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The Many Faces of Replication

Douglas H. Johnson*

ABSTRACT

Replication is one of the three cornerstones of inference from
experimental studies, the other two being control and randomization.
In fact, replication is essential for the benefits of randomization to
apply. In addition to ordinary replication, the repetition of treatments
within a study, two other levels of replication have been identified.
Pseudoreplication, a termed coined by Stuart Hurlbert, generally in-
volves making multiple measurements on experiment units (which
is commendable) and treating them as if they reflected independent
responses to treatment (which is erroneous). Metareplication is a higher
level of replication in which entire studies are repeated. Scientists are
too much concerned about analysis of data within studies and too
little concerned about the repeatability of findings from studies con-
ducted under a variety of conditions. Findings that are consistent
among studies performed at different locations at different times with
different investigators using different methods are likely to be robust
and reliable.

UNDAMENTAL TO SCIENCE is the notion of causation,

which is less obvious than it might appear. In the
physical sciences, causation is a straightforward concept
that implies a law-like consistency between antecedents
and consequences. Models of the behavior of atoms,
planets, and other inanimate objects are applicable over
a wide range of conditions (Barnard, 1982), and there are
few factors that control the system (e.g., pressure and
temperature are sufficient to determine the volume of a
gas). In many nonphysical sciences, however, notions of
causality reduce to those of probability, which allows ex-
ceptions and lack of regularity. Here, causation means
that an action “tends to make the consequence more
likely, not absolutely certain” (Pearl, 2000). In wildlife
management, a discipline familiar to me, many factors in-
fluence a system. For example, liberalizing hunting regu-
lations for a species tends to increase harvest by hunters.
In any specific instance, however, liberalization may not
cause an increased harvest because of other influences
such as the number of animals in the population, weather
conditions during the hunting season, and the cost of
gasoline as it affects hunter activity. In an agronomic set-
ting, adding P fertilizer may generally be expected to
increase the yield of a crop, but it may not happen in
a specific instance because another nutrient is limiting, P
is already in adequate supply, or moisture is insufficient
for the plants to utilize the added P.
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The objective of this paper is to discuss the role of
various kinds of replication in scientific studies. The
material is not new; the key points were outlined by
R.A. Fisher early in the previous century. This paper
also draws freely from Hurlbert (1984), Johnson (2002),
Shaffer and Johnson (2007, unpublished data), and other
cited sources.

Consider an example (Shaffer and Johnson, 2007, un-
published data). Suppose you want to determine how
the yield of a crop is affected by a treatment such as
the addition of a certain fertilizer. The treatment effect
(T) on a particular plot (u#) can be defined as

T =Y, (u) — Y(u), [1]

where Y,(u) is the yield in plot u after the treatment, and
Y.(u) is the yield in that plot if the treatment had not
been applied. If the plot is fertilized, then you can
observe Y/(u) but not Y.(u). If the fertilizer is not ap-
plied, then you can observe Y.(u) but not Y/(u). This
leads to what has been termed the fundamental prob-
lem of causal inference: one cannot observe the values
of Y{u) and Y (u) on the same unit (Rubin, 1974; Hol-
land, 1986). That is, any particular plot is either fertil-
ized or not.

Two solutions to this problem have been identified
(Holland, 1986). The first requires two units (x; and uy;
here, plots) and the assumption that they are identical.
Then the treatment effect T is estimated to be

T =Y,(u) — Ye(up), (2]

where u; is treated and u, is not. This approach is based
on the very strong assumption that the two plots, if not
fertilized, would have identical yield, that is, Y.(u,) =
Y.(uy), and, if fertilized, then Y,(u,) = Y,(u;). We cannot
test these assumptions, because one plot was fertilized
and the other was not. The assumption can be made
more plausible by matching the two units as closely as
possible or with evidence that the units are identical.
Physicists are more likely to believe that two molecules
are identical than agronomists are to consider two plots
the same, however.

The second solution has been termed statistical (Hol-
land, 1986). We can consider an expected, or average,
causal effect T over all units in some population:

T = E(Y, — Y.), (3]

where, unlike with the first solution, different units can
be observed. The statistical solution replaces the causal
effect of the treatment on a specific unit, which is im-
possible to observe, by the average causal effect in the
population of units, which is possible to estimate.

It is clear that a control, something to compare with
the treated unit, is needed for either approach. In the
statistical approach, randomization is often invoked.
If, for example, we are to compare yield on a treated
plot and an untreated one, we could reach an erroneous
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conclusion if the plots had different soils, or had grown
different crops the previous year. One way to protect
against such possibly misleading outcomes is to decide
at random which plot is to be treated and which is not.
Random assignment can be done in a controlled experi-
ment but not in most observational studies.

Suppose in our example that there are four plots in
our area of interest. And suppose, following the first
solution, that they are identical: each would yield 300 kg
if it were fertilized and 100 kg if not (Table 1). Then, no
matter which plot was selected for treatment and which
was the comparison, we would estimate the treatment
effect to be 200 kg, which is just right. But suppose
that the plots themselves varied; in this example we will
maintain the unrealistic but convenient simplifying as-
sumption that the treatment effect would be 200 kg
no matter which plot was treated (Table 2). Then, if we
treat one plot and observe another as a control, there
are 12 possible combinations that could constitute our
sample (Table 3). Our estimate of the treatment effect
would vary, depending on which plots were selected.
For example, if Plot 1 was fertilized and Plot 3 served
as a control, we would estimate our treatment effect as
300 — 0 = 300 kg. The 12 possible estimates of treat-
ment effect range from —200 to 600 kg. The average is
200 kg, the correct value, but no possible sample would
yield exactly that value.

So, even if treatments are assigned at random, it
may just happen that one plot has better soils (possibly
Plot 4 in our example), and the other does not (Plot 3).
And, such a sample would generate an estimated treat-
ment effect (600 kg) very different from the correct value
(200 kg). This consideration leads to the third important
criterion for determining causation: replication. Repeat-
ing the randomization process and treatment application
on several plots makes it unlikely that plots in either group
are consistently more favorable. If we take a sample of
Size 2 for both treatment and control groups, there are six
possible samples, with estimated treatment effects rang-
ing from —100 to 500 kg (Table 4). Note that samples with
one plot each in the treatment and in the control group
yield estimates that vary around the true value, but are
very spread out (Fig. 1, top), whereas samples of Size 2 in
each group gives estimates that cluster somewhat more
closely around the true value (Fig. 1, bottom). The smaller
the sample, the more likely is a wildly misleading result.

These then form the cornerstones for assessing the
effect of some treatment with a manipulative experi-
ment: a control, randomization, and replication (Fisher,
1926). The need for a control is obvious and will not be

Table 1. Example of four field plots, the value (yield in kilograms)
each would have if it were treated (fertilizer applied), and the
value it would have if it were not treated. Note that in this ex-
ample all plots have identical values under each scenario, and
the effect of the treatment is 200 for all plots.

Plot Value if treated Value if not treated
1 300 100
2 300 100
3 300 100
4 300 100

Table 2. Example of four field plots, the value (yield in kilograms)
each would have if it were treated, and the value it would have
if it were not treated. Note that plots vary in values irrespective
of treatment, but the effect of the treatment is 200 for all plots.

Plot Value if treated Value if not treated
1 300 100
2 500 300
3 200 0
4 600 400

discussed further here. We will explore the functions of
randomization and replication more fully.

Randomization serves three roles. One is to make vari-
ation among sample units, due to variables that are not
accounted for, act randomly, rather than in some con-
sistent and potentially misleading manner. Randomiza-
tion thereby reduces the chance of confounding with
other variables. Instead of controlling for the effects of
those unaccounted-for variables, randomization makes
them tend to cancel one another out, at least in large
samples. Second, randomization reduces any intentional
or unintentional bias of the investigator. And third, be-
cause all outcomes are equally likely, randomization pro-
vides an objective probability distribution that can provide
the basis for a test of significance (Barnard, 1982).

But, randomization by itself is not enough; replication
is necessary for randomization to be useful. The prop-
erties of randomization in the selection of units to study
are largely conceptual; that is, they pertain hypotheti-
cally to some long-term average. Randomization, for ex-
ample, makes errors act randomly, rather than in some
consistent fashion. However, in any single observation,
or any single study, the error may well be consistent. It is
only through replication that long-term properties hold.
Replication provides two important benefits. First, it re-
duces error because an average of independent errors
tends to be smaller than a single error. Replication serves
to ensure against making a decision based on a single, pos-
sibly unusual, outcome of a treatment or measurement
of a unit. Second, because we have several estimates of
the same effect, we can estimate the error, as the variation
in those estimates reflects error. We then can determine
if the value of the treated units are unusually different
from those of the untreated units. The validity of that
estimate of error depends on the experimental units
having been drawn randomly; thus, the validity is a joint
property of randomization and replication.

Table 3. All possible samples of Size 1 each, treated and untreated,
from the population of field plots described in Table 2.

Difference

0
300
-100
400
500
100
100
-100
—200
500
300
600

Treated plot Untreated plot
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Table 4. All possible samples of Size 2 each, treated and untreated,
from the population of field plots described in Table 2.

Treated plots Untreated plots Difference
1,2 3,4 200
1,3 2,4 -100
1,4 2,3 300
2,3 1,4 100
2,4 1,3 500
3,4 1,2 200

Manipulative experimentation is a very effective way
to determine causal relationships. One poses questions
to nature via experiments, such as fertilization of plots.
By manipulating the system, an investigator reduces the
chance that something other than the treatment caused
the results that were observed. Scientists in many dis-
ciplines, however, face severe difficulties meeting the
requirements of control, randomization, and replication
associated with manipulative experiments. Many systems
are too large and complex to be manipulated (Macnab,
1983). Often, treatments such as natural or human-caused
disasters are applied by others, and scientists attempt to
evaluate their effects. In such situations, randomization
is impossible and replication undesirable. Some methods
for conducting environmental studies, other than experi-

3

NUMBER OF SAMPLES

<200 -100 0 100 200 300 400 500 60O
TREATMENT EFFECT ESTIMATE

NUMBER OF SAMPLES

-200  -100 0 100 200 300 400 500 600
TREATMENT EFFECT ESTIMATE

Fig. 1. Numbers of possible samples of Size 1 (top) and 2 (bottom) from
plots described in Table 2 and their estimated treatment effects.

ments with replications, are available (Smith and Sugden,
1988; Eberhardt and Thomas, 1991); among these are
experiments without replications, observational studies,
and sample surveys. Although observational studies lack
the critical element of control by the investigator, they can
be analyzed similarly to an experimental study (Cochran,
1983). One is less certain that the presumed treatment
actually caused the observed response, however.

Longitudinal observational studies, with measurements
taken before and after some treatment, are generally more
informative than cross-sectional observational studies, in
which treated and untreated units are studied only after
the treatment (Cox and Wermuth, 1996). Intervention
analysis is one method applicable for assessing the effect
of a distinct treatment (intervention) that has been ap-
plied to a system. The intervention is not assigned by the
investigator and cannot reasonably be replicated. One ap-
proach is to model the system as a time series, and look
for changes following the intervention. That approach
was taken with air quality data by Box and Tiao (1975),
who sought to determine how ozone levels might have
responded to events such as a change in the formulation
of gasoline.

Sometimes it is known that a major “treatment” will
be applied at some particular site, such as a dam to be
constructed on a river. It may be feasible to study that
river before as well as after the dam is constructed. That
simple before-and-after comparison suffers from the
weakness that any change that occurred coincidental
with dam construction, such as a decrease in precipita-
tion, would be confounded with changes resulting from
the dam, unless the changes were specifically included
in the model. To account for the effects of other vari-
ables, one can study similar rivers during the same
before-and-after time period. Ideally, these rivers would
be similar to and close enough to the treated river so
to be equally influenced by other variables, but not in-
fluenced by the treatment itself. This design has been
called the BACI (before—after, control-impact) design
(Stewart-Oaten et al., 1986; Stewart-Oaten and Bence,
2001; Smith, 2002) and is used for assessing the effects
of impacts.

WHAT DOES A SAMPLE
REALLY REPRESENT?

Any sample, even a nonrandom one, can be consid-
ered a representative sample from some population, if
not the target population. What is the population for
which the sample is representative? Extrapolation be-
yond the area from which any sample was taken re-
quires justification on nonstatistical bases. For example,
studies of animal behavior or plant physiology involving
only a few individuals may reasonably be generalized
to entire species if the behavior patterns or physiologi-
cal processes are relatively fixed (i.e., the units are
homogeneous with respect to that feature). In contrast,
features that vary more widely, such as habitat use of a
species or annual survival rates, cannot be generalized
as well from a sample of comparable size. Consistency
of a feature among the sampled and unsampled units is
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more important than the randomness of a sample. Can
one comfortably draw an inference to a population from
a sample, even if that sample is nonrandom? Most useful
inferences involve extrapolation beyond the sampled
population. Often we want to predict the consequences
of some action that will be performed in the future,
based on a study conducted in the past; in such a situa-
tion, we are extrapolating forward in time.

OTHER LEVELS OF REPLICATION

Three levels of replication have been identified (John-
son, 2002) (Table 5). The basic notion is of ordinary
replication in an experiment: treatments are applied in-
dependently to several units. In our fertilization exam-
ple, we would want several plots to be fertilized and
several to be left as controls. (Comparable consider-
ations apply to observational studies or sample surveys.)
Such replication helps to ensure against making a deci-
sion based on a single outcome of the treatment, which
may have been atypical. It also provides an estimate of
the variation associated with the treatment. Other levels
of replication are pseudoreplication and metareplication.

Pseudoreplication

At a lower level than ordinary replication is what
Hurlbert (1984) called pseudoreplication. Pseudorepli-
cation often is discussed in terms associated with the
ANOVA (using the wrong error term in an analysis), but
it usually arises by repeating measurements on units
and treating such measurements as if they represented
independent observations. The treatments may have
been assigned randomly and independently to the units,
but repeated observations on the same unit are not in-
dependent. This was what Hurlbert (1984) called simple
pseudoreplication and what Eberhardt (1976) included
in what he termed pseudodesign. Pseudoreplication was
common when Hurlbert (1984) surveyed the literature
on manipulative ecological experiments, mostly published
during 1974 to 1980, and estimated that about 27% of
the experiments involved pseudoreplication. It continues
to be a problem (Heffner et al., 1996). Stewart-Oaten
(2002) offered some keys for recognizing pseudoreplica-
tion, which is not always obvious.

Metareplication

At a higher level than ordinary replication is what
I have termed metareplication (Johnson, 2002). Meta-
replication involves the replication of entire studies, pref-
erably in different years, at different sites, with different
methodologies, or by different investigators. Conduct-
ing studies under a variety of circumstances reduces the
chance that some artifact associated with a particular

situation caused the observed results; it is unlikely that
an unusual set of circumstances would manifest itself
repeatedly in time or, especially, at multiple sites. Con-
ducting studies with different methods similarly reas-
sures us that the results were not simply due to the
methods or equipment used to produce those results.
And having more than one investigator perform studies
of similar phenomena reduces the chance that some
hidden bias or characteristic of a researcher influenced
the results. Just as replication within individual studies
reduces the influence of errors in observations by aver-
aging the errors, metareplication reduces the influence
of errors among studies themselves.

A classic example of the need for metareplication
was provided by Youden (1972), who described the se-
quence of 15 studies conducted during 1895-1961 to
estimate the average distance between Earth and the
sun. Each study yielded an estimate of that distance and
a confidence interval for the estimate. As it turned out,
rather surprisingly, each estimate was outside the con-
fidence interval for the previous estimate. Clearly each
investigator had more confidence in his estimate than
was warranted. The key point is that we should have
less confidence in any individual study than internal
estimates of reliability would lead us to believe. The
example also emphasizes the need to conduct studies
of any phenomenon under different circumstances, with
different methods, and by different investigators. That
is what I called metareplication. Independent studies
of some phenomenon each may suffer from their own
shortcomings, but if they point to substantially similar
conclusions, we can have confidence in them.

Clearly, the idea to replicate studies is not new. Rep-
etition of key experiments by others, in fact, has been
standard practice in science far longer than statistics
itself (Carpenter, 1990). Tukey (1960) argued that con-
clusions develop from considering a series of individual
results, rather than a particular result. Eberhardt and
Thomas (1991) wrote: “truly definitive single experi-
ments are very rare in any field of endeavor, progress
is actually made through sequences of investigations.”
Hurlbert and White (1993) suggested that, although
serious statistical errors were rampant in at least one
discipline, the principal conclusions, “those concerning
phenomena that have been studied by several investi-
gators, have been unaffected.” And Catchpole (1989)
stated that, “Most hypotheses are tested, not in the
splendid isolation of one finely controlled ‘perfect’ ex-
periment, but in the wider context of a whole series of
experiments and observations.” And, “in the long run,
science is safeguarded by repeated studies to ascertain
what is real and what is merely a spurious result from
a single study” (Anderson et al., 2001).

Table S. The types of replication differ in what actions are repeated, what scope of inference is valid, and the role of P values (Johnson,

2002).
Term Repeated action Scope of inference P value Analysis
Pseudoreplication measurement object measured wrong pseudoanalysis
Ordinary replication treatment objects for which les are repr tative ok analysis
Metareplication study situations for which studies are representative irrelevant meta-analysis
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MORE ON METAREPLICATION
Meta-Analysis

Meta-analysis fundamentally is an analysis of analy-
ses, in which the units being analyzed are themselves
analyses (Hedges and Olkin, 1985; Osenberg et al., 1999;
Gurevitch and Hedges, 2001). Meta-analysis dates back
at least to 1904, when Karl Pearson grouped data from
several military tests to conclude that vaccination against
intestinal fever was ineffective (Mann, 1994). A proper
meta-analysis considers the full range of estimated ef-
fects, regardless of their individual statistical significance.
The resulting pattern may show evidence of consistent
effects, even if the effects are small. Mann (1994) cited
several instances in which meta-analyses led to mark-
edly different conclusions than did reviews of studies
based on significance levels. A serious danger with meta-
analysis, however, is publication bias (Berlin et al., 1989):
a study that demonstrates a statistically significant effect
is more likely to be submitted for publication, positively
viewed by referees and editors, and ultimately published
than is a study without such significant effects (Sterling
et al., 1995). The published literature on an effect may
not offer an unbiased view of what the collective body
of research on the effect actually demonstrated.

Metareplication and the Bayesian Approach

The Bayesian philosophy offers a more natural way
to think about metareplication than does the frequentist
approach traditionally adopted. In concept, a frequentist
considers only the likelihood function, acting as if the only
information about a variable under investigation derives
from the study at hand. A Bayesian analysis accounts
for the context and history more explicitly by consider-
ing the likelihood in conjunction with the prior distribu-
tion. The prior incorporates what was known or believed
about the variable before the study was conducted.

Replication and the Scope of Inference

The level of replication, as described here, is closely as-
sociated with the scope of inference of a study (Table 5).
If measurements are repeated within a unit (pseudorepli-
cation), inferences are appropriately drawn only to that
unit. If treatments within a study are repeated (ordinarily
replication), the scope of inference can validly be consid-
ered the population for which the units are representa-
tive. If entire studies are repeated (metareplication), then
the appropriate scope of inference consists of all situa-
tions for which those studies are representative. And,
the broader the range of situations, the broader the scope
of inference.

CONCLUSIONS

Metareplication provides us greater confidence that
identified relationships are general. Obtaining consis-
tent inferences from studies conducted under a wide
variety of conditions will assure us that the conclusions
are not unique to the particular set of circumstances that
prevailed during the study. Further, by metareplicating

studies, we need not worry about P values, issues of what
constitute independent observations, and other concerns
involving single studies (Johnson, 2002). We can take a
broader look, seeking consistency of effects among stud-
ies. Consistent results suggest generality of the rela-
tionship. Inconsistency will lead us either to not accept
the results as truth, or to determine conditions under
which the results hold and those under which they do
not. That approach will lead to a better understanding
of the mechanisms. Metareplication exploits the value
of small studies, protects against claiming spurious ef-
fects to be real, and facilitates the detection of small
effects that are likely to be missed in individual studies
(Johnson, 2002).
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