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Abstract 

 Fractal dimensions have been frequently applied to generalize the complexity and drainage 
of particular stream networks. Certain techniques to calculate dimension have become particularly 
popular, specifically the Divider method, functional-box counting, and as a function between 
bifurcation and length ratios. The frequency and variability with which these techniques are 
applied creates discrepancies as each technique applies different presumptions and display 
different fractal dimension values, skewing conclusions drawn on stream complexity. In addition, 
stream networks are assumed to be fractal without further validation. Analysis was conducted 
comparing the fractal dimensions at different sub-networks within a drainage basin to contrast the 
differing values between calculation techniques as well as to verify the fractality of the basin. 
Results indicated that the basin was fractal, but fractal dimensions between calculation techniques 
vary wildly and imply different relative complexities among sub-networks. 

 

1. Introduction 

As investigations in basin scale hydrological and geomorphic processes incorporate more 
themes in network theory, it becomes increasingly important to have a quantitative framework for 
analyzing network structure. Of the efforts to construct such a framework, Horton [1932, 1945] 
and Strahler [1952] were influential in pioneering a downstream system for ordering drainage 
networks. The Horton-Strahler ordering system has been useful in understanding stream networks 
as tree or dendritic networks [Horsfield, 1980; Macdonald, 1983], and Horton used this ordering 
scheme to specify approximately constant bifurcation and length ratios for river channels. 

In addition to stream ordering, fractals have also become important as a quantitative tool for 
assessing these tree networks. Mandelbrot [1967, 1977, 1983] first introduced fractals as a 
mathematical framework to treat complex and irregular geometries with similar patterns at varying 
scales. Thus, fractals have two main properties: self-similarity and heavy tails. Self-similarity 
describes the multiplicative invariance of an object’s structure at multiple scales, while heavy tails 
illustrate that self-similarity undergoes a power-law. Fractals have played a major role in exploring 
influences at different scales by tree network structure on channel morphology and are frequently 
employed to quantify the complexity of river networks.  

Though originally intended to understand dynamical systems with self-similarity in a 
mathematical context, fractals were soon reapplied to natural phenomena, such as organism sizing 
[Buzsáki, 2013] or landform development [Prusinkiewicz, 1993], as a useful basis to understand 
recurring patterns. It is important to note that mathematical fractals are strictly self-similar such 



that any subset of the whole fractal contains its exact geometry at a lower scale. This is to be 
contrasted with statistical fractals that exhibit self-affinity, where scaled invariances occur over a 
probability distribution. In understanding both mathematical and statistical fractals, fractal 
dimensions are used as a metric to describe the degree to which a pattern is scaled, such as the 
length of a coastline Mandelbrot [1967]. Though the fractal dimension perfectly describes the 
degree of pattern scale in mathematical fractals, it serves as a benchmark for the mathematical 
shape in natural patterns. Thus, non-integer dimensions have been very useful for characterizing 
the complexity of naturally formed boundaries and paths. 

For example, works by La Barbera and Rosso [1987] as well as Rodriguez-Iturbe [1988] 
popularized the use of fractal dimensions to describe the levels of complexity among stream 
networks. With this popularity, multiple methods for calculating fractal dimensions have been 
developed for analyzing river networks, particularly the Divider (Richardson) method, functional 
box-counting, and the relation between bifurcation ratio and stream length ratio. To maximize the 
utility of analyzing fractal dimensions for understanding river networks, analysis is needed to 
identify the conceptual and numerical biases in different methods for characterizing fractals of 
river networks. In addition, the assignment of fractal dimensions across entire watersheds [La 
Barbera and Rosso, 1989; Tarboton, 1988] highlights the need for calculating dimensions of sub-
networks within the same drainage area. An analysis at the sub-network level would both validate 
the presumption that fractal networks are inherently fractal as well as describe the probability 
distribution of a statistical fractal, depicting any skew or over-representation due to particular sub-
networks. 

In this paper, the application of various fractal dimension calculations on a Western Cascades 
stream network is shown to qualify its self-affinity. Variability is also tested among fractal 
dimension calculation techniques. Factors contributing to this variability and assumptions present 
in qualifying the fractality of a stream are described. 

 

2. Methodology 

2.1 Structure of Stream Networks 

The Horton-Strahler ordering scheme is a downstream-moving ordering system used to 
classify channels in a stream network based on branching. Source channels are defined as first 
order streams where the convergence of two first order channels results in a second order channel. 
This pattern is repeated such that the joining of two channels of order w form a stream of order 
w+1, and at the joining of streams with different order, the downstream channel segment retains 
the higher order of the two streams. It is important to note that the Horton-Strahler ordering scheme 
presumes that stream network channels downstream of confluences are formed by the joining of 
exclusively two channels. 

In conjunction with this ordering system, Horton [1945] introduced Horton’s law of stream 
numbers, expressed by the bifurcation ratio, as well as Horton’s law of stream lengths, expressed 



by the length ratio. Denoting N(u-1) and N(u) as the number of stream segments of orders u and 
u-1, respectively, the bifurcation ratio 

Rb = 𝑁𝑁(𝑢𝑢−1)
𝑁𝑁(𝑢𝑢)

      (2) 

describes a constant rate of bifurcation within a particular catchment. Horton’s law of stream 
numbers also identifies the geometric relationship between a number of stream segments N(i) 
given order i and highest order Ω, as described by  

N(i) = 𝑅𝑅𝑅𝑅Ω−𝑖𝑖      (2) 

 

Similarly, the length ratio 

Rl =
𝐿𝐿(𝑢𝑢+1)
𝐿𝐿(𝑢𝑢)

      (2) 

also describes a constant scaling of stream length across a catchment and is defined by the 
geometric relationship 

L(i) = L1𝑅𝑅𝑅𝑅𝑖𝑖−1      (2) 

where L(i) is the mean length of streams with order i and L1 is the mean length of first order 
streams. 

 

2.2 Fractal Dimension of Networks 

The self-similarity and self-affinity expressed in fractal objects are frequently defined by the fractal 
(Hausdorff) dimension, which describes the scaling property of a fractal attribute. Thus, the fractal 
dimension serves as a useful benchmark for quantifying and classifying the complexity of a fractal 
structure, and dimensions for river networks are frequently calculated to summarize the network’s 
drainage. 

Previous work deriving river network fractal dimensions have popularized three primary 
calculation techniques: the divider (Richardson) method, functional-box counting, and the relation 
between bifurcation ratio and stream length ratio. 

2.2.1 Divider (Richardson) Method 

Mandelbrot [1983] first estimates fractal dimensions in its reference to the length of Britain’s 
coastline as presented by Richardson [1961].  To do so, the length of a shape is measured using a 
ruler of length r, such that the total measured length L=Nr given N divider positive integer steps. 
Thus, the exact length is derived as r→∞ and the length converges to 

𝐿𝐿 = lim
𝑟𝑟→0

𝐿𝐿(𝑟𝑟) = lim
𝑟𝑟→0

𝑁𝑁𝑁𝑁     (1) 

𝑁𝑁 ≅  𝐿𝐿𝑟𝑟−1      (2) 



However, Richardson [1961] found that the limit did not converge, so 

lim
𝑟𝑟→0

𝑁𝑁(𝑟𝑟)𝑟𝑟𝐷𝐷 = 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐,𝐷𝐷 > 1    (3) 

implying that 

𝑁𝑁 ~ 𝑟𝑟−𝐷𝐷      (4) 

𝐿𝐿~𝑅𝑅1−𝐷𝐷      (5) 

was derived where critical exponent D is the fractal dimension. When applied to stream networks, 
the fractal dimension is frequently assumed to be the Hausdorff dimension, defined as a limit 
covering a set by suitable subsets of decreasing diameter [Moglen, 2002]. Hence, the fractal 
dimension can be rewritten as 

𝐷𝐷 =  lim
𝑟𝑟→0

log𝑁𝑁(𝑟𝑟)
log (1/𝑟𝑟)

      (6) 

Tarboton [1988] measured the length of each Strahler stream, as defined according to 
Horton-Strahler ordering convention Strahler’s [1952] network-ordering convention, and this is 
the procedure followed here. To account for the leftover end of streams during measurement, the 
distance is counted as another divider step if the length is greater than or equal to r/2. 

2.2.2 Functional-Box Counting 

To derive the function box-counting method of calculating fractal dimensions, a set of points 
is embedded in a d-dimensional space, where d = 2 for river networks. The space is covered with 
a mesh if d-dimensional cubes with side length r. Thus, we have the relationship 

𝑛𝑛(𝑟𝑟)~𝑟𝑟−𝐷𝐷      (7) 

where n(r) denotes the number of cubes containing the element to be considered. The fractal 
dimension is given by the slope of a log-log plot based on Hentschel and Procaccia [1983] given 
by the following  

𝐷𝐷 = −lim
𝑟𝑟→0

lim
𝑚𝑚→∞

log𝑛𝑛(𝑟𝑟)
log (𝑟𝑟)

     (8) 

 

2.2.3 Bifurcation Ratio vs Stream Length Ratio 

 Fractal dimension was derived as a function of the bifurcation law and the stream length 
ratio by La Barbera and Rosso [1987] using Horton’s law of stream numbers as  

𝐷𝐷 = max (log𝑅𝑅𝑅𝑅
logRl

, 1)      (9) 

where Rb is the bifurcation ratio and Rl is the length ratio. Thus, D is a single integer value as it 
compares two ratios already describing scaling. 



2.3 Study Network 

All data collected was from the H. J. 
Andrews Experimental Forest, a dense 
old-growth forest situated in the Western 
Cascade Range. The forest occupies over 
6400-ha with a steep landscape at 
elevation ranging from 410 to 1630 
meters and multiple peaks. The site 
covers the entire drainage basin of 
Lookout Creek, which feeds into the 
Blue River tributary of the McKenzie 
River system. 

In applying Strahler’s ordering 
scheme for H.J. Andrews, seven sub-
networks were created from the 
confluences merging fourth to fifth order 
streams and third to fourth order streams 
(Figure 1). The sub-networks are labeled 
“Whole” (fifth order), “McRae Creek” (fourth order), “Upper Lookout and Mack Creek” (fourth 
order), “North/South McRae” (third order), and “North/South Upper Lookout” (third order).  

 

3. Results 

Using the divider method, four ruler lengths were chosen and scaled by ½, where the largest 
length was chosen to provide less than ten steps. Total measured lengths of each stream network 
are reported at different scales of rulers (Table 1). 

 

Table 1. An example comparison of Divider method scales and measured lengths for one of 
the seven sub-networks. 

Stream Ruler Length (m) Counts Total Length (m) log(ruler) log(length) 
Whole 4000 6 24000 3.60205999 4.38021124 
Whole 2000 36 72000 3.30103 4.8573325 
Whole 1000 145 145000 3 5.161368 
Whole 500 351 175500 2.69897 5.24427712 

 

Fig 1.  ArcGIS map of H.J. Andrews from 2008. 
The whole network is shown, with fourth order sub-
networks colored green and red and third order sub-
networks outlined.

 



Graphing the scaling relation between the ruler length and measured stream length revealed that 
fractal dimensions to be between 1.57 and 4.95, where dimension D is represented as a function 
of the fitted slope (Figure 2). No relation was observed between the network order and dimension, 
but a sharp change in dimension was observed for North McRae and North Upper Lookout, both 
third order streams. 

 

Fig. 2. Fractal dimension as a function of ruler length scales and the total measured stream 
length for all seven sub-networks. The dimension is provided as a function of slope.  

 



To observe the distribution of slopes between ruler scales, the data were directly plotted, displaying 
steady fractal dimension relations at 500m and 1000m rulers followed by a sharp shift at between 
2000m and 4000m rulers (Figure 3). 

 

Functional box-counting was conducted similarly to the divider method. Six box sizings 
were used and scaled by ½, where the largest box size was chosen to provide a box count less than 
10 (Table 2). 

 

Fractal dimension calculations for each sub-network demonstrated a consistent decrease in 
dimension with lower ordered networks with dimensions ranging between 1.16 and 1.55 (Figure 
4). Fractal dimension was largely uniform between networks, with the range resembling river 

Table 2. An example comparison of box-counting scales and measured lengths for one of the 
seven sub-networks within H.J. Andrews. 

Stream Technique Largest Order Box Size (m) Box Size Log log(n) n() 
Whole BoxCount 5 4000 3.602059991 0.954243 9 
Whole BoxCount 5 2000 3.301029996 1.380211 24 
Whole BoxCount 5 1000 3 1.875061 75 
Whole BoxCount 5 500 2.698970004 2.383815 242 
Whole BoxCount 5 250 2.397940009 2.85309 713 
Whole BoxCount 5 125 2.096910013 3.246745 1765 

 

Fig. 3. Graphing the sharp change. The change in slope implies two separate dimensions that 
delineate sinuosity or branching.  

 



network data from existing literature [Tarboton, 1988], and values derived from functional box-
counting maintain lower values to that of the divider method. 

 

 Fractal dimensions derived as a function of bifurcation ratios and stream length ratios were 
calculated using data from arcMaps provided by H.J. Andrews with stream order classifications 
(Table 3). 

The dimensions between sub-networks held values from 1.57 to 6.43, where the outlier dimension 
of 6.43 belonged to the North McRae sub-network, which expressed similarly high dimension as 
calculated using the divider method (Table 4). It was noted that North Upper Lookout, which also 
expressed an outlying high dimensionality via divider method, did not express distinctly large 
dimensions when calculated by the bifurcation and length function. 

Fig. 4. Fractal dimension as a function of box size scales and the number of boxes containing 
stream segments for all seven sub-networks. The dimension is provided as the slope.  

 

Table 3. An example comparison of bifurcation ratios and stream length ratios, including the 
associated fractal dimension, for the whole H.J. Andrews river sub-network. 

Order Count 
Average 
length log(count) log(length) log(Rb) log(Rl) Dimension 

5 1 6844.9044 0 3.835367 0.661063 0.346309 1.908883 
4 2 5584.39055 0.30103 3.746976 

  

3 14 1292.144464 1.146128 3.111311 
2 71 694.8318521 1.851258 2.84188 
1 339 360.0579165 2.5302 2.556372 

 

 



Similarly to dimensions from the divider 
method, calculated fractal dimensions did not 
display a relation between sub-network order 
and fractal dimension, and values generally 
lied between 1.75 and 2, which match existing 
literature predicting river networks to have 
dimensions near 2 [Tarboton, 1988].  

 

 

 

 

 

 

 

 

Fig. 4. Fractal dimension as a function of bifurcation ratios and stream length ratios for each of the 
sub-networks in H.J. Andrews. The comparison of box-counting scales and measured lengths, 
including the associated fractal dimension, for each of the seven sub-networks within H.J. 
Andrews. 

 

Table 4. An example comparison of 
bifurcation ratios and stream length ratios, 
including the associated fractal dimension, for 
the whole H.J. Andrews river sub-network. 

Stream Dimension 
Whole 1.91 
McRae 1.75 
Upper Lookout 1.88 
North McRae 6.43 
South McRae 1.99 
North Upper Lookout 1.72 
South Upper Lookout 1.57 

 

 



4. Discussion 

Overall, the H.J. Andrews stream network expressed statistical fractality. Excluding outliers, 
each calculation technique expressed the fractal dimensions of all sub-networks with <0.5 sized 
ranges. This result is similarly reflected in prior work by Tarboton [1988] with the sub-network 
fractal dimension range for each technique mirroring dimension value ranges comparing whole 
drainage basins. La Barbera and Rosso [1989] also provides theoretical support for the resulting 
stream network dimension values existing between 1 and 2. However, the calculation techniques 
still provide different values from each other, implying different presumptions of how space-
filling the sub-network may be.  

The relationship between different fractal dimensions was not equivalent between techniques 
because functional box-counting showed a distinct decreasing trend among dimensions as the 
order of the sampled sub-network decreased, but this pattern was not exhibited by either the 
Divider method or the bifurcation and length function. Thus, conclusions drawn to categorize the 
branching scale or space-filling of different networks are highly dependent on the applied 
calculation method. In addition, scaling factors are selectively expressed by different functions. 
For example, sharp increases in dimension applied by the Divider method were similarly 
encountered in Tarboton [1988], which cited the dimension increase to be a function of the 
stream branching being more expressed than stream sinuosity. Tarboton further demonstrated 
that a piecewise function needed to be used to describe how different stream geometries and 
shapes produce multiple fractal dimensions. 

In accounting for branching and sinuosity as separate variables in fractal dimensions, 
parallels can be found with the geomorphology of the sub-networks. The use of fractal 
dimensions as a parallel to drainage density may apply when observing the North and South 
Upper Lookout sub-networks. It was shown by the Divider method that North Upper Lookout 
expressed a sharply high fractal dimension, suggesting overrepresented branching, whereas 
South Upper Lookout expressed a steady and lower fractal dimension, suggesting more 
sinuosity. This coincides well with the historical development of these sub-network 
geomorphologies as North Upper Lookout development was heavily influenced by earthflow 
movements that force a high degree of bifurcation in the stream. This is contrasted by glacial 
influences on South Upper Lookout, which produced a more fern-like network structure that 
pronounce a single main river stem. However, it must be noted that given the multiple areas of 
disagreement among fractal dimension techniques, it is unreliable to relate a network’s 
dimension to geomorphological patterns. 

 

5. Conclusions 

Quantitative approaches to understanding stream networks have been very useful in treating 
stream complexity rigorously. Applying fractal dimensions to stream networks produces broad 
insights on the drainage density of particular watersheds, but care must be taken in selecting a 
calculation technique to accommodate for appropriate presumptions on network structure while 
also accounting for heavy skew by individual sub-networks. This study implicates more 



interesting questions on the quantitative difference branching and sinuosity have on fractal 
dimension and also demands a more rigorous representation of the probabilistic distribution 
relating a statistical fractal. 
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