984) method of expressing 𝑖 as a linear-in-

parameters function of the histories of hybrid use ℎ𝑖𝑡, fertilizer 𝑓𝑖𝑡 and their interactions. For a 

two-period model this leads to the specification of 𝑖 as: 

(S35) 𝑖 =  0 +  1ℎ𝑖1 + 2ℎ𝑖2 + 3ℎ𝑖1ℎ𝑖2 + 4ℎ𝑖1𝑓𝑖1 + 5ℎ𝑖2𝑓𝑖1 + 6ℎ𝑖1ℎ𝑖2𝑓𝑖1 + 7ℎ𝑖1𝑓𝑖2  +

                       8ℎ𝑖2𝑓𝑖2 + 9ℎ𝑖1ℎ𝑖2𝑓𝑖2 +  10𝑓𝑖1 +  11𝑓𝑖2 

Suri also imposed the normalization ∑ 𝜃𝑖𝑖 = 0 and assumed that 𝛽𝑡 did not vary with time. Note 

also that in order to satisfy the orthogonality of the projection of 𝑖 with respect to the model’s 
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error term, the projection must be linear in the parameters. Further, since fertilizer takes on 

values of zero, this requires that the production function be specified with fertilizer quantities 

rather than the logs of fertilizer, so the production function is not concave in inputs. I return to 

this functional form issue in section 4.4.  

In this two-period formulation, permanent non-hybrid farms (PN) are identified by ℎ𝑖1= 

ℎ𝑖2 = 0, permanent hybrid adopters (PH) have ℎ𝑖1= ℎ𝑖2 = 1, leavers (L) have ℎ𝑖1= 1, ℎ𝑖2 = 0, 

joiners (J) have ℎ𝑖1= 0, ℎ𝑖2 = 1; switchers are the combination of joiners and leavers.7 Using 

these definitions, 

𝑖
 𝑃𝑁 =  0 +  10𝑓𝑖1 + 11𝑓𝑖2 

𝑖
 𝑃𝐻 =  0 +  1 + 2 + 3 + (4 + 5 + 6 + 10)𝑓𝑖1 + (7  + 8 + 9 + 11)𝑓𝑖2 

(9) 

𝑖
  𝐿 =  0 + 1 + (4 +  10)𝑓𝑖1 + (7 + 11)𝑓𝑖2 

𝑖
  𝐽

=  0 + 2 + (5 + 10)𝑓𝑖1 + (8 +  11)𝑓𝑖2 

As noted above, total effect of hybrid on yield is  + 𝑖, thus relative returns to the four types of 

adoption behavior are  

(10) 𝑟𝑖𝑡
𝑗
   + 𝑖

 𝑗
 for j = PN, PH, J, L.  

Two aspects of identification must be addressed, the common support condition for 

identification from the data, and the identification of the structural parameters , , and the 𝑗, j 

=0, 1, …, 11. As discussed in section 1, the data show that there are few observations of 

permanent adopters in the low zone, thus 𝑖
 𝑃𝐻

 and 𝑟𝑖
 𝑃𝐻 cannot be identified from the data in the 

                                                           
7 The data also show that farmers are stayers, joiners and leavers in terms of fertilizer use. Accounting for this fact 

would further complicate the CRC model specification.  
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low zone. Likewise, the data show that there are few observations of permanent non-adopters in 

the medium and high zones, thus 𝑖
 𝑃𝑁

 and 𝑟𝑖
 𝑃𝑁 cannot be identified in the medium and high 

zones. We can also see that the common support condition is related to the conditions for 

structural identification. From (9), to identify 𝑟𝑖
 𝑃𝐻 it must be possible to estimate 3 which 

requires a sufficient number of observations of permanent adopters. Thus, in the low zone where 

there are almost no observations of farms using hybrid in both periods, 3 cannot be reliably 

estimated and 𝑟𝑖
 𝑃𝐻cannot be identified. Similar logic implies that 0 cannot be identified in the 

medium or high zones because there are virtually no observations where ℎ𝑖1= ℎ𝑖2 = 0. Thus the 

intercept 0 of the projection (S35) cannot be identified or reliably estimated separately from 

1and 2 in the medium and high zones.  

We can conclude that the consequence of attempting to estimate the model with data 

pooled across zones will be to produce biased parameter estimates that are likely to be sensitive 

to the data sample and model specification. As shown in Section 2, pooling across zones means 

that observations of transitory and permanent adopters in the medium and high zones are used to 

represent the counterfactual yield potential of hybrid for observations in the low zone, thus 

imparting an upward bias to the estimate of 𝑟𝑖
 𝑃𝑁. Since fertilizer use is very low or zero among 

permanent non-adopters (Table 1), it follows from (9) that 𝑟𝑖
 𝑃𝑁  + 0, and for the case of 

negative selection with  < 0, an upward bias in 𝑟𝑖
 𝑃𝑁 implies a downward bias in 0 and an 

upward bias in 𝛽. Similarly, pooling the data across zones suggests that 𝑟𝑖
 𝑃𝐻would be over-

estimated because yields of non-adopters in the low zone are used to estimate the counterfactual 

for adopters in the medium and high zones. However, this bias effect is diluted by the relatively 

large number of transitory non-adopters in the medium and high zones. Due to the normalization 

∑ 𝜃𝑖𝑖 = 0, the overall effect of pooling across agro-ecozones is likely to be an upward bias in 
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𝑟𝑖
 𝑃𝑁 and a downward bias in 𝑟𝑖

 𝑃𝐻. Similar logic indicates a possible upward bias in 𝑟𝑖
 𝐿 and a 

downward bias in 𝑟𝑖
 𝐽

. 

One strategy to overcome the bias problem caused by pooling the data across 

heterogeneous regions is to incorporate a set of spatial dummy variables. However, in the CRC 

model such fixed effects cannot be distinguished from the 𝜃𝑖, and would not resolve the 

identification problems due to lack of common support. Instead, the research design strategy 

suggested by the data presented in Section 2 is to stratify the data by zone. As suggested by Suri 

(2011, section 4.4.3), if transitory hybrid use is due to factors uncorrelated with productivity, 

such as lack of availability in the local market at the time farmers need to purchase seed and 

fertilizer, observations of transitory hybrid use or non-use can be used as control observations. 

Data from the low zone, where most permanent non-hybrid farms and many transitory adopters 

are located, can be used to estimate 𝑟𝑖
 𝑃𝑁, but 𝑟𝑖

 𝑃𝐻 cannot be estimated in the low zone because it 

depends on 3 which cannot be identified in the low zone (see equation 9). Likewise, data from 

the medium and high zones, where most permanent hybrid farms as well as transitory non-

adopters are located, can be used to estimate 3 and 𝑟𝑖
 𝑃𝐻; however 𝑟𝑖

 𝑃𝑁cannot be estimated for 

the medium and high zones because 0 cannot be identified.  

4. CRC MODEL RESULTS 

This section presents a replication of the results for the CRC model highlighted in Suri 

(2011) sections 6 and 7. Then I present estimates of the CRC model estimated by agro-ecozone, 

and compare the parameters and hybrid returns distributions produced by Suri’s specification and 

the zone-specific model.  
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4.1. Replication of Suri’s Results 

Suri argued that high HIV rates in some areas could affect the identification of the model, 

representing “shocks” realized before the hybrid and fertilizer choices were made, and argued 

that the results were “stronger” when observations from two high-HIV districts were dropped 

from the data. Below I discuss the legitimacy of this procedure and its effect on the results.  

Table III presents Suri’s parameter estimates for  and  as well as my replicated 

estimates for these parameters using the low-HIV sample. I also include 0 in the table because 

of its importance to the estimation of returns to hybrid non-adopters as explained in section 3 

(Suri did not present the estimates of 0 or any other structural parameters in equation S35). 

Table III also shows summary statistics for the distributions of the returns to hybrid in log yield 

units and in yield units. Like Suri, I estimated the reduced form using seemingly unrelated 

regression. For estimation of the structural parameters, I used a two-step procedure implemented 

with the GMM procedure in SAS 9.4, similar to Suri’s Optimal Minimum Distance estimation 

procedure. 

Since my data for yields and hybrid use are virtually identical to Suri’s, as a first step in 

the replication I closely reproduced Suri’s estimates of the model without covariates and with 

only hybrid endogenous (Suri 2011, Table VIIIA). Next, I replicated the model used by Suri to 

analyze the hybrid returns distributions, i.e, the model with both hybrid and fertilizer 

endogenous, with covariates but without covariate interactions with hybrid (Suri 2011, Table 

VIIIC). As my Table III shows, my estimates of  and  are very close to Suri’s, the average 

values for the relative hybrid returns are similar, and the distributions of 𝜃𝑖 by adopter type are 

similar to the ones presented by Suri (2011, Figure 5C). Thus, I conclude that I have successfully 
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replicated Suri’s CRC estimates based on the low-HIV sample and the model without covariate 

interactions.   

As discussed in section 3.2, Suri argued that the spatial distribution of hybrid returns 

across farms could be explained by permanent fixed costs of market access, proxied by distance 

to market and related infrastructure (see S25). The first column of Table IV presents one of 

Suri’s regressions of the estimated 𝜃𝑖 on variables for distance to markets and transport 

infrastructure, credit use and province dummy variables (Suri 2011, Table IX, column 4). The 

second column presents my replication of this regression carried out with 𝜃𝑖 derived from the 

replicated model presented in the second column of Table 3.  Note that the parameter  in Table 

III is negative, and relative hybrid returns are calculated as  +  𝜃𝑖 (see equation 12). Thus, the 

sign of the regression coefficients in the first two columns of Table III have signs opposite of the 

implied effect of each variable on relative hybrid returns. The replicated regression shows a 

similar negative parameter for the one statistically significant distance variable, distance to 

fertilizer market, implying a positive relationship between this variable and relative hybrid 

productivity. Other parameters are somewhat different between Suri’s and the replication but all 

are statistically insignificant. As discussed in section 3.2, this regression does not follow 

logically from the correct analysis of adoption under profit maximization, so its interpretation is 

a moot issue.  My replication also shows that the distance variables explain a very small amount 

of the variation in relative hybrid productivity, and thus do not provide a satisfactory explanation 

of the spatial pattern of relative hybrid productivity.8  

                                                           
8 Suri (2011) did not report R2 statistics for the 𝜃𝑖 regressions. In a personal communication Suri indicated they were 

all in the 0.13 range.  
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Table IV (column 3) shows a regression of hybrid returns in yield units, regressed on the 

same variables. As argued in section 3.2, this is the regression implied by the correct adoption 

rule. The R2 statistic falls to 0.025, and only the distance to extension variable is significant, and 

its sign implies a negative effect of distance on hybrid returns. Thus, these results confirm the 

bias caused by the mis-specification of the regressions in the first two columns which attempt to 

relate relative returns to distance.  

A more direct test of Suri’s explanation for the high counterfactual returns to hybrid for 

permanent non-adopters is to estimate the cost of hybrid seed and fertilizer to farmers, inclusive 

of transport cost. The data show that the cost of hybrid seed and additional fertilizer associated 

with hybrid use averages about 100 kg/ac in terms of maize yield (see Figure  

3 which shows the observed distribution of hybrid seed and fertilizer cost). Sheahan (2011, p. 76) 

estimated that the transport cost ranges from 25 to 50 percent of the fertilizer cost at point of 

sale. I obtained a similar range of cost by utilizing the transportation cost for fertilizer reported 

by farmers in the 2004 and 2010 surveys. Taken together, these data imply a purchase cost plus 

transport cost in maize yield units of less than 200 kg/ac. We can conclude from Table III that 

Suri’s estimated relative returns to hybrid for non-adopters, which imply an average gross return 

in maize yield over 500 kg/ac, are far higher than the purchase cost plus transportation cost of 

seed and fertilizer for most farmers. Thus, after accounting for the cost of accessing the 

technology, Suri’s estimate of the counterfactual return to non-adopters is inconsistent with 

profit maximization after accounting for the cost of market access.   

4.2. Estimation by Agro-ecozone 

Table III also presents parameter estimates and hybrid return distribution statistics for the CRC 

model estimated by agro-ecozone; also see the kernel density estimates in Figure 3.Table III  
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Table III. CRC Parameter Estimates and Gross Hybrid Returns Distributions, 1997 and 2004 

 

_____________________________________________________________________________________ 

Note: Data for Relative Hybrid Returns in the first column were calculated from data provided by Suri 

(personal communication).  Data show small numbers of observations and outliers in High Zone for 

Leavers and Joiners.  

  

Suri Low Zone Medium Zone High Zone

0   NA -0.104 0.085 0.316

(NA) (0.077) (0.099) (0.125)

 0.603 0.203 0.28 0.312

(0.060) (0.155) (0.092) (0.114)

 -1.788 0.117 -1.634 -1.658

(0.277) (0.603) (0.249) (0.193)

No. Observations 1061 301 451 343

 

Permanent Non-Hybrid 106 19 NA NA

 (24) (1) NA NA

Permanent Hybrid 62 NA 34 40

 (5) NA (20) (19)

Leavers 55 23 9 39

(16) (2) (20) (48)

Joiners -25 22 4 -53

(24) (2) (46) (8)

 

Permanent Non-Hybrid NA 49 NA NA

 (NA) (29) NA NA

Permanent Hybrid NA NA 362 548

 (NA) NA (410) (333)

Leavers NA 59 50 600

(NA) (19) (134) (945)

Joiners NA 79 44 -502

(NA) (70) (240) (100)

Gross Relative Hybrid Returns Distributions (100 x log kg/ac)

Gross Hybrid Returns Distributions in Yield Units (kg/ac)

Estimation by Zone

(20)

50

(240)

(means with standard deviations in parentheses)

(288)

738

(1008)

542

Replication

Low HIV Sample, All Zones

-0.318

(0.074)

0.611

(0.054)

-1.757

(0.264)

1061

(means with standard deviations in parentheses)

515

(1243)

-234

(14)

-27

(16)

99

(33)

62
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Table IV. Regressions of Theta (𝑖) and Gross Hybrid Returns (kg/ac) 

on Distance to Market and Other Variables 

 

 

Note: Standard errors in parentheses. Suri’s estimates in the first column were based on ordinary least squares 

regression; R2 statistics and number of observations were not reported in Suri (2011) and were obtained in personal 

communication. All other results based on heteroskedastic-consistent regression. Suri scaled distance variables by 

100 and credit by 10, and dropped observations with distance greater than 70 km. Here, Theta was scaled by 100. 

CRC regressions include dummy variables for five provinces and for head of household education as defined by 

Suri. Hybrid Returns regressions have dependent variable defined as returns in kg/ac minus its mean divided by its 

standard deviation and multiplied times 100. AES regressions do not include education dummies and distance to 

matatu (public transport) due to data availability.  

 

shows that the parameter estimates and hybrid returns distributions differ substantially from 

those estimated with the data pooled across zones. The parameters estimated by zone confirm the 

analysis of section 3.2 which showed that the lack of common support in the data pooled across 

zones would bias the estimate of 0 downwards and the estimate of   upwards, and result in an  

upward bias in the estimated counterfactual returns to hybrid for permanent non-adopters. For 

example, with the data pooled across zones, 0 is estimated to be –0.318 and significant, whereas 

the estimate of  0 for the high zone is +0.316 and significant. The estimate of  from the pooled 

model is 0.611 and highly significant; the estimates for the medium and high zones are 0.28 and 

0.31 and significant. 

Suri CRC

CRC 

Replication

CRC 

Replication

CRC by Zone 

1997 & 2004

CRC by Zone 

1997 & 2004

AES by Zone 

1997-2010

AES by Zone 

1997-2010

Distance to Fertilizer Market -0.285 -0.363 0.259 -0.792 -0.014 -1.055 0.493

(0.121) (0.142) (0.667) (0.785) (0.759) (0.183) (0.156)

Distance to Motorable Road -0.898 -0.615 -0.996 -2.338 0.337 0.391 0.911

(0.501) (0.568) (1.922) (2.210) (2.171) (0.863) (0.714)

Distance to Matatu -0.028 -0.101 0.813 -0.477 -0.423 NA NA

(0.299) (0.336) (1.360) (1.632) (1.622) NA NA

Distance to Extension -0.061 0.120 -1.659 -0.133 0.205 -1.853 -0.873

(0.155) (0.170) (0.571) (0.836) (0.806) (0.252) (0.229)

Credit Used -0.470 -1.093 4.959 13.813 5.168 9.431 0.436

(1.540) (1.726) (6.845) (8.176) (8.584) (3.090) (2.803)

Low Zone -84.422 -139.024

(14.724) (4.070)

High Zone 25.242 35.586

(15.651) (6.406)

R2 0.130 0.095 0.025 0.125 0.154 0.142 0.274

No. Observations 1057 1058 1058 941 941 5014 5014

Hybrid Returns (normalized kg/ac x 100)   Theta (x 100)
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Table III shows that the mean relative hybrid returns are in the range of 20 to 40 percent 

for the zone-based CRC models. These mean returns are similar to the parameters on the hybrid 

use dummies in the zone-specific production function estimates presented in the Supplemental 

Material, showing that with appropriate stratification, conventional production functions provide 

a reasonable estimate of mean hybrid productivity. Table 3 and Figure 3 show the estimated 

hybrid returns (in yield units) are much higher for permanent adopters than for permanent non-

adopters and for transitory users. Figure 3 also shows an estimate of the distribution of the cost 

of hybrid seed and fertilizer, which averages about 108 kg/ac (in maize yield units) (see the 

Supplementary Data for details).  As noted above, combining these data with Sheahan’s (2011) 

estimate of transport costs, the cost of the hybrid-seed technology to farmers is estimated to be 

less than 200 kg/ac in maize units. We can conclude that the CRC model estimated by zone 

implies high positive net returns to most permanent adopters in the medium and high zones, but 

negative returns to most non-adopters in the low zone. Thus, these estimates are consistent with 

adoption based on profit maximization. 

Table III also shows relative returns are low for Leavers and Joiners in the low and 

medium zones. In the high zone, average returns are high for Leavers and large and negative for 

Joiners, seemingly inconsistent with the other zones. These results are similar to the data for the 

model estimated with the data pooled across zones, and appear to be unreliable due to small 

numbers of observations and some large outliers.  

 Table IV (columns 4 and 5) presents regressions of hybrid returns in yield units from the 

zone-based CRC models, using the same covariates as the first two columns, as well as dummies 

for the low and high zones. Recall from section 3 that this regression is consistent with the 

corrected adoption model, because it relates hybrid returns in yield units to the cost of access  



29 
 

   

Figure 3. Hybrid returns distributions in maize units by adopter type, CRC model without 

covariate interactions, estimated by zone, 1997 and 2004 sample. Note: Transitory is both Joiners 

and Leavers. Right panel also shows the distribution of additional fertilizer and seed cost 

associated with hybrid technology, as described in the Supplemental Material.  

 

 

Figure 4. Hybrid returns distributions in maize units, AES model, estimated by zone, 1997-2010 

sample. Means with standard deviations in parentheses: High 555 (313); Medium 515 (301); 

Low 29 (156); Transitory 109 (149).  
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proxied by distance to market. Without the zone dummies, all of the distance variables are 

negatively related to hybrid returns in yield units; inclusion of the zone dummies causes the 

distance to fertilizer market to become insignificant and others to switch sign. The low zone 

dummy is highly significant, again suggesting that the correlations between distance and hybrid 

returns are not causal, and that hybrid returns are better explained by agro-ecology.  

4.3. Sensitivity of the CRC Model to Data and Specification 

As discussed in Section 3.2, the identification problems associated with the data pooled 

across agro-ecozones is likely to give rise to estimation problems, particularly for an over- 

identified non-linear model. These identification problems explain the extreme sensitivity of the 

CRC model to data and specification evident in Suri’s results. 

As noted above, Suri’s main results were based on a sample that excluded two districts 

with high HIV rates. However, as Table 1 shows, all of the observations Suri classified as “high 

HIV” were located in areas classified in the low productivity agro-ecological zone. These two 

districts represent about 40 percent of the observations in the low zone. Thus an alternative 

explanation for the “stronger” results associated with the “low-HIV” sample pooled across zones 

is that reducing the number of observations in the low zone amplifies the biases caused by lack 

of common support in the data. As Suri’s (2011) Table VIIIC shows, there is a large difference 

between the parameter estimates based on the full sample and the low-HIV sample. With the full 

sample including the high HIV districts, Suri’s estimate of the average hybrid productivity 

without covariate interactions, the parameter , is 0.088 and not statistically significant, implying 

an implausible zero average return to the hybrid technology; excluding the high HIV districts the 

estimate increases to 0.603.  
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Suri’s estimate of the parameter  increased from a value of -0.449 in the full sample to a 

value of -1.788 with the high HIV districts deleted, implying a much larger degree of 

heterogeneity in the hybrid return distribution, even though eliminating the low HIV districts 

reduces heterogeneity. Other parameter estimates presented by Suri also show extreme 

instability, e.g., Suri’s Table IIIA show estimates of  that range from -0.794 to -17.82, and not 

surprisingly are most implausible when the model includes interactions with hybrid which induce 

high multicollinearity. In my attempts to estimate the model with various samples and 

specifications, I found that the GMM estimator often would not converge, or would converge to 

implausible values for ,  and 0. This instability is consistent with the identification problem 

caused by the lack of observations needed to identify ,  and 0 in the medium and high zones, 

which represent about 82 percent of the sample without the high HIV districts. 

4.4 Other Limitations of the Log-linear CRC Model  

The linear-in-parameters form required for the Chamberlin (1984) estimation procedure 

imposes strong restrictions on the form of the production function. The conventional log-

transformed constant elasticity (or Cobb-Douglas) production function is linear in the 

parameters, but not linear in the variables. Suri estimated the CRC model using log yield as the 

dependent variable and inputs and other covariates specified as linear in the parameters and 

variables. Thus, the production function is convex in fertilizer and other inputs, violating the 

standard concavity assumption of production theory. This specification is necessary for fertilizer 

because it is a non-essential input with many zero values; the data also exhibit zero values for 

other variables such as hired labor and land preparation cost.  
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Another restriction of models estimated in log form is the assumption that the error terms 

𝑢𝑖𝑡
 𝐻 and 𝑢𝑖𝑡

 𝑁 (see equations S8 and S9) satisfy restrictions implied by a multiplicative error 

structure. Just and Pope (1978) and Antle (1983a) showed that models with multiplicative errors 

impose restrictions between input use and the higher moments of the yield distribution, and thus 

restrict the production risk attributes of inputs, including how inputs affect downside and upside 

risk (Antle 2010). As I discuss in the Supplemental Material, these functional restrictions are 

likely to affect the estimation of the unobserved heterogeneity component 𝜃𝑖 in the CRC model, 

and in combination with the identification issues discussed above, are another reason why the 

estimates may be sensitive to specification.  

Another issue with the CRC model specified with the factor structure (9) is its non-linear 

structural form and number of parameters. With more than two time periods, or more than two 

endogenous inputs, the model has a large number of parameters and is difficult to formulate, 

estimate and interpret. As noted above, even with the two-period, two-endogenous variable 

model presented in the previous section, the estimation procedure often fails to converge and is 

highly sensitive to small changes in the data. Additionally, with multiple time periods, the 

identification issues discussed in section 3.2 are more difficult to assess.  

5. AN ADDITIVE-ERROR SWITCHING REGRESSION MODEL 

In this section I present an alternative production function model, the additive-error 

switching (AES) regression model. As elaborated in the Supplementary Material, this alternative 

approach has several advantages over the CRC model: it is simpler and imposes fewer 

restrictions on the technology; it can be identified with appropriate assumptions similar to the 

ones required to identify the CRC model; and it can be specified and estimated for any number 

of time periods. I compare estimates of the hybrid returns distributions from the AES model to 
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those presented above for the CRC model, and also use it to investigate the possible risk effects 

of the hybrid seed and fertilizer technology.  

The general AES model takes the form  𝐸[𝑌𝑖𝑡
𝑠|𝑍𝑖𝑡

𝑠 ] = 𝑓(𝑍𝑖𝑡
𝑠 , 𝛼𝑡) with parameter vector 𝛼𝑡, 

exogenous covariate vector 𝑍𝑖𝑡
𝑠 , and 𝑓 any suitable functional form. The yield for system s can be 

expressed as 𝑌𝑖𝑡
𝑠 =  𝐸[𝑌𝑖𝑡

𝑠|𝑍𝑖𝑡
𝑠 ] + 𝑢𝑖𝑡

𝑠 , 𝐸[𝑢𝑖𝑡
𝑠 |𝑍𝑖𝑡

𝑠 ] = 0, giving the generalized yield function: 

(11) 𝑌𝑖𝑡  = ℎ𝑖𝑡𝐸[𝑌𝑖𝑡
𝐻|𝑍𝑖𝑡

𝐻] + (1 − ℎ𝑖𝑡)𝐸[𝑌𝑖𝑡
𝑁|𝑍𝑖𝑡

𝑁] + 𝑢𝑖𝑡 , 𝑢𝑖𝑡 = ℎ𝑖𝑡𝑢𝑖𝑡
𝐻 + (1 − ℎ𝑖𝑡)𝑢𝑖𝑡

𝑁. 

As discussed in section 2, the Kenyan data show that permanent use of hybrid seed and 

fertilizer is substantially explained by observables. I use this fact to justify the assumption that 

𝐸[𝑢𝑖𝑡 |𝑍𝑖𝑡
𝐻] = 0 for permanent hybrid users in the medium and high zones, and to justify 

𝐸[𝑢𝑖𝑡 |𝑍𝑖𝑡
𝑁] = 0 for permanent non-hybrid farms in the low zone. Under the assumption (also used 

by Suri) that transitory use is determined by random factors not observed at the time farmers 

make input decisions, it follows that 𝐸[𝑢𝑖𝑡 |𝑍𝑖𝑡
𝐻] = 0 for transitory hybrid users in the low zone, 

and 𝐸[𝑢𝑖𝑡 |𝑍𝑖𝑡
𝑁] = 0 for transitory non-hybrid farms in the medium and high zones. Given an 

appropriate functional form, the mean functions in equation (11) can then be estimated 

consistently by non-linear least squares regression with a heteroscedastic error. Unlike the CRC 

model, this additive-error switching regression model (AES) can be estimated for any number of 

panel data observations using standard non-linear regression methods. The expected gross return 

to hybrid can be estimated for farms in each zone as 𝐸[𝑌𝑖𝑡
𝐻|𝑍𝑖𝑡

𝐻] − 𝐸[𝑌𝑖𝑡
𝑁|𝑍𝑖𝑡

𝑁].  

In the results presented here I assumed parameter differences over time are captured by 

time dummies and other time-varying covariates, and I assume 𝑓(𝑍𝑖𝑡
𝑠 ,) = exp [𝑔(𝑍𝑖𝑡

𝑠 ,)] where 

𝑔 is linear in logs of continuous positive covariates and dummy variables. To account for the 
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occurrence of zeros in fertilizer use, I utilize the method proposed by Battese (1997) to allow 

zero values in a log-transformed model.9  Parameter estimates are presented in the 

Supplementary Material. As noted in section 2.3, covariate balance is improved by propensity 

score matching. Estimation of models with matched and stratified data showed similar results, 

indicating that stratification by zone is sufficient to address covariate balance.   

Figure 4 presents the distributions of hybrid returns in yield units estimated with the AES 

model for the full five-year panel (1997, 2000, 2004, 2007 and 2010; similar results were 

obtained for the 1997 and 2004 years). This figure shows a pattern of hybrid returns similar to 

the results presented in Table 3 and in Figure 3 for the CRC models estimated by zone. The 

average gross returns to permanent hybrid use in the high and medium productivity zones are 

515 and 555 kg/ac. The hybrid returns distribution for permanent non-adopters in the low zone 

and for transitory users in all zones have means near zero. Recalling that the additional cost of 

hybrid seed and increased fertilizer average over 100 kg/ac including transport cost, we can see 

that the AES model implies that most permanent hybrid adopters are found to have a positive net 

return to hybrid, and that most permanent non-adopters and switchers are found to have low or 

negative net returns.  

The relatively wide spread of the returns distributions shown in Figures 3 and 4, however, 

also implies negative returns for some adopters and positive returns for some non-adopters. One 

explanation for this result is the sampling error in the estimates. Another explanation could be 

behavioral, such as the risk effects of hybrid seed and fertilizer. Evidence suggests that many 

farm decision makers are downside risk averse while seeking upside gains (Antle 2010; Kim et 

                                                           
9 Define a fertilizer use dummy as df equal to 0 if fertilizer is used and equal to 1 if not used, and define fertilizer 

quantity as xf. Battese’s method is to include df and log(df +xf) in a log-linear model. The coefficient on df is 

interpreted as a distinct intercept for fertilizer non-users, and the coefficient on log(df +xf) is interpreted as the 

production elasticity for fertilizer users.  
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al. 2014). Following the method presented in Antle (2010), the AES model was used to estimate 

the impacts of hybrid and fertilizer use on the partial second moments of yield and other 

covariates (i.e., the negative and positive semi-variances), with the square root of the negative 

and positive partial second moments interpreted as a measures of downside and upside risk (see 

the Supplementary Material for further details). The results show a positive relationship between 

expected returns to hybrid and downside risk in the low zone, indicating that farmers with 

relatively high hybrid returns also experience high downside risk, thus, high downside risk could 

inhibit adoption. For the high zone, the results show a positive relationship between expected 

returns to hybrid and downside risk, and high upside risk for farms with low expected returns. 

This indicates that farmers with relatively low gross hybrid returns experience low downside risk 

and high upside risk, thus encouraging adoption by farmers who are downside risk averse but 

upside risk seeking, even when expected returns are low or negative.    

Table IV (columns 6 and 7) present the regressions of the AES model’s estimated hybrid 

returns in yield units on distance to market and other covariates. The table confirms the same 

pattern of correlations as the zone-based CRC models. Inclusion of the zone dummies 

substantially affects the parameters of the distance variables, again casting doubt on the causal 

relationship between distance and productivity.  

 In the Supplemental Material I develop a specification test for restrictions on the error 

distribution implied by the log-linear fixed-effect specification used for the CRC model 

(equation S20).  These restrictions are due to the multiplicative error specification implied by the 

log transformation of the dependent variable (Just and Pope, 1978; Antle 1983a). For both hybrid 

and non-hybrid observations, this specification is rejected with p-values less than 0.001. Thus, 
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we can conclude that the data strongly reject the restrictions implied by the multiplicative error 

fixed-effects model.  

6. CONCLUSIONS 

 In the Introduction I noted that agro-ecological factors and market access are considered 

to be important factors influencing technology adoption in developing countries. The results 

presented in this study show that, in the case of hybrid maize adoption in Kenya, the agro-

ecological factors appear to be more important that market access, in as much as market access 

can be represented by distance to markets and related infrastructure. The results from both the 

CRC model estimated by agro-ecological zone and the AES model suggest that there does not 

appear to be a hybrid maize or fertilizer adoption “puzzle” in Kenya. Most farmers in areas 

favorable to maize production are using hybrid maize and fertilizer, and fertilizer use was 

increasing over the 1997-2010 period as improved hybrid varieties became available that were 

better adapted to the differing agro-ecological conditions across Kenya. The explanation for the 

low adoption rates of hybrid seed in the unfavorable areas for maize (the low zone in this paper) 

is primarily that the expected return is low, combined with the downside-risk increasing effects 

of the technology in the low productivity areas that appears to be associated with lower and more 

variable rainfall. This finding is consistent with the fact that the most widely used hybrid 

varieties in the high-productivity zones are not well-suited to the low productivity areas. As 

studies of crop breeding investments show (Evenson and Gollin 2003), new varieties can be 

developed that are more suited to the low productivity areas, with the result that hybrid and 

fertilizer use are both increasing but still lag behind the higher productivity areas (Figure 1). The 

policy implication of these results is that while infrastructure investments surely can improve the 
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well-being of farmers in the low-productivity areas, they cannot substitute for much needed 

variety improvements. 

One of the lessons of the past several decades of micro-econometric research is the 

importance of research design to valid statistical inference (Angrist and Pischke 2010; Heckman 

2010). The analysis presented here shows the relevance of this lesson in ex post technology 

impact assessment in cases such as Kenya, where agro-ecological conditions vary greatly and 

have a correspondingly large effect on farmers’ technology choices. This example also should 

serve as a cautionary tale about the use of complex structural models when identification from 

the data is weak and “apparent” structural identification may lead to biased estimates that are 

extremely sensitive to data and model specification.  

 Finally, in this paper I have demonstrated that relatively simple models based on 

observables, such as the AES model, together with careful attention to identification in the data, 

can produce results that are similar to more complex structural models such as the CRC model. 

The AES approach is attractive because it can accommodate virtually any functional form, can 

be used with multiple years of panel data, and does not impose restrictions on the risk properties 

of technologies.  
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