PROGRESS ON STEM RUST RESISTANCE GENETICS IN PERENNIAL RYEGRASS
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Introduction

As we reported in the 7" International Herbage Seed
Conference Proceedings, we determined several
years ago that the perennial ryegrass (Lolium
perenne) cultivar 'Kingston' (PGG Wrightson Seeds,
New Zealand) typically has a lower level of stem
rust than other varieties we have tested under our
OR production conditions and with our local
populations of the pathogen (Puccinia graminis
subsp. graminicola). To gain some insight into
genetics of stem rust resistance, we created a
mapping population by crossing two plants (resistant
and susceptible) that we had selected from
'Kingston' after repeated stem rust testing under
controlled conditions.

Mapping methods

Genetic maps were constructed for a population of
193 F1 progeny from this cross. We have published
two genetic maps, one in 2011 and a revised version
in 2013. The 2011 map (Pfender et al., 2011) was
constructed with RAD (restriction-site associated
DNA) (Baird et al., 2008) markers, plus tall fescue
SSR (simple-sequence repeat) markers previously
developed (Saha et al., 2006) by researchers at the
Samuel Roberts Noble Foundation (Ardmore, OK,
USA). Additional SSR markers, also run at the
Noble Foundation, were originally developed for
Lolium by other research groups (Gill et al., 2006).
The 2013 map (Pfender and Slabaugh, 2013)
supplements our 2011 map by having markers in
common with several other Lolium species maps,
including anchor markers from a consensus map
published by other researchers (Studer et al., 2010).
Our 2013 map therefore allows better comparison of
our population and its stem rust phenotypes with
various other Lolium populations that have been
mapped by researchers elsewhere in the world.

Maps were assembled for each parent using JoinMap
4 software and CP (cross-pollinated) population type
codes (Kyazma, Wageningen, Netherlands). We
used the test for independence LOD (logarithm of
the odds) score, which is not affected by segregation
distortion, to group markers into seven linkage
groups for each map.
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Phenotyping methods

Disease phenotypes were determined in inoculation
assays conducted in a greenhouse with bulk
inoculum (field-collected, genetically mixed) for
analysis of the 2011 map (Pfender et al., 2011). We
used single-pustule isolates (genetically uniform) of
the rust pathogen for the 2013 map (Pfender and
Slabaugh, 2013). We had previously demonstrated
pathotype specificity in stem rust of perennial
ryegrass by purifying and increasing two different,
single-pustule isolates of the pathogen (Pfender,
2009). lIsolate 101 is avirulent on one of the
mapping population parents, and resistance is
inherited as a single dominant gene that is
heterozygous in the resistant parent. Isolate 106 is
virulent to some degree on both parents.

Phenotypes were scored as number of pustules per
plant. There were three replicate (cloned) plants per
F1 individual in each experiment, and each
experiment was conducted at two different times.
QTL (quantitative trait loci) analysis was conducted
in MapQTLS5 for the male and female parent maps.
Kruskal-Wallace analysis and automatic cofactor
selection were used to choose cofactors for use in
MQM (multiple-QTL mapping) analysis.

Results

Three major QTL (i.e. locations on the Lolium
chromosomes) for stem rust resistance were detected
in these experiments (Fig. 1). One QTL, located on
LG6 (linkage group 6) was associated with
resistance to both stem rust pathotypes, and the other
two were each associated with only one of the
pathotypes (on LG1 for pathotype 106 and on LG7
for pathotype 101) (Pfender and Slabaugh 2013).

The QTL on LGB, designated gLpPg3, was detected
on the male and female maps with both pathotypes.
QTL gLpPg3 explains 7 to 10% of the phenotypic
variance in the response to pathotype 101, and 9 to
11% in response to pathotype 106. This QTL is
located between 60 and 68 cM on the female map,
and between 59 and 63 cM on the male map (Fig. 1).
In both maps the peak of qLpPg3 is located between



markers G01-002 and LP20. These markers have
been placed on Lolium maps constructed by other
research groups as well, but had not previously been
associated with stem rust resistance.

Resistance response to pathotype 101 is associated
also with a QTL on LG7, designated gLpPgl. QTL
gLpPgl is located in a 7-cM interval between
markers G02-048 and NFFS275 (Fig. 1), markers
which appear on other Lolium maps. It has a large
phenotypic effect, explaining 50 to 58% of the
phenotypic variance in response to pathotype 101.
The response associated with the gLpPgl/pathotype
101 interaction is essentially all-or-none, as 92% of
plants carrying the resistance-associated allele at the
marker closest to the QTL are resistant, whereas
only 5% without the "g" allele at the marker are
resistant. Thus, this locus behaves genetically like a
single dominant gene.

Resistance response to pathotype 106 is associated
with a QTL (designated gLpPg2) on LG1. This
QTL explained 17 to 30% of the phenotypic
variance in these experiments. It is located between
markers G01-031 and LpRa060 on the female and
male maps (Fig. 1). QTL gLpPg2 on LG1 (unlike
the QTL on LG7) is associated with a more
quantitative response rather than acting as a single
dominant gene.

QTL gLpPg3 and qLpPgl together explained 60 to
65% of the phenotypic variance in response to
pathotype 101, whereas qLpPg2 was not detected in
response to this pathotype. gLpPg3 and qLpPg2
together explained 30 to 39% of the phenotypic
variance in response to pathotype 106; gLpPgl was
not detected in response to pathotype 106. When the
mapping population was inoculated with a mixed
collection of stem rust spores from the field, all three
QTL were activated (Pfender et al., 2011). It
appears that this multiple-QTL response to mixed
inoculum is due to independent activation of
different QTL by specific pathotypes, as well as
their activation of a common QTL.

Research is in progress, using crosses of plants from
this mapping population with other plants, to further
test and select genetic markers that co-segregate
with the stem rust resistance QTL. Such markers
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could be useful in a marker assisted selection
strategy for genetic improvement of perennial
ryegrass. We expect to release germplasm with stem
rust resistance, and information on markers linked
with that resistance, as the products of this research.
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Fig. 1. Linkage maps of parents (S20 rust-susceptible female, R2 rust-resistant male) of Lolium perenne F1
population used to detect QTL activated by inoculation with pathotypes of the stem rust pathogen, Puccinia
graminis subsp. graminicola. QTL (2-LOD interval) are indicated by shaded sections of chromosomes. Two
QTL, gLpPgl (LG7) and gLpPg3 (LG6), were detected when plants were inoculated with pathotype 101. The
QTL gLpPg2 (LG1) and gqLpPg3 (LG6) were detected when plants were inoculated with pathotype 106. The
star, within gLpPgl on male LG7, indicates map location of binary phenotype (resistant vs. susceptible) for
plants inoculated with pathotype 101. Markers in bold font, selected from those used on other Lolium maps,
were added to the previously-published map (Pfender et al., 2011) to create this map (Pfender and Slabaugh,
2013).
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