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ABSTRACT
This paper reviews some traditional and more recent methods for

analyzing unreplicated experiments. Such experiments have presented
a challenge to statisticians throughout their involvement in agricultural
research. At Rothamsted this began in 1919, when R.A. Fisher was
appointed to analyze the accumulated data from the classical field ex-
periments. Fisher’s experiences with the classicals, which had virtually
no replication, must have contributed to his inclusion of replication as
one of the key features of a well-designed experiment. Nevertheless,
Fisher made good use of Rothamsted’s data, for example in his study of
the influence of rainfall on yields from the Broadbalk. He also devised
the randomization test, which can be used to analyze unreplicated data.
More recently, Broadbalk has also been used to study climate change
and sustainability. Newer developments have been concerned to find
alternatives to use, instead of blocking, to take account of the spatial
variation within an experiment. The resulting methods for modeling
spatial correlations have allowed experimenters to obtain more precise
estimates of treatment effects—or to decrease numbers of replicates—
and they can also provide reliable analyses of unreplicated treatments.

THE DEVELOPMENT OF METHODS for the analysis of ex-
periments began in 1919, when R.A. Fisher was

appointed as the original statistician at Rothamsted.
His remit was to study the accumulated results of the
Rothamsted classical field experiments, which began in
1843 with the Broadbalk experiment on winter wheat
(Triticum aestivum L.). This illustrates another (more
unfortunate!) tradition, of the statistician being called in
to do the analysis long after the design of an experiment.
However, Fisher rose to the challenge and, as the 1971
Guide to Rothamsted Experimental Station notes, “he
soon realized the need for improved statistical techniques
over the whole range of agricultural and biological re-
search, and the groundwork for modern statistics was laid
by him during the 1920s and 1930s.” Fisher recognized
the importance of replication, as a way of allowing the
underlying random variation to be estimated. However,
he also made good use of the Rothamsted classical ex-
periments, which essentially were unreplicated.

RESULTS AND DISCUSSION
Relationship of Yield to Climate

Fisher (1924) used data from Broadbalk to study the
relationship of yield to climatic variation. Broadbalk was
set up by Sir John Lawes and Sir Henry Gilbert in

autumn 1843 to study the effects of inorganic fertilizers
on winter wheat (see Leigh and Johnston, 1994). It still
continues, with minor modifications generally to reflect
changing practices (e.g., of varieties), and provides a
resource for many research activities not anticipated by
Lawes and Gilbert. The main treatments on the plots,
shown in Table 1, have remained largely unchanged
since 1852.

In 1926, subsequent to the period studied by Fisher,
each plot was split into sections to allow fallowing as a
means of weed control. More recently, some of the sec-
tions have been used to study crop rotations. Never-
theless, there are still sections that have grown wheat
continuously since 1843. From a statistical point of view
it is intriguing to notice that the design contains some
factorial structure (e.g., plots 03, 05, 10, and 09). Thus,
Lawes and Gilbert were already thinking about how one
fertilizer will respond to the presence and absence of
other fertilizers, although this was long before the theory
of factorial experiments was devised by Fisher (1926).
However, there is no replication.

The long-term experiments provided a uniquely use-
ful resource for this purpose, giving a long series of data
in controlled conditions and with the same treatments
year on year. It should therefore be only climate that
was affecting yields, other than perhaps a few other as-
pects that Fisher called “progressive changes.” Specifi-
cally, Fisher was aware that there would be long-term
trends in yield as well as long-term trends in climate, and
that the yield trends could be caused by progressive
changes in aspects unrelated to climate (e.g., improve-
ments in husbandry or varieties). Fisher therefore fitted
5th-order Legendre polynomials of years to the annual
yields to remove the long-term trends from the annual
yields. The fluctuations about the Legendre model might
reasonably be assumed to arise mainly from annual cli-
matic variations, and he sought to model these by using
the rainfall trends within each year. These rainfall trends
were characterized by fitting further Legendre poly-
nomials to the rainfall summarized during 6-d intervals.
Fitting a multiple regression, using the Legendre rainfall
coefficients of the rainfall trends, accounted for between
11 and 40% of the variance of the yield fluctuations.
Furthermore, Fisher found consistent responses to rain-
fall according to the plots’ fertilizer regimes. The work is
impressive not only in terms of the computations that
were required using just an electric calculator, but also
in terms of current methodology. These days we would
probably use smoothing splines to model the trends
rather than Legendre polynomials, but the underlying
ideas remain the same.

Further analyses of the Broadbalk yields were done
by Chmielewski and Potts (1995), who retained the long-
term trends so that they could study long-term climate
variations in order to assess the implications of climate
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change. They used grain and straw yields during 1854 to
1967 from plot 22 and plots 07 1 08 1 13 (i.e., yields
totaled over plots 07, 08, and 13). They constructed
multiple regression models using the even years, and
found that the following x variables were required: pre-
cipitation October through July, average minimum tem-
perature in July, and maximum temperature in June (for
plots 071 081 13 only). They then assessed the models
using data from the odd years, finding that they ex-
plained about 33% of variance. Their conclusions were
that warm and wet years were disadvantageous but cold
and dry years were advantageous for yields.
The key advantage of Broadbalk is that year-to-year

changes were minimal, and are all recorded, so it is pos-
sible to concentrate just on the influences of climate.
Furthermore, local records are available for the climate
variables, so there is no need to estimate these from
more distant measurements (and thus lose precision). A
disadvantage is that the models relate to a few plots at
one specific location. The conditions at other locations
may not be the same. So any wider use, for example to
generate predictions for decision support, might be ques-
tionable. Notice, however, that we are not concerned
about the fact that the data are unreplicated. In fact it is
worth remembering that unreplicated time-series like
these are very common (and are used without question)
in areas such as economics.
The concerns about the restricted location of the study

were addressed in a Ph.D. project by Sabine Landau at
Rothamsted and University of Nottingham; see Landau
et al. (1998, 1999, 2000). The aim was first to assess the
predictive ability of simulation models for winter wheat
yields, using results from U.K. trials of autumn-sown
fungicide-treated bread-making winter wheat varieties
during 1975 to 1993. The project then aimed to identify
the most important variables within the models, and use
these to produce simplified models that might provide a
better predictive framework.
Daily local climate information for each trial location

was obtained by spatial interpolation and fed, with the
relevant husbandry information, into three widely-used
simulation models to generate the predictions. Unfortu-

nately, however, these predictions were found to relate
very poorly to the yields that had actually been recorded,
with correlations ranging from 0.00 to 0.04 and biases
ranging from20.5 to77.4%.More fortunately, though, the
results did show that the simulation models were capable
of predicting stages of growth well. So, a multiple re-
gression model was constructed using x variables that
were related to weather conditions around the times of
various key physiological stages (as predicted by one of
the simulation models). The data set was split into three
subsets by stratified random sampling. A pool of x vari-
ableswasdevisedbasedon theBroadbalkexperienceand
the physiological and agronomic insight of the biological
supervisors. The x variables for the model were selected
from that pool using one-third of the data, the regression
coefficientswere estimatedusing a further third, and then
the model was assessed by making predictions for the
remaining third of the data. A correlation of 0.41 was
obtained, which compared well with the correlation of
0.44 obtained for Broadbalk by Chmielewski and Potts
(1995). Furthermore, the bias was only 0.078 Mg ha21.
The conclusion was that the simulation models were
needed to standardize the time-scales within the trials,
and that statistical expertise was then needed to generate
the predictions.

Sustainability
In the 1990s there was much concern about the future

sustainability of agriculture systems. To validate meth-
ods for assessing sustainability, it was important to find
good examples of sustainable and unsustainable sys-
tems. Thus, in 1993–1994, Rothamsted was among six
agricultural institutes worldwide commissioned by the
Rockefeller Foundation to make a study of sustain-
ability using data from their long-term experiments. The
results from the various groups are presented in a book
edited by Barnett et al. (1995), with the Rothamsted
findings in Chapter 9 (Barnett et al., 1995). The Roth-
amsted classical experiments had the advantage of ex-
tending back over a very long period, with carefully
recorded data on consistently maintained sites. Broad-
balk and Park Grass (another classical experiment)
represented sustainable systems. Lack of sustainability
was illustrated by the Woburn Continuous Wheat ex-
periment (another unreplicated trial) which ran from
1877 to 1926 when it had to be discontinued as a result of
the increasing acidity of the soil.

The aim of the study was to go beyond the previous
criterion, namely that yields should be maintained, to
assess economic considerations and include externalities
such as effects on the local environment. For economic
sustainability, a range of different measures was studied,
all formed as ratios of an index of aggregate output to an
index of aggregate input. Each index was calculated as a
weighted mean of the various contributing factors. Fac-
tors for the input indexes included aspects like costs of
fertilizers, labor, machinery, rent, seeds, pesticides, and
so on; those for the output indexes included yields of
grain and straw. The weights were based on estimated
prices—and considerable effort and ingenuity was re-

Table 1. Main treatments on Broadbalk.

Plot Treatment

01 (Fym) N4
21 Fym N3
22 Fym
03 Nil
05 (P) K Mg
06 N1 (P) K Mg
07 N2 (P) K Mg
08 N3 (P) K Mg
09 N4 (P) K Mg
10 N4
11 N4 P Mg
12 N1 1 3 1 1 (P) K2 Mg2
13 N4 P K
14 N4 P K* (Mg*)
15 N5 (P) K Mg
16 N6 (P) K Mg
17 N1 1 4 1 1 P K Mg
18 N1 1 2 1 1 P K Mg
19 N1 1 1 1 1 K Mg
20 N4 K Mg
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quired to obtain values for these back into the 18th cen-
tury. Themeasures of sustainability differed according to
whether the means were formed from arithmetic or geo-
metric averages, and from the way in which the weights
were constructed.
The Rothamsted study found that, although the arith-

metic and geometric indexes were on different scales,
they showed a similar basic pattern which was closely
related to yield. This probably arose because the weight-
ings of the factors (the factor shares) did not change
suddenly or dramatically during the experiments. Never-
theless, there were steady changes in shares, and our
recommendation was to use an arithmetic index (called
A3 in the book) in which the prices were updated every
9 yr and then chainlinked through the successive periods
up to the final time. Satisfactory trends in the A3 index
would demonstrate that output can be maintained
across time. We recommended using the contemporary
output–input ratio as well, to ensure that the system is
producing output at least comparable with (and pref-
erably in excess of) the inputs.
For externalities, we examined the effect of inflating

the costs of inputs such as fertilizers, as might happen if
governments were to introduce environmental taxes. In
our data the trends in the indexes were very little af-
fected by the inclusion of these effects, although at high
proportionate values the farming systems did become
unprofitable. In fact, this illustrates another conclusion,
found particularly in the data from Oregon State Uni-
versity (Chapter 6), namely that the economic sustain-
ability of agriculture depends very much on the stability
of crop prices! Our recommendation here was that one
should develop a measure of system health to be main-
tained as well as the economic indexes.

Spatial Analysis of Field Experiments
The second major theme in this paper is to describe

the recently developed spatial methods for analyzing
field experiments, and explain how they enable experi-
ments to be analyzed where treatments may have little
or no replication. The methods will be illustrated using
analyses from the GenStat statistical system (Payne
et al., 2005a; www.genstat.com, verified 8 Sept. 2006) of
a variety trial at State Hall farm (Kempton et al., 1994,
Gilmour et al., 1997). The design plan, in Fig. 1, has a

rectangular layout with 25 treatments (varieties of
wheat) arranged in six replicates each containing a 5 3
5 array of plots.

To illustrate the advantages of the spatial methods,
the experiment is first analyzed conventionally, treating
it as a randomized block design. Remember that, in this
design, the aim is to group the units (i.e., plots) into
blocks in such a way that the plots in the same block are
more similar than those in different blocks. Each treat-
ment occurs an identical number of times in each block
(usually once), and the allocation of treatments is ran-
domized independently within each block. The analysis
estimates and removes between-block differences so
that treatment effects can be estimated more precisely.
This is demonstrated for the Slate Hall Farm experiment
by the fact that replicates in the randomized-block anal-
ysis have a variance ratio of 7.69 compared with plots
within replicates; see Table 2.

The fertility in the field has been modeled here by
fitting a single parameter (block-effect) for each block
(i.e., replicate), which generates an equal correlation
between the plots in each block. Essentially, the analysis
models the fertility trends by a step function, and this
may not work well when there are many plots within
each block. However, the analysis is built on well-
established theory (Fisher, 1925, 1926), which can be
used with confidence. The issue is our ability to take suf-
ficient account of the underlying variation to estimate
the effects precisely. The solution is either to find more
sophisticated designs or more sophisticated analyses.

In fact, theSlateHallFarmexperimentwas really setup
as a row–column design with a structure of rows crossed
with columns within each replicate. So, in GenStat ter-
minology, the ANOVA will have the following random
terms: replicates (i.e., differences between replicates),
replicates.rows (rows within replicates), replicates.col-
umns (columns within replicates), and replicates.rows.
columns (the final residual term). The treatments were
allocated in such a way that the design was balanced,
so that identical amounts of information are available
on every comparison between pairs of varieties in the
stratum corresponding to each of these error terms. (For
a more rigorous definition of balance, see Payne and
Tobias, 1992.) In fact, the design is a lattice square. The
analysis models the variation more effectively (Table 3).
The residual mean square is now 0.8097 compared with
3.466 in randomized-block analysis, and the standard
error for differences between variety means is 0.6363,
compared with 1.075 for the randomized-block analysis.
Furthermore, analysis is still built on established theory.
You can use a standard ANOVA table to assess the

1 2 4 3 5 19 23 2 6 15 18 25 9 11 2 

6 7 9 8 10 8 12 16 25 4 5 7 16 23 14 

21 22 24 23 25 11 20 24 3 7 6 13 22 4 20 

11 12 14 13 15 22 1 10 14 18 24 1 15 17 8 

16 17 19 18 20 5 9 13 17 21 12 19 3 10 21 

3 18 8 13 23 16 24 10 13 2 10 4 17 11 23 

1 16 6 11 21 12 20 1 9 23 12 6 24 18 5 

5 20 10 15 25 4 7 18 21 15 19 13 1 25 7 

2 17 7 12 22 25 3 14 17 6 21 20 8 2 14 

4 19 9 14 24 8 11 22 5 19 3 22 15 9 16 

Fig. 1. Design of variety trial at Slate Hall Farm.

Table 2. Randomized-block ANOVA for Slate Hall farm.

Source of variation df ss ms
Variance
ratio P

Replicates stratum 5 133.327 26.665 7.69
Replicates.plots stratum†

Variety 24 254.808 10.617 3.06 ,0.001
Residual 120 415.976 3.466
Total 149 804.110

† In GenStat terminology, replicates 5 differences between replicates;
replicates.plots 5 plots within replicates.
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variety term. Also, if you form the variety means using
information in replicates.rows.columns stratum only,
these can be compared using t statistics. Finally, you can
also formmeans that combine information from all strata
(Payne and Tobias, 1992). The disadvantage is that bal-
anced designs, analyzable by ANOVA, are not available
for most numbers of treatments. Furthermore, spatial
analysis may provide a still better representation of the
variation, and thus better precision of estimation.
These traditional ANOVA is based on Fisher’s three

R’s (Fisher, 1935): (i) Replication—usually replicate all
treatment combinations (improves reliability of their
estimates, guards against aberrant plots); (ii) Random-
ization—guarantees validity of analysis (avoids bias and
sensitivity to unrecognized sources of variation); (iii)
Blocking (originally called local control)—group similar
plots together, and fit a random term to model the dif-
ferences between the groups (eliminates variability to
give more precise estimates of treatment effects).
In contrast, in spatial analysis, sometimes only the

control treatments are replicated. You should random-
ize where possible, but the design may constrain which
treatments appear on some of the plots in order to allow
good estimates to be obtained for the parameters in the
spatial model. You take account of variation by fitting
models to describe how the correlation between each
plot and its neighbors changes according to their rela-
tive locations, and the analysis is by REML [residual
(or restricted) maximum likelihood] (see Patterson and
Thompson, 1971; Gilmour et al., 1995).
The traditional mixed model is as follows:

y 5 Xb 1OiZiui 1 e
where y is the vector of observations; X is the design
matrix for the fixed effects; b is the vector of fixed
effects;Zi is the design matrix for random term i; ui is the
vector of effects of random term i; and e is the vector of
residuals. The assumption required for the F tests in the
ANOVA is that each element of the residual vector e
follows a normal distribution with mean zero and vari-
ance s2. An equivalent way of looking at this, which
opens the door to spatial modeling, is that the vector e
follows a multivariate normal distribution with mean 5
0 and variance–covariance matrix s2I. Likewise, each
element of the vector of random effects ui is assumed to
follow a normal distribution with mean 0 and variance

gis
2, where gi is the variance component for error term i.

Or again, equivalently, the vector ui follows a multivar-
iate normal distribution with mean 5 0 and variance–
covariance matrix cis

2I.
In correlation modeling, the mixed model is the same,

but now the residual vector e follows a multivariate
normal distribution with mean 5 0 and variance s2R,
where R can be defined using a correlation model (or R
is the identity matrix I if the effects are independent, as
in the traditional model). Similarly, the random effects ui
follows a multivariate normal distribution with mean 5
0 and variance–covariance matrix cis

2G, where G again
can be defined using a correlation model. Usually, in
field experiments, there are no correlation models for
the random effects (soG is the identity matrix I). For the
matrix R, a separable correlation structure, in which the
correlation between plots at locations (i, j) and (k, l) is
defined as the product of a correlation model for rows
(relating to rows i–k apart) and a correlation model for
columns (relating to columns j–l apart), is generally
found to be appropriate; see Gilmour et al. (1997). The
available models in GenStat for the row or column
correlations include autoregressive structures of Order 1
or 2 for designs on a regular grid, and power-distance
models for irregularly-spaced designs (which are equiv-
alent to autoregressive structures of Order 1); see Chap-
ter 5 of Payne et al. (2005b) for more details.

In the analysis, the full fixed model should be fitted
(here there is just the variety term), while the correla-
tion models are studied. These can be assessed using the
deviance, which is defined as22 times the log-likelihood
for the model. Once the appropriate correlation models
have been established, the treatment model can be as-
sessed to see whether there are any unnecessary fixed
terms by using Wald tests instead of the F tests pre-
viously available in the ANOVA table. The Wald statis-
tics would have an exact chi-square distribution if the
variance parameters were known but, as these must
be estimated, the statistics are only asymptotically dis-
tributed as chi-square. In practical terms, the chi-square
values will be reliable if the residual degrees of freedom
for the fixed term is large compared with its own degrees
of freedom. Alternatively, Kenward and Roger (1997)
show how to modify the chi-square degrees of freedom
to counteract the upwards bias of the Wald statistics.

For the Slate Hall data, the best correlation model is
one with an AR1JAR1 structure for the matrixR, and
an additional random term to represent a measurement
error from each plot (in the context of Geostatistics, this
would be known as the nugget variance). See Table 4 for
the deviances from GenStat. To improve the efficiency
of the calculations, these omit some constants which
depend only on the fixed model (however, the interest is
only in differences between deviances).

Table 3. Lattice-square ANOVA for Slate Hall farm.

Source of variation† df ss ms
Variance
ratio P

Replicates stratum 5 133.327 26.665
Replicates.rows stratum
Variety 24 215.905 8.996

Replicates.columns stratum
Variety 24 229.809 9.575

Replicates.rows.columns
stratum
Variety 24 166.767 6.948 8.58 ,0.001
Residual 72 58.301 0.809
Total 149 804.110

† In GenStat terminology, the ANOVA will have the following random
terms: replicates5 differences between replicates; replicates.rows5 rows
within replicates; replicates.columns 5 columns within replicates; rep-
licates.rows.columns 5 the final residual term.

Table 4. Deviances from the Slate Hall Farm analyses.

Design Deviance df

Randomized-complete block 35.39 123
Lattice square 264.28 121
AR1 J AR1 249.35 122
AR1 J AR1 with measurement error 242.35 121
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The conclusion is therefore that spatial methods can
provide better ways for modeling fertility trends than
traditional blocking when there are many treatments
to assess. Note that traditional blocking factors can be
included too to allow for step-changes in fertility (or
additional correlation within groups of plots). These
might arise from husbandry differences, such as time
of harvest or planting, or use of different operators or
observers. In the Slate Hall example, however, the rep-
licate differences arose only from fertility trends, and
those are described sufficiently effectively by the AR1
J AR1 structure. For more details of the GenStat
analyses of the Slate Hall farm data, see Chapter 7 of
Payne et al. (2005a).
A further important point is that, if we can model

fertility trends effectively, it may be viable to use designs
with unreplicated treatments. In variety trials, the stan-
dard (or control) varieties are generally replicated to
enable the parameters of the spatial model to be es-
timated effectively. However, the test varieties may have
little or no replication because (i) there may be many of
them, and (ii) the available seed may be limited. For ex-
ample, in a p-rep design (Cullis et al., 2006), a percent-
age (p) of the designs are replicated while the remainder
occur only once. Figure 2 shows the allocation of the
replicated varieties in a p-rep design grown at Wagga
Wagga in New South Wales with 1001 test lines and four
standard varieties: 189 of the test lines were replicated
twice while the remaining 812 were in single plots (so
p 5 18.9). Three of the standard varieties were on 14
plots each, while the fourth had 16 plots. The 1248 plots
were arranged in a 104 row by 12 column array, or-
ganized so that replicated test lines occurred once in the
top and once in the lower half of the field. Subject to that

constraint, the design was formed using A-optimality,
assuming anAR1JAR1 spatial model with random row
and column effects, taking g 5 1 for rows and columns
and parameters 0.6 and 0.4 for theAR1JAR1 structure.
The design search, performed by the program Digger,
used the modified Tabu search method described by
Coombes et al. (2002). The algorithm allocated the rep-
lications approximately in a grid arrangement to enable
the spatial parameters to be estimated effectively. The
use of this design assumes that fertility trends are pre-
dicted sufficiently well on the plots occupied by unrep-
licated test varieties for these to be evaluated correctly.
However, there may still be some aberrant plots. The
breeder must be prepared to lose some good test lines
but, with 1001 test varieties available in the example, this
is an acceptable risk. Also, you may accidentally select
some bad varieties, but these should be discarded later
in the selection process. Thus, unreplicated trials can
provide an acceptable means of screening large numbers
of varieties in the initial stages of selection, although
they should not be relied on for definitive conclusions.

Other Methods
Another of Fisher’s contributions, relevant to the

analysis of unreplicated data, is the randomization test
(see Fisher, 1935). For this test, you do the ordinary
analysis and calculate the test statistics (e.g., variance
ratios or t statistics) in the usual way. You then permute
the data values (preferably a large number of times),
using the same randomization technique that was used
originally to set up the design, and calculate the test
statistic(s) for each permuted data set. The randomiza-
tion test treats the test statistics as a sample from all the
possible sets of results that might have been obtained
from this particular set of experimental units (i.e., ex-
perimental plots if this is a field experiment). The prob-
ability value for each test statistic is then determined by
seeing where it lies within its distribution over the data
sets. The method is useful when the data do not satisfy
the distributional assumptions (e.g., of normality) re-
quired for the standard analysis. It can also be used if
there are few residual degrees of freedom, in fact even if
there are no residual degrees of freedom. However,
it will not work when there are few observations, as
there will then be few permutations; for example, you
would need at least 20 permutations for a significance
level of 5% to be obtainable. Note, though, that if it
is feasible to make all the permutations, you obtain
an exact test—another concept established in Fisher
(1935). The randomization test is an early example of a
method that involves resampling of the data. More
recent methods include the jackknife and the bootstrap
(e.g., Efron and Tibshirani, 1993).
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