Working with Uncertainty in Sparse and Unreliable Data

Michael Lopez & Rebecca Haralson
Outline

○ Project Overview
○ Original goals
○ Data received
○ Sediment discharge
○ Gaussian Processes (GPs)
○ Data inconsistencies
○ Level of uncertainty
○ Future methods
Project Overview

- Study site: Ruth Reservoir, Mad River, CA
- Affected by a wildfire in 2015
- 8 tributaries, burned to various degrees
- Studying the effect of fire disturbances on river networks

- Expectation: increased sedimentation at burned sites\(^1\) due to hydrological and geomorphological changes\(^2\)
- Task: compare sediment yield between the eight tributaries

Six trips from January - May provided the following:

- Field notes
- Culvert Measurements
- Sampler Measurements
- Photos

We also used USGS stream gage data.
Culvert Measurements

Measurements needed to calculate discharge:

- Culvert diameter
- Water depth
- Culvert slope
- Manning’s roughness
Sampler Measurements

Sediment Mass: Phillip’s Sampler
Sampler Measurements

Sediment Concentration: ISCO & Grab Samples

Daily Sediment Discharge Records (the basics)

There is an empirical and temporal relation between sediment discharge and water discharge\(^1\)

Sediment Discharge

- \(Q_s = CQ_w K \)
 - \(Q_s = \) Sediment Discharge (tons/day)
 - \(C = \) Suspended-Sediment Concentration (g/ml)
 - \(Q_w = \) Water Discharge (ft^3/s)
 - \(K = \) Coefficient based on units of Water Discharge and specific weight of 2.65 for sediment

Sediment Rating Curve (SRC)

SRC to Estimate Daily Discharge Records

○ Power Function:
 □ $Q_s = a(Q_w)^b$
 ○ $a =$ the intercept; and
 ○ $b =$ the slope\(^1\)
 ○ a and b both found by log-linear model

○ Log-Linear Model
 □ $\ln(Q_s) = \ln(a) + b\ln(\ln(Q_w)) + \epsilon$
 □ $Q_s = \exp(a + b\ln(Q_w) + \epsilon)$
 ○ $\epsilon =$ independent random variable $\sim N(0,\sigma^2)$

FIGURE 3. Sediment rating curve by the turbidimeter indirect method.
Gaussian Processes

- A supervised learning technique often used for regression
- A distribution of functions defined by a mean function and covariance function
Inconsistencies

Water depth = 0
Level of uncertainty

- Culvert diameter
- Top of culvert to water +/- 1 inch
 - Water depth
 - Slope
 - Manning’s n

- Filter weight
- Gross Sample Weight
- Container weight
 - Volume of water

- Water discharge
 - Sediment discharge
 - Sediment mass
 - Sediment concentration
- **Level of uncertainty**

 - Culvert diameter +/- 3 inches
 - Top of culvert to water +/- 1 inch
 - Water depth
 - Slope
 - Manning’s n
 - Water discharge
 - Sediment discharge
 - Sediment mass
 - Sediment concentration
 - Filter weight
 - Gross Sample Weight
 - Container weight
 - Volume of water
Level of uncertainty

Culvert diameter +/- 3 inches

Top of culvert to water +/- 1 inch

Water depth

Slope

Manning’s n

Water discharge

Sediment discharge

Filter weight

Gross Sample Weight

Sediment mass

Volume of water

Sediment concentration

Container weight 51.6g or 56.29g
Marina Creek 1/9/16

Recorded diameter: 6.7ft
Culvert height: 83 in
Marina Creek

Point Estimate Range for Sediment Discharge per Site Visit (Marina)

- S. Discharge “L” (tonnes/day)
- S. Discharge “NC” (tonnes/day)
- S. Discharge “H” (tonnes/day)
Gaussian Process Results

USGS data: daily mean

![Graph showing discharge over days with peaks and valleys representing water flow.](image-url)
Gaussian Process Results

Every third day (37 of 111 data points)
Future collection methods

- Initial design planning
 - Parameters
 - How much data to collect

- Data collection
 - Accuracy of measurements
 - Consistent collection practices
 - Use intuition

- Quality Control
Mentors
○ Desirée Tullos
○ Cara Walter
○ Kevin Bladon
○ Rebecca Hutchinson
○ Kate Jones
○ Julia Jones

Teammates
○ Dan Buhr
○ Mora Camplair
○ Liz Hamilton

Organizations
○ Oregon State University
○ HJ Andrews Experimental Forest