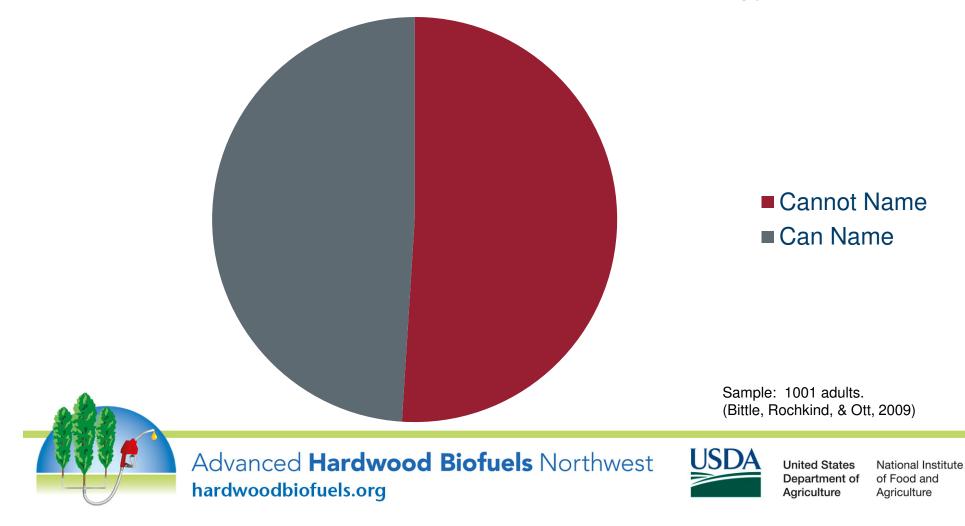
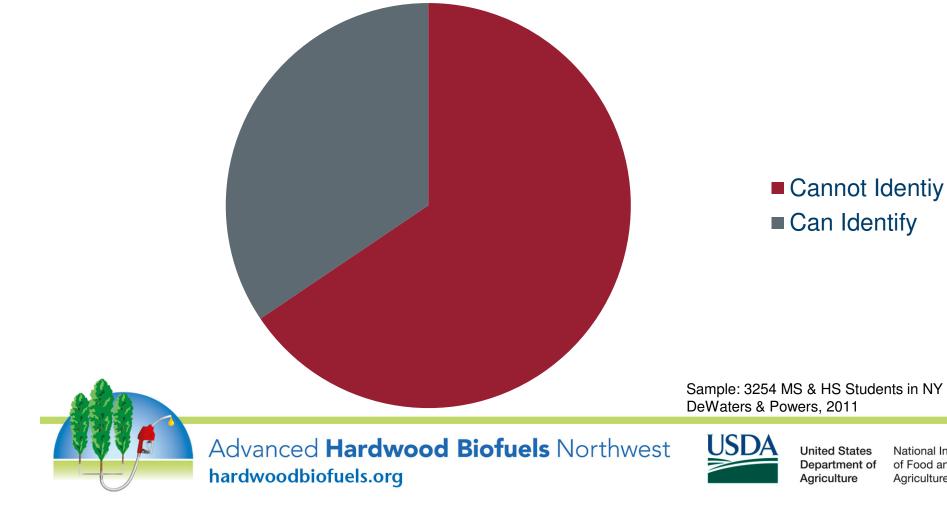

Why Bioenergy in K12?

Source:www.wikipedia.org


Advanced **Hardwood Biofuels** Northwest hardwoodbiofuels.org

United States Department of Agriculture


Adults Don't Know Energy

Adults Able to Name One Alternative Energy Source

Children Don't Know Energy

Middle School Students Able to Identify a Biofuel in List

What is Essential to Teach?

ner mate Photosynthesis nversion conomics nass

How to Get an Expert Opinion When the Everyone Disagrees?

- Group Problems
- Delphi Technique
 - Experts at a distance
 - Anonymous
 - Multiple iterations
 - Statistical analysis
 - Develop consensus

Advanced Hardwood Biofuels Northwest hardwoodbiofuels.org

United States Department of Agriculture

The Process

- Experts: $180 \rightarrow 42 \rightarrow 21 \& 20$
- Question: What science and engineering concepts are essential in K12?
- Round 1 -- Brainstorming
- Round 2 Shortening (Current status)
- Round 3 -- Prioritizing

United States Department of Agriculture

Science Results (K12)

Concept	Rating	SD
Climate Change: Historical record and projected consequences	4.6	0.5
Energy Fundamentals: Work, energy, conversions	4.5	0.5
Photosynthesis: How light energy is stored in plants	4.4	0.9
Chemical Cycles: Water, carbon, nitrogen cycles	4.3	0.7
Ecosystems: Ecology and human impact	4.2	1.0
Conversion Principles: Types of conversions	4.2	0.8
Lifecycle Assessment:	4.2	0.9
Environmental impacts from cradle to grave		
Economics: How economics impacts biofuel use	3.9	1.1
Biomass Sources: How solar energy is stored	3.8	1.1
Laws of Thermodynamics: Conservation of energy	3.8	1.0
Public Policy: Impacts of politics on bioenergy production	3.3	1.4

Engineering Results (K12)

Concept	Rating	SD
Energy Consumption: Current and historical energy sources	4.8	0.7
Energy Fundamentals: Types and conversions of energy	4.2	1.0
Energy Requirements: Quantity and type of energy needed	4.2	1.1
Nature of Engineering: Role of engineering in bioenergy	4.2	1.1
Conversion Technologies: Types of conversions	3.9	1.2
Bioenergy Products: Types of biofuels	3.7	1.1
Lifecycle Assessment: Social, environmental, and economic impacts	3.7	1.1
Process Economics: Economic analysis of conversion processes	3.4	1.0
Chemical Engineering Fundamentals:	3.3	1.5
Conservation mass/energy; heat/mass transfer		

Advanced Hardwood Biofuels Northwest hardwoodbiofuels.org

United States Department of Agriculture

Next Generation Science Standards

- Developed by states. National Academies, 2013.
- Depth vs. breadth
- Emphasis on both science and engineering practices
- Connections across disciplines

United States Department of Agriculture

Bioenergy Framework & NGSS

Climate Change →

MS-ESS3.D: Global Climate Change

Human activities, such as the release of greenhouse gases from burning fossil fuels, are major factors in the current rise in Earth's mean surface temperature (global warming).

Energy Fundamentals → HS-PS3.A: Definitions of Energy PS3.B: Conservation of Energy and Energy Transfer

Advanced **Hardwood Biofuels** Northwest **hardwoodbiofuels.org**

United States N Department of Agriculture A

Undergraduate Results (Kimi Grzyb)

Concept	Rating	SD
Energy Basics	4.73	0.4 7
Types of Bioenergy	4.64	0.6 7
Environmental impacts	4.45	0.5 2
Current technologies	4.27	0.4 7
Societal issues	4.27	0.4 7
Logistics	4.18	0.4 0
Policy	4.09	0.5 4
Biomass composition	4.00	1.0

Discussion & Next Steps

- Consensus is developing (Complete Round 3)
- Results are compatible with NGSS
- Emphasis on core science concepts
- Guide development of additional curriculum
- Teachers: Grade-band concepts
- Links K12 to Undergraduate

United States Department of Agriculture