Separating nestedness from species replacement in measures of beta diversity in montane meadows of the Western Cascades

Elaina Thomas, Carleton College
Eco-Informatics Summer Institute, Summer 2017
Pollinators Research Project
HJ Andrews Experimental Forest and Oregon State University

Abstract

Beta diversity quantifies differences in species composition across sites. However, alone, measures of beta diversity do not distinguish which processes are driving dissimilarity. Partitioning beta diversity into dissimilarity resulting from nestedness and species replacement has relevance to the understanding of fragmented habitats. I separated nestedness and species replacement in measures of beta diversity of plant and pollinator communities of montane meadows of the Western Cascades. Pollinator communities showed a higher amount of dissimilarity than plant communities between meadows. Species replacement contributed more to beta diversity than nestedness. Meadow soil moisture exhibited more influence on dissimilarity of plant and pollinator species compositions than difference in meadow size and distance between meadows. The ratio of species replacement to dissimilarity increased with difference in meadow soil moisture for plants. These results highlight the contribution of heterogeneity in meadow soil characteristics to diversity of plant and pollinator species in the landscape.

Introduction

While the idea that different places tend to have different species compositions is simple, the method of quantifying dissimilarity across sites has been in development and debated for decades. Just one of the many dissimilarity indices, the Jaccard index, was proposed in 1912, but it was not until 1960 that the term beta diversity was coined by R.H. Whittaker. He defined it as "the extent of change in community composition, or degree of community differentiation, in relation to a complex-gradient of environment, or a pattern of environments" (Whittaker 1960). Most simply, beta diversity describes the amount that gamma diversity exceeds the average diversity of sites within the landscape (Whittaker 1960). This means that alpha and gamma diversity will only differ if sites within the landscape have different species compositions (Baselga 2012). This makes beta diversity a valuable measure of dissimilarity in species composition between sites and explains why popular dissimilarity indices, including Jaccard and Sørensen, are monotonic transformations of beta diversity (Baselga 2012) (Jost 2007).

Since the term was coined, the concept of beta diversity has developed. In 1943, Simpson discovered that dissimilarity could exist between sites without the presence of species replacement, hinting at a second component to beta diversity. In conjunction, in 2007, Baselga et
al. found that two separate and even opposite phenomenon could produce the same amount of dissimilarity between sites: nestedness and species replacement. In 2010, Baselga produced the first unified method to partition beta diversity.

Partitioning beta diversity is important because nestedness and species replacement reflect two opposite types of dissimilarity. In the case of nestedness, a species-poor site has a nested subset of the species in a richer site (Fig 1). On the other hand, species replacement describes when the species composition of a species-poor site is completely different from a species-rich site (Fig 2). Both nestedness and species replacement can occur between the same plots (Fig 3). Separating nestedness and species replacement reveals historic and present effects of environmental factors on diversity. If nestedness is present, this points to selective extinction, selective colonization, and habitat nestedness (Si et al. 2015). In contrast, species replacement reflects effects of niche and dispersal constraints on the landscape (Si et al. 2015).

Because they reflect contrasting historical and present ecosystem processes, nestedness and species replacement call for different conservation measures to be taken. In the case of nestedness, the most species-rich sites should be conserved. If species replacement is dominant, both species-rich and species-poor sites should be conserved because both types of sites are adding to diversity across the landscape. Fragmentation is just one of the threats facing meadows worldwide. Studies that partition beta diversity of multiple taxa in meadows are needed in order to inform conservation decisions affecting these habitats. This study fills this need, focusing on plants and pollinators in Western Cascade montane meadows that have experienced habitat loss and connectivity over the previous centuries.

Using data on plant and pollinator diversity in montane meadows in the HJ Andrew's Experimental Forest, I addressed the following questions: (1) Which component of beta diversity, species replacement or nestedness, dominates for plants and pollinators? (2) Does beta diversity, species replacement, or nestedness differ between plants and pollinators? (3) Do beta diversity, species replacement, or nestedness of plants or pollinators relate to difference in meadow size, distance between meadows, or difference in meadow soil moisture? I hypothesized that nestedness would dominate for both plants and pollinators because meadow size and isolation would have a stronger impact on species composition of a meadow than soil moisture. I also expected that overall beta diversity and beta diversity resulting from nestedness would be higher in pollinators because their shorter life-cycles and better dispersal abilities would cause them to disappear from contracting meadows more quickly than plants. I hypothesized that beta diversity and nestednesss would increase with difference in meadow size and distance between meadows.

Fig 1. Diagram showing nestedness. Site A2 is a has a nested subset of the species composition of Site A1. Site A3 has a nested species composition of both site A2 and Site A1. Figure has been adapted from Baselga 2010.

Fig 2. Diagram showing species replacement. Between Sites B1 and B2, species 4, 5, and 6 have been replaced by 7, 8, and 9 . Between Sites B2 and B3, species 7, 8, 9 have been replaced by 10, 11, 12. Figure has been adapted from Baselga 2010.

Fig 3. Diagram showing nestedness and species replacement. Only nestedness exists between Site C1 and Site C2: species $1,2,3,4,5,6,7,8,9,10,11,12$ are found in Site C1 but Site C2 only has species $1,2,3,4,5,6$. Only species replacement occurs between Site C2 and Site C3 because species $1,2,3$ are present in both sites and species $4,5,6$ are replaced by $13,14,15$ between the sites. Between Site C 1 and Site C3, there exists both nestedness and species replacement because 3 species are replaced between sites and species 1, 2, 3 in Site C 3 are a nested subset of the species in Site C1. Figure has been adapted from Baselga 2010.

Methods

Study site

The HJ Andrews Experimental Forest is located in the Western Cascades of Oregon. The landscape has been dissected and sloped by rivers, glaciers, and mass movement (Vera Pfeiffer 2013). The climate is maritime: the summers are warm and dry while the winters are mild and experience most of the precipitation (Vera Pfeiffer 2013). Mean annual precipitation is 2,221 mm and mean annual temperature is $6.7^{\circ} \mathrm{C}$. Above 1000 m , there is a seasonal snowpack (Vera Pfeiffer 2013). At the Vanmet station ($1,273 \mathrm{~m}$), the mean annual water equivalent of the snow pack is 370 mm . The habitat is forest dominated with patches of non-forest habitat, including meadows which are predominantly xeric and mesic (Swanson and James 1975). The meadows have shallow soil and exposed bedrock is common, especially in the xeric meadows. The meadows were established and maintained for the last 6000 years by Native Americans burning the landscape (Highland 2011). Since the 1700s, fire has been suppressed due to the decimation of Native Americans and the arrival of Europeans (Miller and Halpern 1998). With the suppression of this disturbance, the meadows have contracted due to woody encroachment. Between 1946 and 2000, non-forest habitat in the landscape decreased from 5.5% to 2.5% (Takaoka and Swanson 2008).

Experimental design, difference in meadow size, distance between meadows, difference in meadow soil moisture

For this study, I used data from three montane meadow complexes in the HJA Experimental Forest that have been surveyed since 2011. These complexes are Carpenter Mountain, Lookout Mountain, and Frissell Ridge (Fig 4.). In 2011, four meadows in the Carpenter Complex, two meadows in the Lookout Complex, and three meadows in the Frissell Complex were sampled. In Carpenter and Frissell, one large and two small meadows were chosen. In 2012, a third meadow was added to the meadows sampled in the Lookout Complex. In 2013, a fourth meadow in the Frissell Complex began to be sampled. The complexes are found at elevations between 1343 and 1533 m and their slopes range from 0 to 55 percent. The size of the 12 meadows found in these complexes ranges from .26 to 4.44 ha as of 2005 (Table 1, Table 2). Of these complexes, Carpenter has experienced the highest proportion of habitat loss followed by Lookout and then Frissell (Highland 2011). The distances between meadows were calculated by Eddie Helderop using gps locations of meadow centroids (Table 3). In 2011 and 2013, during multiple watches, soil samples were collected from areas adjacent to plots. Soil moisture was calculated gravimetrically: after the removal of large organic material, samples were sieved to less than two mm fraction, weighed, and then air-dried for weeks. Soil moisture percent was calculated as (the original weight of the sieved sample - the weight of the sieved sample after being air-dried)/the original weight of the sieved sample (Table 4, Table 5). In 2011, the soil moisture of meadows was calculated using the Topographic Convergence Index (Table 4). Because both soil moisture estimates from 2011 covered only nine of the 12 meadows and because there were no estimates of soil moisture after 2013 available, I also used a ranking of the 12 meadows from wettest to driest that was made by EISI participants in 2017. This
ranking was based on the abundances of flowers across the entire flowering season in each meadow, the amount of erosion, and observations of soil moisture. To compile the multiple calculations of soil moisture into one measure, the meadows were ranked from wettest to driest using each measure (Table 6). The normalized rankings available for each meadow were then averaged (Table 7, Table 8). Since 2013, four meadows in each of the three complexes have been sampled every year. Each meadow has two transects near the center of the meadow, each with five $3 \times 3 \mathrm{~m}$ plots. The transects are 20 meters apart and the plots are separated by 15 meters.

Fig 4. The locations of the three complexes and the four meadows in each complex. The black line denotes the boundary of the HJA Experimental Forest. For an interactive map with each meadow's coordinates, elevation, slope, and aspect, see:
http://andlter.forestry.oregonstate.edu/data/map.aspx ?dbcode=SA026.
Table 1. The size (ha) of the 12 meadows found in Carpenter Mountain Complex, Frissell Ridge Complex, and Lookout Mountain Complex in the HJA Experimental Forest as of 2005.

CPB	CPM	CPR	CPS	LB	LM	LO	LS	M2	NE	RP1	RP2
0.72	2.52	0.26	0.39	0.29	3.89	1.95	1.68	4.44	0.43	0.61	0.63

Table 2. The difference in size (ha) of each pairwise comparison of the 12 meadows found in Carpenter Mountain Complex, Frissell Ridge Complex, and Lookout Mountain Complex in the HJA Experimental Forest as of 2005.

	CPB	CPM	CPR	CPS	LB	LM	LO	LS	M2	NE	RP1	RP2
CPB	NA											
CPM	1.8	NA										
CPR	0.46	2.26	NA									

CPS	0.33	2.13	0.13	NA								
LB	0.43	2.23	0.03	0.1	NA							
LM	3.17	1.37	3.63	3.5	3.6	NA						
LO	1.23	0.57	1.69	1.56	1.66	1.94	NA	NA	NA	NA	NA	NA
LS	0.96	0.84	1.42	1.29	1.39	2.21	0.27	NA	NA	NA	NA	NA
M2	3.72	1.92	4.18	4.05	4.15	0.55	2.49	2.76	NA	NA	NA	NA
NE	0.29	2.09	0.17	0.04	0.14	3.46	1.52	1.25	4.01	NA	NA	NA
RP1	0.11	1.91	0.35	0.22	0.32	3.28	1.34	1.07	3.83	0.18	NA	NA
RP2	0.09	1.89	0.37	0.24	0.34	3.26	1.32	1.05	3.81	0.2	0.02	NA

Table 3. The distance (km) between each meadow found in Carpenter Mountain Complex, Frissell Ridge Complex, and Lookout Mountain Complex in the HJA Experimental Forest.

	CPB	CPM	CPR	CPS	LB	LM	LO	LS	M2	NE	RP1	RP2
CPB	NA											
CPM	0.5	NA										
CPR	0.2	0.8	NA									
CPS	1.4	0.9	1.6	NA								
LB	8.2	8.1	8.1	7.6	NA							
LM	7.8	7.7	7.7	7.2	0.6	NA						
LO	8.7	8.6	8.6	8.1	0.3	0.9	NA	NA	NA	NA	NA	NA
LS	8.5	8.4	8.4	7.9	0.3	0.9	0.3	NA	NA	NA	NA	NA
M2	4	3.7	4	3.1	4.5	4.2	5.1	4.8	NA	NA	NA	NA
NE	4.1	3.8	4.1	3.2	4.6	4.3	5.2	4.9	0.1	NA	NA	NA
RP1	4.5	4.3	4.5	3.8	3.8	3.5	4.4	4.1	0.7	0.8	NA	NA
RP2	4.4	4.3	4.4	3.7	3.9	3.5	4.4	4.2	0.7	0.8	0.1	NA

Table 4. Average moisture (grams of $\mathrm{H}_{2} \mathrm{O}$ per grams of oven dried soil) of five soil samples collected from each meadow during two different weeks of the 9-week sampling period, average Topographic Convergence Index (TCI) values of the plots in each meadow, and the TCI standard deviation within each meadow for Carpenter Mountain Complex, Frissell Ridge Complex, and Lookout Mountain Complex in the HJA Experimental Forest. Data was collected in 2011 by Vera Pfeiffer (Pfeiffer 2013).

	Week 3 ($\mathrm{g} \mathrm{H}_{2} \mathrm{O} / \mathrm{g}$ Soil)	Week 5 ($\mathrm{g} \mathrm{H}_{2} \mathrm{O} / \mathrm{g}$ Soil)	Avg TCl	St dev TCI
CPB	0.29	0.17	5.53	1.11
CPM	0.32	0.12	2.83	1.06
CPR	0.39	0.13	2.06	0.68
CPS	0.09	0.07	2.29	0.85
M2	0.38	0.1	2.37	0.88

RP1	0.13	0.09	1.55	0.77
RP2	0.09	0.01	1.93	0.62
LM	0.41	0.03	2.91	1.22
LO	0.02	0	1.74	0.27

Table 5. The average soil moisture (grams of $\mathrm{H}_{2} \mathrm{O}$ per grams of oven dried soil) of the plots in each meadow and the standard deviation within each meadow measured during three different watches in Carpenter Mountain Complex, Frissell Ridge Complex, and Lookout Mountain Complex in the HJA Experimental Forest. Data was collected in 2013 by Amanda Reinhard.

	Avg			St dev		
	Watch 1	Watch 4	Watch 6	Watch 1	Watch 4	Watch 6
CPS	10.35	1.90	1.41	5.76	2.75	1.57
CPR	24.54	5.51	2.05	10.27	7.57	3.85
CPM	18.71	4.96	4.25	4.36	3.12	3.43
CPB	18.50	6.16	5.33	7.43	7.81	6.86
LM	28.27	4.55	1.59	4.93	1.80	1.41
LB	71.33	71.68	69.75	10.53	9.84	11.12
LO	9.96	1.16	0.77	6.55	0.97	1.12
LS	18.97	3.98	1.32	8.79	3.18	0.93
M2	14.81	5.88	1.38	4.59	3.14	1.26
NE	11.97	5.44	3.63	7.80	3.75	3.38
RP1	9.68	1.66	1.19	4.97	1.12	0.93
RP2	9.36	1.68	1.34	6.32	1.31	1.30

Table 6. The soil moisture rankings of the meadows found in Carpenter Mountain Complex, Frissell Ridge Complex, and Lookout Mountain Complex in the HJA Experimental Forest based on average soil moisture collected by Vera Pfeiffer in 2011 (Pfeiffer 2013), average TCI measured by Vera Pfeiffer in 2011 (Pfeiffer 2013), and average soil moisture collected by Amanda Reinhard in 2013 as well as the ranking by EISI participants in 2017 based on the abundances of flowers across the entire flowering season, the amount of erosion, and observations of soil moisture.

	Avg soil moisture collected by Pfeiffer in 2011	Avg TCI collected by Pfeiffer in 2011	Avg soil moisture collected by Reinhard in 2013	EISI participants in 2017
Wettest			LB	LB
			LM	CPB
	M2	CPB	CPR	LM
	CPR	LM	CPB	M2
	CPB	CPM	CPM	CPM

	CPM	M2	LS	RP2
	LM	CPS	M2	RP1
	RP1	CPR	NE	NE
	CPS	RP2	CPS	LS
	RP2	LO	RP1	CPR
	LO	RP1	RP2	CPS
			LO	LO

Table 7. The soil moisture ranking of the 12 meadows found in Carpenter Mountain Complex, Frissell Ridge Complex, and Lookout Mountain Complex in the HJA Experimental Forest compiled from the four different rankings.

CPB	CPM	CPR	CPS	LB	LM	LO	LS	M2	NE	RP1	RP2
1.04	0.27	-0.12	-0.65	2.48	0.43	-1.03	-0.48	0.33	-0.39	-0.52	-0.54

Table 8. The difference in soil moisture ranking of each pairwise comparison of the 12 meadows found in Carpenter Mountain Complex, Frissell Ridge Complex, and Lookout Mountain Complex in the HJA Experimental Forest as of 2005.

	CPB	CPM	CPR	CPS	LB	LM	LO	LS	M2	NE	RP1	RP2
CPB	NA											
CPM	0.77	NA										
CPR	1.15	0.38	NA									
CPS	1.68	0.91	0.53	NA								
LB	1.44	2.21	2.6	3.13	NA							
LM	0.61	0.16	0.54	1.07	2.05	NA						
LO	2.07	1.3	0.91	0.39	3.51	1.46	NA	NA	NA	NA	NA	NA
LS	1.51	0.74	0.36	0.17	2.96	0.9	0.55	NA	NA	NA	NA	NA
M2	0.71	0.06	0.45	0.97	2.15	0.1	1.36	0.81	NA	NA	NA	NA
NE	1.43	0.66	0.27	0.26	2.87	0.82	0.64	0.09	0.72	NA	NA	NA
RP1	1.56	0.79	0.41	0.12	3	0.95	0.51	0.05	0.85	0.13	NA	NA
RP2	1.58	0.81	0.42	0.1	3.02	0.97	0.49	0.07	0.87	0.15	0.02	NA

Recording plant and pollinator interactions

In a given year, each of the 12 meadows was surveyed five times (five watches). These watches occurred about a week apart during the mid-June to mid-August season. During a watch, all of the plots in the meadow were surveyed for plant-pollinator interactions. Because of the nature of pollinators, surveying is limited to 0900 to 1700 hours and days in which the weather is sunny or partly cloudy, non-windy, and precipitation-free. During the watch, for each plot, the flowers in anthesis were identified to species and the number of stalks of each species containing at least one flower in bloom were counted. Then the number of flowers per stalk (for up to 10 stalks) of
each species was counted. This allowed for the total or an estimate of the total number of flowers of each species in the plot to be determined. For the pollinator portion of the watch, each of the plots in the meadow were observed for 15 minutes. At the beginning of the 15 minutes, the presence of any clouds, shade, and breeze were recorded. The temperature in the meadows at the time of the watches was taken from Vanmet and Uplmet. The minute, pollinator species, flower species, and number of interactions by pollinator were recorded for every instance a pollinator made contact with a flower in the plot during the 15 minutes. During any pause to identify an insect or record data, the stopwatch was stopped. Interactions were classified as P, W, or U if the pollination seemed to occur, if the pollinator waited on the flower, or seemed unsuccessful in pollinating, respecitively. A pollinator visiting multiple flowers of the same species in a minute was recorded as one interaction. A pollinator visiting multiple species of flowers in a minute was separated into multiple interactions by species of flower visited. If one pollinator was involved in multiple interactions whether it visited several flower species in a minute or pollinated flowers in the plot in different minutes, this was noted. Pollinators that could not be easily identified were caught in a net or vial after they had left the plot. If the pollinators could still not be identified from this closer range, they were euthanized in jars of ammonium carbonate and then brought out of the field for identification by Andy Moldenke, an expert entomologist.

Partitioning beta diversity

To calculate the amount of dissimilarity due to species replacement and nestedness from pairwise beta diversity, I followed the method proposed by Baselga (Baselga 2010). While the Sørensen dissimilarity index is just one of many dissimilarity indices, it is one of the indices most often used to partition beta diversity. This is because the Sørensen dissimilarity index relies on the proportion of species shared between two sites and follows a linear relationship with Whittaker's beta (Diserud and Ødegaard 2007). Sørensen dissimilarity incorporates both true spatial turnover and differences in richness (Koleff et al. 2003). The equations for pairwise Sørensen dissimilarity (β sor) (Eq 1), species replacement (β sim) (Eq 2), and nestedness (β sne) (Eq 3) are:

(Eq 1)	β sor	
(Eq 2)	β sim	$\frac{(b+c)}{2 a+b+c}$
$($ Eq 3 $)$	$\beta s n e$	
		$\frac{\min (b, c)}{a+\min (b, c)}$
		β sor $-\beta \operatorname{sim}$

where a is the number of species common to both sites, b is the number of species unique to the first site, and c is the number of species unique to the second site. The numerator of Eq 1 represents the number of unique species among the two sites while the denominator is the total
number of species found in the two sites. Eq 1 therefore quantifies dissimilarity because it measures the number of unique species per site (Baselga 2012). The numerator of Eq 2 measures the number of replaced species in a site because the site with fewer unique species sets a limit on the number that are replaced (Baselga 2012). For example, if one site has three unique species and another has four unique species, only three species are replaced in either of the two sites. The denominator of Eq 2 measures the total number of species that can be replaced within a site (Baselga 2012). The number of species in the less rich site sets a limit on the number of species that can be replaced (Baselga 2012). Eq 2 therefore comes to measure the number of replaced species over the number that could be replaced in that site. Species replacement and nestedness are the only components that determine dissimilarity. Therefore, species replacement and nestedness sum to Sørensen dissimilarity which allows the amount of nestedness to be found from the difference of Sørensen dissimilarity and species replacement.

Applying Eq 1, Eq 2, and Eq 3 to the sites shown in Figure 3 can help illustrate the concept of beta diversity partitioning. If Site C1 and Site C2 are paired, $\mathrm{a}=6$ (species in common), $b=6$ (species unique to Site C 1), and $\mathrm{c}=0$ (Species unique to Site C2). This makes β sor $=(b+c) /(2 a+b+c)=(6+0) /(2 * 6+6+0)=6 / 18=0.33$. This makes sense because 6 of the 18 species represented in the 2 sites are unique. $\beta \operatorname{sim}=\min (b$, c) $/(a+\min (b, c))=0 /(6+0)=0$, demonstrating what can be seen from Figure 3: there is no species replacement between Site C1 and Site C2. β sne $=\beta$ sor $-\beta$ sim $=0.33-0=$ 0.33; all of the dissimilarity between Site C 1 and Site C 2 is explained by nestedness. If Site C2 and C3 are paired, $a=3, b=3$, and $c=3$. Therefore, β sor $=(b+c) /(2 a+b+c)$ $=(3+3) /(2 * 3+3+3)=6 / 12=0.5$; this demonstrates that half of the species represented between the pair of sites are unique to one of the sites. $\beta \operatorname{sim}=\min (b, c) /(a$ $+\min (b, c))=3 /(3+3)=3 / 6=0.5$; half of the species that could be replaced in each site are replaced. β sne $=\beta$ sor $-\beta \operatorname{sim}=0.5-0.5=0$; neither site has a nested subset of the species found in the other site. If Site C1 and Site C3 are paired, $a=3, b=9$, and c $=3$. $\operatorname{ssor}=(b+c) /(2 a+b+c)=(9+3) /(2 * 3+9+3)=12 / 18=0.66$; this makes sense because dissimilarity can be measured as the number of unique species found in Site C 1 and Site C3 over the total number of species found in both sites. $\beta \operatorname{sim}=\min (b, c) /(a$ $+\min (b, c))=3 /(3+3)=3 / 6=0.5$; in each site, there are 6 species that can be replaced but just 3 are. β sne $=\beta$ sor $-\beta$ sim $=0.66-0.5=0.16$; Site C3 has a nested subset of the species found in Site C1.

To calculate beta diversity, species replacement, and nestedness between all of the meadows in a given year, I used the Baselga method of calculating multiple-site Sørensen dissimilarity and its components (Baselga 2010). Within this method, the equations for multiple-site Sørensen dissimilarity (β_{SOR}) (Eq 4), species replacement (β_{SIM}) (Eq 5), and nestedness (β_{SNE}) (Eq 6) are:

$$
\beta s \text { sor }=\quad\left[\sum_{i<j} \min \left(b_{i j}, b_{j i}\right)\right]+\left[\sum_{i j} \max \left(b_{i j}, b_{j i}\right)\right]
$$

$$
2\left[\sum_{i} S_{i}-S_{T}\right]+\left[\sum_{i j} \min \left(b_{i j}, b_{j j}\right)\right]+\left[\sum_{i j} \max \left(b_{i j}, b_{j i}\right)\right]
$$

$$
\begin{equation*}
\beta_{S I M}=\quad\left[\sum_{i j j} \min \left(b_{i j}, b_{j i}\right)\right] \tag{Eq5}
\end{equation*}
$$

$$
\left[\sum_{i} S_{i}-S_{T}\right]+\left[\sum_{i j} \min \left(b_{i j}, b_{j i}\right)\right]
$$

(Eq 6) $\quad \beta_{S N E}=\quad \quad$ SSOR - SIIM 2
where S_{i} is the number of species in site i, S_{T} is the number of species in all of the sites aggregated, and $b_{i j}$ and $b_{j i}$ are the number of species only found in sites i and j when compared in pairs. To apply this set of equations to my data, I used the betapart package in R (Baselga and Orme 2012).

To calculate the percentage of dissimilarity resulting from nestedness, I found the pair-wise nestedness ratio ($\beta_{\text {ratio }}$) (Eq 7) and the multiple-site nestedness ratio (β_{RATIO}) (Eq 8):
(Eq 7)
$\beta_{\text {ratio }}=$
$\frac{\beta_{\text {sne }}}{\beta_{\text {sim }}}$
(Eq 8):
$\beta_{\text {RATIO }}=$

Data analysis
I tested whether difference in meadow size, distance between meadows, and difference in soil moisture were significantly related to pairwise dissimilarity and ratio of nestedness of plant and pollinator communities using linear regressions in R. I found the Pearson correlation coefficients, p-values, intercepts, and slopes associated with each linear regression.

Results

Multiple-site beta diversity and its components
The mean yearly multiple-site Sørensen dissimilarity of plant communities was 0.71 and was 0.75 for pollinator communities. The Sørensen index ranges from 0 to 1 where a Sørensen dissimilarity of 0 represents identical species composition between sites and 1 means that there is no overlap of species between sites. Therefore, the multiple-site Sørensen dissimilarities of plant and pollinator communities both show a high mean degree of dissimilarity between all of the meadows in the three complexes in the sixyear period. These results also show that the multiple-site dissimilarities were similar between plant and pollinator communities.

While each year shows a high degree of dissimilarity for plants and pollinators, there was still variation in multiple-site Sørensen dissimilarity of plant and pollinator communities across years (low of 0.74 in 2011 and high of 0.82 in 2015 for plant communities, low of 0.75 in 2011 and high of 0.85 in 2015 for pollinator communities) (Fig 5 and Fig 6). The minimum and maximum values of multiple-site dissimilarity occurred in the same years for plant and pollinator communities. In 2011 and 2015, the multiple-site species replacement components of plant communities were 0.69 to 0.74 and the nestedness components were 0.046 and 0.077 , respectively. This shows that the greatest variation in multiple-site dissimilarity of plant communities which occurred between 2011 and 2015 was driven by both an increase in species replacement and nestedness. While species replacement increased more in absolute terms, nestedness increased by almost 170\% between these two years. For pollinator communities, in 2011, the multiple-site species replacement component was 0.68 while in 2015, it was 0.79. In 2011, the multiple-site nestedness component of pollinator communities was 0.069 while in 2015 , it was 0.055 . In contrast to plants, the greatest variation in multiplesite dissimilarity of pollinators which manifested as an increase in dissimilarity between 2011 and 2015 was driven solely by species replacement.

Plant and pollinator communities showed similar mean multiple-site species replacement components of beta diversity (0.78 and 0.81). The mean nestedness components of the multiple-site beta diversities of plant and pollinator communities were similar (0.068 and 0.059). In conjunction with the similar values of multiple-site Sørensen dissimilarity and nestedness components between the two taxa, the mean ratios of multiple-site nestedness to Sørensen dissimilarities of plants and pollinators were similar (0.089 and 0.074).

Species replacement made up the largest portion of dissimilarity of plant communities as well as pollinator communities in each year (Fig 5 and Fig 6).

Fig 5. The multiple-site Sørensen dissimilarity ($\beta_{\text {SOR }}$) and its components of turnover ($\beta_{\text {SIM }}$) and nestedness (β_{SNE}) as well as the ratio of nestedness to dissimilarity (β_{RATIO}) of plant communities in the HJA Experimental Forest over 2011 to 2016.

Fig 6. The multiple-site Sørensen dissimilarity ($\beta_{\text {SOR }}$) and its components of turnover ($\beta_{\text {SIM }}$) and nestedness ($\beta_{\text {SNE }}$) as well as the ratio of nestedness to dissimilarity ($\beta_{\text {RATIO }}$) of pollinator communities in the HJA Experimental Forest over 2011 to 2016.

Pairwise beta diversity and its components

Pairwise dissimilarity of pollinators increased significantly with dissimilarity of plants ($\mathrm{r}=$ $0.381, \mathrm{p}<2.2 \mathrm{e}-16$) (Fig 7). The y-intercept and slope of the linear regression were 0.381 and 0.386 . The pairwise dissimilarity of pollinator communities is higher than that of plants because according to this model, if two plant communities were completely similar, the pollinator communities in the same pair of sites would have a dissimilarity of 0.381 so they would not be identical. Across the full range of values, according to the linear regression, pollinator dissimilarity was 0.381 higher than plant dissimilarity. Pollinator dissimilarity increased by 0.386 as plant dissimilarity increased by one.

Fig 7. The relationship of Sørensen dissimilarity ($\beta_{\text {sor }}$) of plant and pollinator communities in the HJA Experimental Forest over 2011 to 2016.

Pairwise ratio of nestedness of pollinators increased significantly with pairwise ratio of nestedness of plants $(r=0.243, p=5 e-06)(F i g 8)$. The y-intercept and slope of the linear regression were 0.122 and 0.213 . The y-intercept of 0.122 indicates that two meadows that show no nestedness of plant communities will still show some nestedness of pollinator communities. According to the model, the two meadows with the maximum ratio of nestedness for plants (0.842) will have a ratio of nestedness of 0.179 for pollinators which is only 0.057 higher than the ratio of nestedness of pollinator communities for the meadows with no ratio of nestedness of plant communities. Therefore, the relationship between the pairwise ratios of nestedness of plant and pollinator communities is not practically significant.

Fig 8. The relationship of the ratio of nestedness to Sørensen dissimilarity (β_{ratio}) of plant and pollinator communities in the HJA Experimental Forest over 2011 to 2016.

Pairwise dissimilarity of plant species composition between meadows significantly decreased with difference in meadow size ($\mathrm{r}=-0.129, \mathrm{p}=1.37 \mathrm{e}-02$) (Fig 9). However, the linear regression provided a y-intercept of 0.552 and a small slope of -0.015 which suggests that this result is not practically significant. The model predicts that meadows that are the same size have plant compositions with a dissimilarity of 0.552 while the plant species in meadows that are four ha different in size show a dissimilarity of 0.492 . In response to the large increase in the difference in meadow size, there was a relatively small decrease in dissimilarity. No significant relationship was found between difference in meadow size and pairwise Sørensen dissimilarity for pollinators (Fig 10).

Fig 9. The relationship of pairwise Sørensen dissimilarity ($\beta_{\text {sor }}$) of plant communities with difference in meadow size in the HJA Experimental Forest surveyed from 2011 to 2016.

Fig 10. The relationship of pairwise Sørensen dissimilarity ($\beta_{\text {sor }}$) of pollinator communities with difference in meadow size in the HJA Experimental Forest surveyed from 2011 to 2016.

No significant relationship existed between difference in meadow size and the pairwise ratio of nestedness of either plant or pollinator communities (Fig 11 and Fig 12).

Fig 11. The relationship of the ratio of pairwise nestedness to Sørensen dissimilarity ($\beta_{\text {ratio }}$) of plant communities with difference in meadow size in the HJA Experimental Forest surveyed from 2011 to 2016.

Fig 12. The relationship of the ratio of pairwise nestedness to Sørensen dissimilarity ($\beta_{\text {ratio }}$) of pollinator communities with difference in meadow size in the HJA Experimental Forest surveyed from 2011 to 2016.

Pairwise Sørensen dissimilarity of plant communities increased significantly with distance between meadows ($\mathrm{r}=0.16, \mathrm{p}=2.8 \mathrm{e}-03$) (Fig 13). The linear regression provided a y-intercept of 0.492 and slope of 0.009 for this relationship. The small slope of this relationship suggests that while this relationship is statistically significant, it is not practically significant. The plant species compositions of two meadows that are very close together would show a dissimilarity value of around 0.492 while meadows two km apart would show a similar dissimilarity of 0.51 .

Fig 13. The relationship of pairwise Sørensen dissimilarity ($\beta_{\text {sor }}$) of plant communities with distance between meadows in the HJA Experimental Forest surveyed from 2011 to 2016.

Pairwise dissimilarity of pollinator composition significantly increased with distance between meadows ($r=0.181, p=7.43 \mathrm{e}-04$). In similar fashion to the relationship between distance between meadows and dissimilarity of plant communities, this relationship is not practically significant. The y-intercept and slope of the relationship are 0.56 and 0.007 . The slope is small so meadows that are close together and far apart have similar dissimilarity values.

Fig 14. The relationship of pairwise Sørensen dissimilarity ($\beta_{\text {sor }}$) of pollinator communities with distance between meadows in the HJA Experimental Forest surveyed from 2011 to 2016.

No significant relationship between distance between meadows and ratio of nestedness of plants was found (Fig 15). Similarly, no significant relationship between distance between meadows and ratio of nestedness of pollinators existed (Fig 16).

Fig 15. The relationship of the ratio of pairwise nestedness to Sørensen dissimilarity ($\beta_{\text {ratio }}$) of plant communities with distance between meadows in the HJA Experimental Forest surveyed from 2011 to 2016.

Fig 16. The relationship of the ratio of pairwise nestedness to Sørensen dissimilarity ($\beta_{\text {ratio }}$) of pollinator communities with distance between meadows in the HJA Experimental Forest surveyed from 2011 to 2016.

Pairwise dissimilarity of plant communities increased significantly with difference in meadow soil moisture ($\mathrm{r}=0.524, \mathrm{p}<2 \mathrm{e}-16$) (Fig 17). The linear regression provided a y-intercept of 0.441 and a slope of 0.094 for this relationship. The provided soil moisture of each meadow is a ranking. The maximum difference in rankings between the meadows is 3.51 . According to the model, a meadow pair with this difference in soil moisture would have a dissimilarity value of 0.771 which is 0.330 greater than the dissimilarity of two meadows with the same soil moisture ranking. Therefore, the statistically significant relationship between meadow soil moisture and dissimilarity of plant species composition is also practically significant.

Fig 17. The relationship of pairwise Sørensen dissimilarity ($\beta_{\text {sor }}$) of plant communities with difference in meadow soil moisture in the HJA Experimental Forest surveyed from 2011 to 2016.

There was also a positive significant relationship between difference in meadow moisture and dissimilarity of pollinator communities ($\mathrm{r}=0.237, \mathrm{p}=1.06 \mathrm{e}-05$) (Fig 18). The y -intercept and slope of this relationship were 0.563 and 0.028 according to the linear regression. Following this model, meadows with the same soil moisture ranking will show a dissimilarity of 0.563 while meadows that have the greatest difference in meadow soil moisture ranking: 3.51 will have a dissimilarity of 0.661 . The meadows which differ the most in soil moisture have a dissimilarity of pollinator composition 0.098 greater than the meadows with the most similar soil moisture ranking. There is a relationship between meadow soil moisture and dissimilarity of pollinator communities but it is neither as statistically nor practically significant as the relationship between difference in meadow soil moisture and dissimilarity of plant communities.

Fig 18. The relationship of pairwise Sørensen dissimilarity ($\beta_{\text {sor }}$) of pollinator communities with difference in meadow soil moisture in the HJA Experimental Forest surveyed from 2011 to 2016.

There existed a significant negative relationship between difference in meadow soil moisture and ratio of nestedness of plant communities ($\mathrm{r}=-0.273, \mathrm{p}=3.51 \mathrm{e}-07$) (Fig 19). The model predicts that meadows with the same soil moisture will have a ratio of nestedness of plant communities of 0.237 . Also according to the model, for plant communities in the driest and wettest meadow, the ratio of nestedness will be 0.054 . Therefore, the linear regression predicts that the ratio of nestedness will decrease (ratio of species replacement will increase) by 0.183 in the meadows that differ the most in soil moisture compared to the meadows that have the same soil moisture ranking. Therefore, the relationship between difference in meadow soil moisture and the ratio of dissimilarity of plant communities explained by nestedness is practically as well as statistically significant. No significant relationship was found between difference in meadow soil moisture and ratio of nestedness of pollinator communities (Fig 20).

Fig 19. The relationship of the ratio of pairwise nestedness to Sørensen dissimilarity ($\beta_{\text {ratio }}$) of plant communities with difference in meadow soil moisture in the HJA Experimental Forest surveyed from 2011 to 2016.

Fig 20. The relationship of the ratio of pairwise nestedness to Sørensen dissimilarity ($\beta_{\text {ratio }}$) of pollinator communities with difference in meadow soil moisture in the HJA Experimental Forest surveyed from 2011 to 2016.

Table 9. The relationships between plant and pollinator pairwise Sørensen dissimilarity ($\beta_{\text {sor }}$), plant and pollinator ratio of pairwise nestedness to Sørensen dissimilarity ($\beta_{\text {ratio }}$), and the relationships between difference in meadow size, distance between meadows, and difference in meadow soil moisture and plant and pollinator pairwise Sørensen dissimilarity ($\beta_{\text {sor }}$) and ratio of pairwise nestedness to Sørensen dissimilarity ($\beta_{\text {ratio }}$). The Pearson correlation coefficients and p-values are included for the data from each year from 2011 to 2016 and for the data aggregated across years. All data was collected in the HJA Experimental Forest.

β sor of plants $\times \beta$ sor of pollinators	correlation coefficient	p -value
β sor of plants $x \beta$ sor of pollinators (2011-2016)	0.585	<2.2E-16****
β sor of plants $x \beta$ sor of pollinators (2011)	0.464	$4.38 \mathrm{E}-03^{* *}$
β sor of plants $x \beta$ sor of pollinators (2012)	0.548	9.82E-05****
β sor of plants $\times \beta$ sor of pollinators (2013)	0.78	1.13E-14****
β sor of plants x ssor of pollinators (2014)	0.636	9.24E-09****
β sor of plants $\times \beta$ sor of pollinators (2015)	0.51	1.23E-05****
β sor of plants $\times \beta$ sor of pollinators (2016)	0.534	3.88E-06****
Bratio of plants x ßratio of pollinators		
- ratio of plants x β ratio of pollinators (2011-2016)	0.243	5.00E-06****
Bratio of plants \times Bratio of pollinators (2011)	0.327	$5.17 \mathrm{E}-02$
Bratio of plants \times Bratio of pollinators (2012)	0.13	0.396
- ratio of plants \times ¢ ratio of pollinators (2013)	0.195	0.118
β ratio of plants x β ratio of pollinators (2014)	0.242	5.03E-02
- ratio of plants x β ratio of pollinators (2015)	0.503	1.71E-05****
Bratio of plants \times ßratio of pollinators (2016)	0.23	$6.37 \mathrm{E}-02$
Meadow size $\times \beta$ sor		
Plants		
Meadow size $\times \beta$ sor of plants (2011-2016)	-0.129	1.37E-02*
Meadow size $\times \beta$ sor of plants (2011)	0.062	0.717
Meadow size $\times \beta$ sor of plants (2012)	-0.001	0.995
Meadow size $\times \beta$ sor of plants (2013)	-0.208	$9.33 \mathrm{E}-02$
Meadow size $\times \beta$ sor of plants (2014)	-0.087	0.49
Meadow size $\times \beta$ sor of plants (2015)	-0.151	0.225
Meadow size $\times \beta$ sor of plants (2016)	-0.207	9.47E-02
Pollinators		
Meadow size $\times \beta$ sor of pollinators (2011-2016)	-0.064	0.236
Meadow size $\times \beta$ sor of pollinators (2011)	0.31	$6.54 \mathrm{E}-02$
Meadow size $\times \beta$ sor of pollinators (2012)	-0.076	0.621
Meadow size $\times \beta$ sor of pollinators (2013)	-0.017	0.893
Meadow size $\times \beta$ sor of pollinators (2014)	-0.161	0.196
Meadow size $\times \beta$ sor of pollinators (2015)	-0.011	0.93

Meadow size $\times \beta$ sor of pollinators (2016)	-0.156	0.212
Meadow size x β ratio		
Plants		
Meadow size \times ßratio of plants (2011-2016)	0.084	0.12
Meadow size \times ßratio of plants (2011)	-0.009	0.959
Meadow size \times ßratio of plants (2012)	-0.052	0.735
Meadow size \times ßratio of plants (2013)	0.083	5.08E-01
Meadow size \times ßratio of plants (2014)	0.179	0.15
Meadow size \times ßratio of plants (2015)	0.179	0.15
Meadow size \times ßratio of plants (2016)	0.089	0.475
Pollinators		
Meadow size \times ßratio of pollinators (2011-2016)	0.093	8.59E-02
Meadow size \times ßratio of pollinators (2011)	0.167	0.331
Meadow size \times ßratio of pollinators (2012)	0.195	0.2
Meadow size \times ßratio of pollinators (2013)	0.32	8.82E-03**
Meadow size \times ßratio of pollinators (2014)	0.031	0.803
Meadow size \times ßratio of pollinators (2015)	-0.021	0.865
Meadow size \times ßratio of pollinators (2016)	0.001	0.995
Meadow distance x β sor		
Plants		
Meadow distance $\times \beta$ sor of plants (2011-2016)	0.16	2.80E-03**
Meadow distance $\times \beta$ sor of plants (2011)	-0.007	0.967
Meadow distance $\times \beta$ sor of plants (2012)	0.128	0.401
Meadow distance $\times \beta$ sor of plants (2013)	0.18	0.148
Meadow distance $\times \beta$ sor of plants (2014)	0.153	0.22
Meadow distance $\times \beta$ sor of plants (2015)	0.28	$2.28 \mathrm{E}-02^{*}$
Meadow distance $\times \beta$ sor of plants (2016)	0.138	0.268
Pollinators		
Meadow distance $\times \beta$ sor of pollinators (2011-2016)	0.181	7.34E-04***
Meadow distance $\times \beta$ sor of pollinators (2011)	0.14	0.415
Meadow distance $\times \beta$ sor of pollinators (2012)	0.026	0.867
Meadow distance $\times \beta$ sor of pollinators (2013)	0.173	0.166
Meadow distance $\times \beta$ sor of pollinators (2014)	0.309	1.15E-02*
Meadow distance $\times \beta$ sor of pollinators (2015)	0.159	0.202
Meadow distance $\times \beta$ sor of pollinators (2016)	0.303	1.33E-02*
Meadow distance \times ßratio		
Plants		
Meadow distance \times ßratio of plants (2011-2016)	0.026	$6.34 \mathrm{E}-01$
Meadow distance \times ßratio of plants (2011)	0.022	0.896
Meadow distance \times ßratio of plants (2012)	-0.129	3.99E-01
Meadow distance \times ßratio of plants (2013)	-0.016	0.898

Meadow distance \times ßratio of plants (2014)	0.104	0.405
Meadow distance \times ßratio of plants (2015)	0.024	0.846
Meadow distance \times ßratio of plants (2016)	0.116	0.355
Pollinators		
Meadow distance \times ¢ ratio of pollinators (2011-2016)	0.086	1.09E-01
Meadow distance \times ß ratio of pollinators (2011)	0.378	2.32E-02*
Meadow distance \times ßratio of pollinators (2012)	-0.064	0.678
Meadow distance \times ßratio of pollinators (2013)	0.033	0.79
Meadow distance \times ßratio of pollinators (2014)	0.062	0.622
Meadow distance \times ßratio of pollinators (2015)	0.118	0.345
Meadow distance \times ßratio of pollinators (2016)	0.076	0.545
Difference in meadow soil moisture $\times \beta$ sor		
Plants		
Difference in meadow soil moisture $\times \beta$ sor of plants (2011-2016)	0.524	<2E-16****
Difference in meadow soil moisture $\times \beta$ sor of plants (2011)	0.285	9.18E-02
Difference in meadow soil moisture $\times \beta$ sor of plants (2012)	0.285	$5.81 \mathrm{E}-02$
Difference in meadow soil moisture $\times \beta$ sor of plants (2013)	0.676	4.6E-10****
Difference in meadow soil moisture $\times \beta$ sor of plants (2014)	0.693	1.15E-10****
Difference in meadow soil moisture $\times \beta$ sor of plants (2015)	0.339	5.43E-03**
Difference in meadow soil moisture $\times \beta$ sor of plants (2016)	0.677	4.37E-10****
Pollinators		
Difference in meadow soil moisture $\times \beta$ sor of pollinators (2011-2016)	0.237	1.06E-05****
Difference in meadow soil moisture $\times \beta$ sor of pollinators (2011)	0.108	5.31E-01
Difference in meadow soil moisture $\times \beta$ sor of pollinators (2012)	-0.069	$6.53 \mathrm{E}-01$
Difference in meadow soil moisture $\times \beta$ sor of pollinators (2013)	0.388	$1.3 \mathrm{E}-03^{* *}$
Difference in meadow soil moisture $\times \beta$ sor of pollinators (2014)	0.501	1.8E-05****
Difference in meadow soil moisture $\times \beta$ sor of pollinators (2015)	0.165	0.184
Difference in meadow soil moisture $\times \beta$ sor of pollinators (2016)	0.154	0.216
Difference in meadow soil moisture x β ratio		
Plants		
Difference in meadow soil moisture $\times \beta$ ratio of plants (2011-2016)	-0.273	3.51E-07****
Difference in meadow soil moisture $\times \beta$ ratio of plants (2011)	-0.173	$3.12 \mathrm{E}-01$
Difference in meadow soil moisture $\times \beta$ ratio of plants (2012)	-0.371	$1.21 \mathrm{E}-02^{*}$
Difference in meadow soil moisture $\times \beta$ ratio of plants (2013)	-0.356	3.31E-03**
Difference in meadow soil moisture $\times \beta$ ratio of plants (2014)	-0.001	0.995
Difference in meadow soil moisture $\times \beta$ ratio of plants (2015)	-0.36	2.98E-03**
Difference in meadow soil moisture $\times \beta$ ratio of plants (2016)	-0.428	4.22E-04***
Pollinators		
Difference in meadow soil moisture \times ßratio of pollinators (2011-2016)	0.022	0.681
Difference in meadow soil moisture \times ratio of pollinators (2011)	-0.094	0.586
Difference in meadow soil moisture $\times \beta$ ratio of pollinators (2012)	0.057	0.709
Difference in meadow soil moisture $\times \beta$ ratio of pollinators (2013)	0.091	0.467
Difference in meadow soil moisture $\times \beta$ ratio of pollinators (2014)	0.364	2.69E-03**
Difference in meadow soil moisture $\times \beta$ ratio of pollinators (2015)	-0.164	0.188
Difference in meadow soil moisture $\times \beta$ ratio of pollinators (2016)	0.032	0.797

Discussion

The mean yearly multiple-site Sørensen dissimilarity of plant and pollinator communities was relatively high (0.71 and 0.75). This shows that the meadows surveyed show large differences in their composition of plant and pollinator species. The heterogeneous species composition across the HJA Experimental Forest is likely a result of the heterogeneous nature of the landscape. The meadows vary in size, isolation, and edaphic qualities. While each year showed a high degree of dissimilarity for plants and pollinators, there was still variation across years (Fig 5 and Fig 6). The largest fluctuations in multiple-site dissimilarity occurred for both plants and pollinators in 2011 and 2015. Possibly, the same factors drive plant and pollinator community dissimilarity. Other possible explanations are that species composition affects pollinator species composition, vice versa, or the species composition of each taxa affects the other. However, these scenarios seem unlikely given that the variation in multiple-site dissimilarity of plants was caused by both in increase in species replacement and nestedness while the variation for pollinators was solely driven by an increase in species replacement.

Plant and pollinator communities exhibited a similar amount of multiple-site dissimilarity. However, when the pairwise dissimilarity of plant and pollinator communities is compared, a more developed conclusion can be made. There is a significant relationship between the dissimilarity of plant and pollinator communities and the linear regression provides a y-intercept of 0.381 for this relationship (Fig 7). Across the full range of data, pollinator communities showed dissimilarities around 0.381 higher than plant communities. This fits with my hypothesis that pollinator species composition would show higher dissimilarity between meadows because pollinators react more quickly to habitat change than plants. However, it is evident that species replacement contributed more to the multiple-site beta diversity of plant and pollinator communities than nestedness because the multiple-site ratio of nestedness to Sørensen dissimilarity was low for both groups (0.089 and 0.074). Therefore, pollinator communities do not seem to show more dissimilarity because of increased nestedness. Further research should be conducted to determine why the composition of pollinator species varies more across the meadows than does plant species composition. Pollinator communities might show greater dissimilarity because they are a trophic level above plants. Another possibility is that pollinator communities show higher dissimilarity because some of the pollinators surveyed are forest dwelling. Additionally, communities of herbaceous and predacious insects might show different amounts of dissimilarity.

I had hypothesized that nestedness would dominate based on my idea that meadow size and distance between meadows would affect species composition more than meadow soil moisture. My finding that species replacement actually dominated disagreed with this hypothesis, suggesting that meadow soil moisture is actually a larger influence on species composition. This alternative hypothesis is further supported by the linear regressions I ran on meadow characteristics and pairwise dissimilarity of plant and pollinator communities. The relationship between difference in meadow size and dissimilarity of
plant communities was statistically significant but not practically significant (Fig 9). No significant relationship was found between difference in meadow size and dissimilarity for pollinators (Fig 10). Both of these findings demonstrate that meadow size is not a determinant of plant or pollinator species composition. The same conclusion can be made for distance between meadows because the relationships between this factor and dissimilarity of plant and pollinator communities were both statistically significant but neither were practically significant. The relationships between difference in meadow soil moisture and dissimilarity for plants and pollinators were more statistically significant than the previous relationships and in contrast, were practically significant. Meadow soil moisture is a more dominant driver of plant and pollinator species composition in the meadows than meadow size or distance between meadows. The ratio of species replacement to Sørensen dissimilarity increased significantly with difference in meadow soil moisture for plants. The variation in meadow soil moisture across the landscape creates new niches, allowing for species replacement of plants. The meadows vary in soil moisture dramatically even within the same complex which allows unique species to be found in meadows close together. Additionally, variation in soil moisture across the meadows allows small meadows to have species not found in larger meadows. Dissimilarity and the ratio of species replacement to dissimilarity might increase more with difference in meadow soil moisture for plants than for pollinators because plants receive nutrients and water from the ground. Because difference in meadow soil moisture did not explain all of the variation in either plant or pollinator community dissimilarity, other factors are driving differences in species composition between meadows. These might include soil type, slope, aspect, altitude, and other factors that are associated with species replacement given the small contribution of nestedness to beta diversity.

Edaphic factors appear to be a more dominant driver of the plant and pollinator species composition of the meadows found in the HJA Experimental Forest than fragmentation. While the primary goal of the HJA Experimental Forest is research, if conservation of the meadows were ever to be considered, it would be advised against to solely protect the largest meadows. Instead, meadows of different sizes and more importantly, different soil characteristics should be conserved because the diversity of plant and pollinator species in the landscape is partly due to species replacement resulting from variation in the soil of meadows.

Conclusion

Partitioning beta diversity in montane meadows of the Western Cascades demonstrated that species replacement is the dominant driver of dissimilarity of both plant and pollinator communities across meadows. Furthermore, this work showed that there is greater dissimilarity of pollinator communities than plant communities. There were weak relationships between difference in meadow size and pairwise dissimilarity of plants and pollinators. This was true for distance between meadows as well. Difference in soil moisture between meadows was the strongest driver of dissimilarity of plant and pollinator communities. Because dissimilarity for both taxa increased with difference in meadow soil moisture, species replacement dominated, and the ratio of species replacement to dissimilarity of plant communities increased with difference in meadow soil moisture, it can be inferred that variation in edaphic factors across the meadows allows for greater diversity in the landscape.

Acknowledgment

I would like to thank Dr. Julia Jones for suggesting this topic to me. Her sage advice and caring mentorship proved vital in developing my understanding of and excitement toward plant-pollinator networks. Dr. Rebecca Hutchinson was endlessly helpful in guiding me through portions of code. I am infinitely thankful for Dr. Andrew Moldenke and his passion for identifying insects and sharing his vast knowledge. Many thanks to Dr. Desiree Tullos for making EISI possible. Thank you to Stephanie Bianco, Joshua Griffin, Andrew Guide, Jane Huestis, Lydia Miller, and the EISI Stream Team for fostering a community conducive to the exploration of science, math, computer science, and the natural world. I also want to thank the HJA Experimental Forest and Oregon State University for hosting this research and the National Science Foundation for funding it. Thank you to anyone who believed in my ability to conduct my own research; it means the world to me.

Literature cited

Baselga, A., A. Jiménez-Valverde, and G. Niccolini. 2007. A multiple-site similarity measure independent of richness. Biology Letters 3:642-645.

Baselga, A. 2010. Partitioning the turnover and nestedness components of beta diversity. Global Ecology and Biogeography 19:134-143.

Baselga, A., and C. D. L. Orme. 2012. betapart: an R package for the study of beta diversity. Methods in Ecology and Evolution 3:808-812.

Baselga, A. 2012. The relationship between species replacement, dissimilarity derived from nestedness, and nestedness. Global Ecology and Biogeography 21:12231232.

Diserud O.H., F. Ødegaard. 2007. A multiple-site similarity measure. Biology Letters 3:20-22.

Highland, S. A. 2011. The historic and contemporary ecology of western Cascade meadows: archeology, vegetation, and macromoth ecology (thesis). 2011.

Jaccard, P. 1912. The distribution of flora in the alpine zone. New Phytologist 11:37-50.
Jost, L. 2007. Partitioning diversity into independent alpha and beta components. Ecology 88:2427-2439.

Koleff P., K.J. Gaston, J.K. Lennon. 2003. Measuring beta diversity for presenceabsence data. Journal of Animal Ecology 72:367-382.

Miller, E. A., and C. B. Halpern. 1998. Effects of environment and grazing disturbance on tree establishment in meadows of the central Cascade Range, Oregon, USA. Journal of Vegetation Science 9:265-282.

Pfeiffer, V. W. 2013. Influence of spatial and temporal factors on plants, pollinators and plant-pollinator interactions in montane meadows of the western Cascades Range (thesis).

RStudio Team (2016). RStudio: Integrated Development for R. RStudio, Inc., Boston, MA URL http://www.rstudio.com/.

Si, X., A. Baselga, and P. Ding. 2015. Revealing Beta-Diversity Patterns of Breeding Bird and Lizard Communities on Inundated Land-Bridge Islands by Separating the Turnover and Nestedness Components. PLoS ONE 10.

Swanson, F. J., and M. E. James. 1975. Geology and geomorphology of the H.J. Andrews Experimental Forest, Western Cascades, Oregon: Pacific Northwest Experimental Station, USDA Forest Service Research Paper PNW-188.

Takaoka, S., and F. J. Swanson. 2008. Change in extent of meadows and shrub fields in the central western cascade Range, Oregon. The Professional Geographer 60:1-16.

Whittaker, R. H. 1960. Vegetation of the Siskiyou Mountains, Oregon and California. Ecological Monographs 30:279-338.

Appendices

Pairwise Sørensen dissimilarity (β sor) of plants

	$\begin{aligned} & \hline 2011 \\ & \text { CPB } \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 2011 \\ & \text { CPM } \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 2011 \\ & \text { CPR } \\ & \hline \end{aligned}$	$\begin{aligned} & 2011 \\ & \text { CPS } \end{aligned}$	2011	$\begin{aligned} & 2011 \\ & \text { LO } \end{aligned}$	$\begin{aligned} & 2011 \\ & \text { M2 } \end{aligned}$	$\begin{aligned} & \hline 2011 \\ & \mathrm{RP} 1 \end{aligned}$	$\begin{aligned} & 2011 \\ & \text { RP2 } \end{aligned}$
$\begin{aligned} & 2011 \\ & \text { CPB } \end{aligned}$	NA								
$\begin{aligned} & 2011 \\ & \text { CPM } \\ & \hline \end{aligned}$	0.405	NA							
$\begin{aligned} & 2011 \\ & \text { CPR } \\ & \hline \end{aligned}$	0.724	0.621	NA						
$\begin{aligned} & 2011 \\ & \text { CPS } \end{aligned}$	0.543	0.514	0.481	NA	NA	NA	NA	NA	NA
2011 LM	0.500	0.382	0.500	0.563	NA	NA	NA	NA	NA
2011 LO	0.507	0.478	0.623	0.446	0.460	NA	NA	NA	NA
2011 M2	0.316	0.368	0.733	0.556	0.343	0.408	NA	NA	NA
$\begin{aligned} & 2011 \\ & \text { RP1 } \end{aligned}$	0.576	0.515	0.640	0.516	0.500	0.344	0.500	NA	NA
$\begin{aligned} & 2011 \\ & \mathrm{RP} 2 \\ & \hline \end{aligned}$	0.545	0.545	0.560	0.516	0.467	0.311	0.500	0.276	NA

	2012 CPB	2012 CPM	2012 CPR	2012 CPS	2012 LM	2012 LO	2012 LS	2012 M2	2012 RP1	2012 RP2
2012 CPB	NA									
2012 CPM	0.342	NA								
2012 CPR	0.702	0.600	NA							
2012 CPS	0.564	0.559	0.524	NA						
2012 LM	0.414	0.352	0.511	0.623	NA	NA	NA	NA	NA	NA
2012 LO	0.492	0.417	0.652	0.519	0.368	NA	NA	NA	NA	NA
2012 LS	0.621	0.465	0.556	0.585	0.393	0.193	NA	NA	NA	NA
2012 M2	0.375	0.429	0.686	0.525	0.452	0.429	0.516	NA	NA	NA
2012 RP1	0.705	0.514	0.583	0.536	0.390	0.367	0.288	0.569	NA	NA
2012 RP2	0.750	0.574	0.600	0.628	0.478	0.404	0.391	0.615	0.347	NA

	$\begin{aligned} & 2013 \\ & \text { CPB } \end{aligned}$	$\begin{aligned} & 2013 \\ & \text { CPM } \end{aligned}$	$\begin{aligned} & 2013 \\ & \text { CPR } \end{aligned}$	$\begin{aligned} & 2013 \\ & \text { CPS } \end{aligned}$	2013	$\begin{aligned} & 2013 \\ & 1 M \end{aligned}$	$\begin{aligned} & 2013 \\ & \mathrm{LO} \\ & \hline \end{aligned}$	$\begin{aligned} & 2013 \\ & \text { LS } \end{aligned}$	$\begin{aligned} & 2013 \\ & M 2 \end{aligned}$	$\begin{aligned} & 2013 \\ & \text { NF } \end{aligned}$	$\begin{aligned} & 2013 \\ & R P 1 \end{aligned}$	$\begin{aligned} & 2013 \\ & \text { RP? } \end{aligned}$
$\begin{aligned} & 2013 \\ & \text { CPB } \\ & \hline \end{aligned}$	NA											
$\begin{aligned} & 2013 \\ & \text { CPM } \\ & \hline \end{aligned}$	0.439	NA										
$\begin{aligned} & 2013 \\ & \text { CPR } \\ & \hline \end{aligned}$	0.765	0.619	NA									
$\begin{aligned} & \hline 2013 \\ & \text { CPS } \end{aligned}$	0.621	0.543	0.590	NA								

2013 LB	0.621	0.571	0.846	0.783	NA							
2013 LM	0.507	0.333	0.600	0.509	0.474	NA						
2013 LO	0.639	0.500	0.660	0.500	0.767	0.437	NA	NA	NA	NA	NA	NA
2013 LS	0.600	0.415	0.608	0.517	0.655	0.420	0.361	NA	NA	NA	NA	NA
2013 M2	0.486	0.390	0.686	0.586	0.586	0.362	0.444	0.457	NA	NA	NA	NA
2013 NE	0.565	0.358	0.560	0.474	0.719	0.441	0.324	0.362	0.304	NA	NA	NA
$\begin{aligned} & 2013 \\ & \text { RP1 } \end{aligned}$	0.684	0.507	0.632	0.600	0.733	0.429	0.288	0.368	0.509	0.393	NA	NA
$\begin{aligned} & 2013 \\ & \text { RP2 } \\ & \hline \end{aligned}$	0.651	0.520	0.545	0.569	0.843	0.484	0.415	0.365	0.492	0.387	0.320	NA

	$\begin{aligned} & 2014 \\ & \text { CPB } \\ & \hline \end{aligned}$	$\begin{aligned} & 2014 \\ & \text { CPM } \end{aligned}$	$\begin{aligned} & 2014 \\ & \text { CPR } \end{aligned}$	$\begin{aligned} & 2014 \\ & \text { CPS } \\ & \hline \end{aligned}$	$\begin{aligned} & 2014 \\ & \text { LB } \\ & \hline \end{aligned}$	$\begin{aligned} & 2014 \\ & \text { LM } \\ & \hline \end{aligned}$	$\begin{aligned} & 2014 \\ & \text { LO } \\ & \hline \end{aligned}$	$\begin{aligned} & 2014 \\ & \text { LS } \\ & \hline \end{aligned}$	$\begin{aligned} & 2014 \\ & \text { M2 } \\ & \hline \end{aligned}$	$\begin{aligned} & 2014 \\ & \mathrm{NE} \\ & \hline \end{aligned}$	$\begin{aligned} & 2014 \\ & \mathrm{RP} 1 \end{aligned}$	$\begin{aligned} & 2014 \\ & \text { RP2 } \\ & \hline \end{aligned}$
$\begin{aligned} & 2014 \\ & \text { CPB } \end{aligned}$	NA											
$\begin{aligned} & 2014 \\ & \text { CPM } \\ & \hline \end{aligned}$	0.419	NA										
$\begin{aligned} & 2014 \\ & \text { CPR } \\ & \hline \end{aligned}$	0.647	0.490	NA									
$\begin{aligned} & 2014 \\ & \text { CPS } \end{aligned}$	0.585	0.585	0.429	NA								
2014 LB	0.750	0.458	0.676	0.795	NA							
2014 LM	0.522	0.343	0.393	0.586	0.547	NA						
2014 LO	0.545	0.455	0.527	0.509	0.654	0.521	NA	NA	NA	NA	NA	NA
2014 LS	0.452	0.419	0.529	0.434	0.667	0.493	0.182	NA	NA	NA	NA	NA
2014 M2	0.356	0.356	0.542	0.560	0.644	0.344	0.460	0.424	NA	NA	NA	NA
2014 NE	0.439	0.368	0.478	0.417	0.721	0.452	0.410	0.298	0.296	NA	NA	NA
$\begin{aligned} & 2014 \\ & \text { RP1 } \end{aligned}$	0.548	0.452	0.490	0.547	0.625	0.463	0.394	0.323	0.424	0.333	NA	NA
$\begin{aligned} & 2014 \\ & R P 2 \\ & \hline \end{aligned}$	0.474	0.439	0.696	0.500	0.674	0.581	0.344	0.298	0.444	0.346	0.368	NA

	$\begin{aligned} & 2015 \\ & \text { CPB } \\ & \hline \end{aligned}$	$\begin{aligned} & 2015 \\ & \text { CPM } \\ & \hline \end{aligned}$	$\begin{aligned} & 2015 \\ & \text { CPR } \\ & \hline \end{aligned}$	$\begin{aligned} & 2015 \\ & \text { CPS } \end{aligned}$	$\begin{aligned} & 2015 \\ & \text { LB } \\ & \hline \end{aligned}$	$\begin{aligned} & 2015 \\ & \text { LM } \\ & \hline \end{aligned}$	$\begin{aligned} & 2015 \\ & \text { LO } \\ & \hline \end{aligned}$	$\begin{aligned} & 2015 \\ & \text { LS } \\ & \hline \end{aligned}$	$\begin{aligned} & 2015 \\ & \text { M2 } \\ & \hline \end{aligned}$	$\begin{aligned} & 2015 \\ & \mathrm{NE} \\ & \hline \end{aligned}$	$\begin{aligned} & 2015 \\ & \text { RP1 } \\ & \hline \end{aligned}$	$\begin{aligned} & 2015 \\ & \text { RP2 } \\ & \hline \end{aligned}$
$\begin{aligned} & 2015 \\ & \text { CPB } \\ & \hline \end{aligned}$	NA											
$\begin{aligned} & 2015 \\ & \text { CPM } \end{aligned}$	0.510	NA										
$\begin{aligned} & 2015 \\ & \text { CPR } \\ & \hline \end{aligned}$	1.000	0.862	NA									
$\begin{aligned} & 2015 \\ & \text { CPS } \\ & \hline \end{aligned}$	0.706	0.600	0.714	NA								
2015 LB	0.721	0.545	0.913	0.724	NA							
2015 LM	0.542	0.388	0.857	0.706	0.628	NA						
2015 LO	0.736	0.630	0.818	0.692	0.708	0.472	NA	NA	NA	NA	NA	NA
2015 LS	0.731	0.585	0.875	0.684	0.745	0.462	0.368	NA	NA	NA	NA	NA
2015 M2	0.500	0.358	0.938	0.579	0.617	0.385	0.474	0.464	NA	NA	NA	NA
2015 NE	0.556	0.391	0.920	0.548	0.700	0.422	0.480	0.469	0.347	NA	NA	NA
$\begin{aligned} & 2015 \\ & \text { RP1 } \\ & \hline \end{aligned}$	0.610	0.476	0.905	0.704	0.722	0.610	0.522	0.378	0.467	0.368	NA	NA
$\begin{aligned} & \hline 2015 \\ & \text { RP2 } \\ & \hline \end{aligned}$	0.707	0.619	0.905	0.556	0.778	0.561	0.522	0.378	0.511	0.316	0.353	NA

	$\begin{aligned} & 2016 \\ & \text { CPB } \\ & \hline \end{aligned}$	$\begin{aligned} & 2016 \\ & \text { CPM } \\ & \hline \end{aligned}$	$\begin{aligned} & 2016 \\ & \text { CPR } \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 2016 \\ & \text { CPS } \\ & \hline \end{aligned}$	$\begin{aligned} & 2016 \\ & \text { LB } \\ & \hline \end{aligned}$	$\begin{aligned} & 2016 \\ & \text { LM } \\ & \hline \end{aligned}$	$\begin{aligned} & 2016 \\ & \text { LO } \\ & \hline \end{aligned}$	$\begin{aligned} & 2016 \\ & \text { LS } \\ & \hline \end{aligned}$	$\begin{aligned} & 2016 \\ & \text { M2 } \\ & \hline \end{aligned}$	$\begin{aligned} & 2016 \\ & \mathrm{NE} \\ & \hline \end{aligned}$	$\begin{aligned} & 2016 \\ & \text { RP1 } \\ & \hline \end{aligned}$	$\begin{aligned} & 2016 \\ & \text { RP2 } \\ & \hline \end{aligned}$
$\begin{aligned} & 2016 \\ & \text { CPB } \\ & \hline \end{aligned}$	NA											
$\begin{aligned} & \hline 2016 \\ & \text { CPM } \\ & \hline \end{aligned}$	0.333	NA										
$\begin{aligned} & 2016 \\ & \text { CPR } \\ & \hline \end{aligned}$	0.828	0.660	NA									

$\begin{aligned} & 2016 \\ & \text { CPS } \end{aligned}$	0.642	0.548	0.455	NA								
2016 LB	0.662	0.700	0.935	0.750	NA							
2016 LM	0.506	0.361	0.581	0.462	0.640	NA						
2016 LO	0.556	0.500	0.660	0.464	0.778	0.424	NA	NA	NA	NA	NA	NA
2016 LS	0.512	0.403	0.667	0.474	0.745	0.343	0.268	NA	NA	NA	NA	NA
2016 M2	0.481	0.361	0.674	0.500	0.680	0.258	0.333	0.313	NA	NA	NA	NA
2016 NE	0.532	0.444	0.628	0.500	0.840	0.419	0.364	0.403	0.323	NA	NA	NA
$\begin{aligned} & 2016 \\ & \text { RP1 } \\ & \hline \end{aligned}$	0.743	0.631	0.667	0.600	0.860	0.491	0.288	0.367	0.418	0.455	NA	NA
$\begin{aligned} & \hline 2016 \\ & \text { RP2 } \\ & \hline \end{aligned}$	0.706	0.556	0.588	0.535	0.854	0.585	0.333	0.414	0.472	0.358	0.391	NA

Pairwise Sørensen dissimilarity (β sor) of pollinators

	$\begin{aligned} & 2011 \\ & \text { CPB } \\ & \hline \end{aligned}$	2011 CPM	$\begin{aligned} & 2011 \\ & \text { CPR } \\ & \hline \end{aligned}$	$\begin{aligned} & 2011 \\ & \text { CPS } \\ & \hline \end{aligned}$	$\begin{aligned} & 2011 \\ & \text { LM } \end{aligned}$	$\begin{aligned} & 2011 \\ & \text { LO } \end{aligned}$	$\begin{aligned} & 2011 \\ & \text { M2 } \\ & \hline \end{aligned}$	$\begin{aligned} & 2011 \\ & \text { RP1 } \\ & \hline \end{aligned}$	$\begin{aligned} & 2011 \\ & \text { RP2 } \\ & \hline \end{aligned}$
2011 CPB	NA								
2011 CPM	0.491	NA							
2011 CPR	0.626	0.455	NA						
2011 CPS	0.513	0.496	0.460	NA	NA	NA	NA	NA	NA
2011 LM	0.463	0.563	0.664	0.552	NA	NA	NA	NA	NA
2011 LO	0.500	0.500	0.536	0.383	0.429	NA	NA	NA	NA
2011 M2	0.544	0.528	0.653	0.572	0.488	0.506	NA	NA	NA
2011 RP1	0.514	0.513	0.563	0.450	0.511	0.490	0.489	NA	NA
2011 RP2	0.487	0.456	0.471	0.444	0.379	0.377	0.510	0.410	NA

	$\begin{aligned} & 2012 \\ & \text { CPB } \\ & \hline \end{aligned}$	2012 CPM	$\begin{aligned} & 2012 \\ & \text { CPR } \\ & \hline \end{aligned}$	$\begin{aligned} & 2012 \\ & \text { CPS } \\ & \hline \end{aligned}$	$\begin{aligned} & 2012 \\ & \text { LM } \\ & \hline \end{aligned}$	$\begin{aligned} & 2012 \\ & \text { LO } \\ & \hline \end{aligned}$	$\begin{aligned} & 2012 \\ & \text { LS } \\ & \hline \end{aligned}$	$\begin{aligned} & 2012 \\ & \mathrm{M} 2 \\ & \hline \end{aligned}$	$\begin{aligned} & 2012 \\ & \text { RP1 } \\ & \hline \end{aligned}$	$\begin{aligned} & 2012 \\ & \text { RP2 } \\ & \hline \end{aligned}$
2012 CPB	NA									
2012 CPM	0.513	NA								
2012 CPR	0.727	0.708	NA							
2012 CPS	0.649	0.590	0.775	NA						
2012 LM	0.503	0.511	0.708	0.673	NA	NA	NA	NA	NA	NA
2012 LO	0.549	0.613	0.731	0.696	0.469	NA	NA	NA	NA	NA
2012 LS	0.466	0.470	0.674	0.607	0.456	0.543	NA	NA	NA	NA
2012 M2	0.549	0.484	0.735	0.672	0.487	0.605	0.517	NA	NA	NA
2012 RP1	0.626	0.568	0.671	0.680	0.593	0.639	0.461	0.563	NA	NA
2012 RP2	0.597	0.500	0.784	0.726	0.558	0.594	0.491	0.562	0.573	NA

	$\begin{aligned} & 2013 \\ & \text { CPB } \end{aligned}$	2013 CPM	$\begin{aligned} & \hline 2013 \\ & \text { CPR } \end{aligned}$	$\begin{aligned} & 2013 \\ & \text { CPS } \end{aligned}$	$\begin{aligned} & 2013 \\ & \text { LB } \end{aligned}$	$\begin{aligned} & 2013 \\ & \text { LM } \\ & \hline \end{aligned}$	$\begin{aligned} & 2013 \\ & \text { LO } \\ & \hline \end{aligned}$	$\begin{aligned} & 2013 \\ & \text { LS } \\ & \hline \end{aligned}$	2013 M2	2013 NE	$\begin{aligned} & \hline 2013 \\ & \text { RP1 } \\ & \hline \end{aligned}$	2013 RP2
2013 CPB	NA											
2013 CPM	0.516	NA										
2013 CPR	0.695	0.639	NA									
2013 CPS	0.594	0.559	0.588	NA								
2013 LB	0.655	0.684	0.671	0.593	NA							

2013 LM	0.512	0.503	0.664	0.563	0.595	NA						
2013 LO	0.516	0.494	0.600	0.556	0.574	0.461	NA	NA	NA	NA	NA	NA
2013 LS	0.500	0.503	0.641	0.529	0.594	0.522	0.434	NA	NA	NA	NA	NA
2013 M2	0.578	0.497	0.674	0.608	0.671	0.465	0.497	0.539	NA	NA	NA	NA
2013 NE	0.490	0.470	0.593	0.475	0.612	0.492	0.437	0.478	0.430	NA	NA	NA
2013 RP1	0.557	0.530	0.644	0.560	0.581	0.503	0.425	0.441	0.475	0.457	NA	NA
2013 RP2	0.597	0.523	0.689	0.603	0.667	0.530	0.434	0.466	0.500	0.510	0.497	NA

	$\begin{aligned} & \hline 2014 \\ & \text { CPB } \\ & \hline \end{aligned}$	2014 CPM	$\begin{aligned} & \hline 2014 \\ & \text { CPR } \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 2014 \\ & \text { CPS } \\ & \hline \end{aligned}$	$\begin{aligned} & 2014 \\ & \text { LB } \\ & \hline \end{aligned}$	$\begin{aligned} & 2014 \\ & \text { LM } \\ & \hline \end{aligned}$	$\begin{aligned} & 2014 \\ & \text { LO } \\ & \hline \end{aligned}$	$\begin{aligned} & 2014 \\ & \text { LS } \\ & \hline \end{aligned}$	2014 M2	2014 NE	$\begin{aligned} & \hline 2014 \\ & \text { RP1 } \\ & \hline \end{aligned}$	2014 RP2
2014 CPB	NA											
2014 CPM	0.577	NA										
2014 CPR	0.704	0.631	NA									
2014 CPS	0.513	0.573	0.611	NA								
2014 LB	0.623	0.688	0.745	0.690	NA							
2014 LM	0.621	0.472	0.640	0.540	0.682	NA						
2014 LO	0.610	0.548	0.684	0.520	0.653	0.470	NA	NA	NA	NA	NA	NA
2014 LS	0.576	0.521	0.722	0.515	0.641	0.483	0.477	NA	NA	NA	NA	NA
2014 M2	0.605	0.540	0.657	0.489	0.623	0.532	0.429	0.485	NA	NA	NA	NA
2014 NE	0.570	0.558	0.724	0.477	0.698	0.516	0.443	0.475	0.376	NA	NA	NA
2014 RP1	0.584	0.523	0.718	0.537	0.714	0.536	0.455	0.529	0.419	0.400	NA	NA
2014 RP2	0.620	0.578	0.726	0.485	0.694	0.509	0.485	0.462	0.411	0.429	0.333	NA

	$\begin{aligned} & 2015 \\ & \text { CPB } \end{aligned}$	2015 CPM	$\begin{aligned} & 2015 \\ & \text { CPR } \\ & \hline \end{aligned}$	$\begin{aligned} & 2015 \\ & \text { CPS } \\ & \hline \end{aligned}$	$\begin{aligned} & 2015 \\ & \text { LB } \\ & \hline \end{aligned}$	$\begin{aligned} & 2015 \\ & \text { LM } \\ & \hline \end{aligned}$	$\begin{aligned} & 2015 \\ & \text { LO } \\ & \hline \end{aligned}$	$\begin{aligned} & 2015 \\ & \text { LS } \\ & \hline \end{aligned}$	2015 M2	2015 NE	$\begin{aligned} & 2015 \\ & \text { RP1 } \\ & \hline \end{aligned}$	2015 RP2
2015 CPB	NA											
2015 CPM	0.543	NA										
2015 CPR	0.746	0.757	NA									
2015 CPS	0.729	0.743	0.571	NA								
2015 LB	0.604	0.607	0.714	0.788	NA							
2015 LM	0.711	0.630	0.697	0.742	0.712	NA						
2015 LO	0.523	0.556	0.614	0.660	0.621	0.604	NA	NA	NA	NA	NA	NA
2015 LS	0.685	0.680	0.724	0.741	0.646	0.565	0.566	NA	NA	NA	NA	NA
2015 M2	0.657	0.621	0.649	0.829	0.625	0.537	0.596	0.700	NA	NA	NA	NA
2015 NE	0.625	0.560	0.755	0.644	0.701	0.639	0.541	0.627	0.604	NA	NA	NA
2015 RP1	0.674	0.631	0.672	0.754	0.697	0.537	0.535	0.609	0.631	0.641	NA	NA
2015 RP2	0.663	0.607	0.714	0.788	0.722	0.615	0.537	0.667	0.571	0.586	0.394	NA

	$\begin{aligned} & 2016 \\ & \text { CPB } \\ & \hline \end{aligned}$	2016 CPM	$\begin{aligned} & \hline 2016 \\ & \text { CPR } \\ & \hline \end{aligned}$	$\begin{aligned} & 2016 \\ & \text { CPS } \\ & \hline \end{aligned}$	$\begin{aligned} & 2016 \\ & \text { LB } \\ & \hline \end{aligned}$	$\begin{aligned} & 2016 \\ & \text { LM } \\ & \hline \end{aligned}$	$\begin{aligned} & 2016 \\ & \text { LO } \\ & \hline \end{aligned}$	$\begin{aligned} & 2016 \\ & \text { LS } \\ & \hline \end{aligned}$	2016 M2	2016 NE	$\begin{aligned} & 2016 \\ & \text { RP1 } \\ & \hline \end{aligned}$	2016 RP2
2016 CPB	NA											
2016 CPM	0.575	NA										
2016 CPR	0.765	0.763	NA									
2016 CPS	0.644	0.783	0.719	NA								
2016 LB	0.711	0.727	0.900	0.789	NA							
2016 LM	0.704	0.677	0.746	0.793	0.663	NA						
2016 LO	0.625	0.553	0.760	0.714	0.609	0.633	NA	NA	NA	NA	NA	NA

2016 LS	0.638	0.563	0.588	0.714	0.650	0.604	0.600	NA	NA	NA	NA	NA
2016 M2	0.581	0.548	0.747	0.670	0.596	0.527	0.544	0.495	NA	NA	NA	NA
2016 NE	0.636	0.607	0.786	0.720	0.688	0.589	0.622	0.558	0.528	NA	NA	NA
2016 RP1	0.561	0.596	0.837	0.706	0.571	0.633	0.522	0.585	0.456	0.525	NA	NA
2016 RP2	0.607	0.664	0.741	0.644	0.629	0.574	0.536	0.581	0.468	0.570	0.480	NA

Pairwise species replacement (β sim) of plants

	2011 CPB	2011 CPM	2011 CPR	2011 CPS	2011 LM	2011 LO	2011 M2	2011 RP1	2011 RP2
2011 CPB	NA								
2011 CPM	0.405	NA							
2011 CPR	0.619	0.476	NA						
2011 CPS	0.515	0.485	0.333	NA	NA	NA	NA	NA	NA
2011 LM	0.452	0.323	0.381	0.548	NA	NA	NA	NA	NA
2011 LO	0.469	0.438	0.524	0.438	0.452	NA	NA	NA	NA
$2011 \mathrm{M2}$	0.297	0.351	0.619	0.515	0.258	0.344	NA	NA	NA
2011 RP1	0.517	0.448	0.571	0.483	0.483	0.310	0.414	NA	NA
2011 $R P 2$	0.483	0.483	0.476	0.483	0.448	0.276	0.414	0.276	NA

	2012 CPB	2012 CPM	2012 CPR	2012 CPS	2012 LM	2012 LO	2012 LS	2012 M2	2012 RP1	2012 RP2
2012 CPB	NA									
2012 CPM	0.200	NA								
2012 CPR	0.588	0.294	NA							
2012 CPS	0.520	0.400	0.412	NA						
2012 LM	0.393	0.179	0.353	0.600	NA	NA	NA	NA	NA	NA
2012 LO	0.483	0.276	0.529	0.480	0.357	NA	NA	NA	NA	NA
2012 LS	0.607	0.321	0.412	0.560	0.393	0.179	NA	NA	NA	NA
$2012 ~ M 2 ~$	0.333	0.353	0.529	0.440	0.393	0.379	0.464	NA	NA	NA
2012 RP1	0.700	0.419	0.412	0.480	0.357	0.345	0.250	0.548	NA	NA
2012 RP2	0.667	0.278	0.588	0.556	0.333	0.222	0.222	0.444	0.111	NA

	$\begin{aligned} & 2013 \\ & \text { CPB } \end{aligned}$	$\begin{aligned} & 2013 \\ & \text { CPM } \end{aligned}$	$\begin{aligned} & 2013 \\ & \text { CPR } \\ & \hline \end{aligned}$	$\begin{aligned} & 2013 \\ & \text { CPS } \end{aligned}$	$\begin{aligned} & 2013 \\ & \text { LB } \\ & \hline \end{aligned}$	$\begin{aligned} & 2013 \\ & \text { LM } \\ & \hline \end{aligned}$	$\begin{aligned} & 2013 \\ & \text { LO } \\ & \hline \end{aligned}$	$\begin{aligned} & 2013 \\ & \text { LS } \\ & \hline \end{aligned}$	$\begin{aligned} & 2013 \\ & \mathrm{M} 2 \\ & \hline \end{aligned}$	2013 NE	$\begin{aligned} & 2013 \\ & \mathrm{RP} 1 \\ & \hline \end{aligned}$	$\begin{aligned} & 2013 \\ & \text { RP2 } \end{aligned}$
$\begin{aligned} & \hline 2013 \\ & \text { CPB } \end{aligned}$	NA											
$\begin{aligned} & 2013 \\ & \text { CPM } \\ & \hline \end{aligned}$	0.343	NA										
$\begin{aligned} & 2013 \\ & \text { CPR } \end{aligned}$	0.625	0.250	NA									
$\begin{aligned} & 2013 \\ & \text { CPS } \end{aligned}$	0.522	0.304	0.500	NA								

	$\begin{aligned} & \hline 2014 \\ & \text { CPB } \\ & \hline \end{aligned}$	$\begin{aligned} & 2014 \\ & \text { CPM } \\ & \hline \end{aligned}$	$\begin{aligned} & 2014 \\ & \text { CPR } \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 2014 \\ & \text { CPS } \\ & \hline \end{aligned}$	$\begin{aligned} & 2014 \\ & \text { LB } \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 2014 \\ & \text { LM } \\ & \hline \end{aligned}$	$\begin{aligned} & 2014 \\ & \text { LO } \\ & \hline \end{aligned}$	$\begin{aligned} & 2014 \\ & \text { LS } \\ & \hline \end{aligned}$	$\begin{aligned} & 2014 \\ & \text { M2 } \\ & \hline \end{aligned}$	2014 NE	$\begin{aligned} & 2014 \\ & \text { RP1 } \end{aligned}$	$\begin{aligned} & \hline 2014 \\ & \text { RP2 } \\ & \hline \end{aligned}$
$\begin{aligned} & \hline 2014 \\ & \text { CPB } \end{aligned}$	NA											
$\begin{aligned} & 2014 \\ & \text { CPM } \\ & \hline \end{aligned}$	0.419	NA										
$\begin{aligned} & 2014 \\ & \text { CPR } \end{aligned}$	0.550	0.350	NA									
$\begin{aligned} & 2014 \\ & \text { CPS } \\ & \hline \end{aligned}$	0.500	0.500	0.400	NA								
2014 LB	0.647	0.235	0.647	0.765	NA							
2014 LM	0.484	0.290	0.150	0.455	0.294	NA						
2014 LO	0.516	0.419	0.350	0.364	0.471	0.514	NA	NA	NA	NA	NA	NA
2014 LS	0.452	0.419	0.400	0.318	0.529	0.452	0.129	NA	NA	NA	NA	NA
2014 M2	0.321	0.321	0.450	0.500	0.529	0.250	0.393	0.393	NA	NA	NA	NA
2014 NE	0.385	0.308	0.400	0.364	0.647	0.346	0.308	0.231	0.269	NA	NA	NA
$\begin{aligned} & \hline 2014 \\ & \text { RP1 } \end{aligned}$	0.548	0.452	0.350	0.455	0.471	0.419	0.355	0.323	0.393	0.269	NA	NA
$\begin{aligned} & 2014 \\ & \text { RP2 } \\ & \hline \end{aligned}$	0.423	0.385	0.650	0.455	0.588	0.500	0.231	0.231	0.423	0.346	0.308	NA

	$\begin{aligned} & 2015 \\ & \text { CPB } \\ & \hline \end{aligned}$	$\begin{aligned} & 2015 \\ & \text { CPM } \\ & \hline \end{aligned}$	$\begin{aligned} & 2015 \\ & \text { CPR } \\ & \hline \end{aligned}$	$\begin{aligned} & 2015 \\ & \text { CPS } \\ & \hline \end{aligned}$	$\begin{aligned} & 2015 \\ & \text { LB } \\ & \hline \end{aligned}$	$\begin{aligned} & 2015 \\ & \text { LM } \\ & \hline \end{aligned}$	2015	$\begin{aligned} & 2015 \\ & \text { LS } \\ & \hline \end{aligned}$	$\begin{aligned} & 2015 \\ & \text { M2 } \\ & \hline \end{aligned}$	2015 NE	$\begin{aligned} & 2015 \\ & \text { RP1 } \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 2015 \\ & \text { RP2 } \\ & \hline \end{aligned}$
$\begin{aligned} & 2015 \\ & \text { CPB } \\ & \hline \end{aligned}$	NA											
$\begin{aligned} & 2015 \\ & \text { CPM } \\ & \hline \end{aligned}$	0.500	NA										
$\begin{aligned} & 2015 \\ & \text { CPR } \end{aligned}$	1.000	0.500	NA									
$\begin{aligned} & 2015 \\ & \text { CPS } \\ & \hline \end{aligned}$	0.500	0.300	0.500	NA								
2015 LB	0.684	0.474	0.750	0.600	NA							
2015 LM	0.542	0.375	0.500	0.500	0.579	NA						
2015 LO	0.708	0.600	0.250	0.400	0.632	0.417	NA	NA	NA	NA	NA	NA
2015 LS	0.708	0.560	0.500	0.400	0.684	0.417	0.357	NA	NA	NA	NA	NA
2015 M2	0.458	0.320	0.750	0.200	0.526	0.333	0.464	0.464	NA	NA	NA	NA
2015 NE	0.524	0.333	0.750	0.300	0.684	0.381	0.381	0.381	0.238	NA	NA	NA
$\begin{aligned} & 2015 \\ & \mathrm{RP} 1 \\ & \hline \end{aligned}$	0.529	0.353	0.750	0.600	0.706	0.529	0.353	0.176	0.294	0.294	NA	NA
$\begin{aligned} & 2015 \\ & \text { RP2 } \\ & \hline \end{aligned}$	0.647	0.529	0.750	0.400	0.765	0.471	0.353	0.176	0.353	0.235	0.353	NA

	$\begin{aligned} & 2016 \\ & \text { CPB } \\ & \hline \end{aligned}$	$\begin{aligned} & 2016 \\ & \text { CPM } \end{aligned}$	$\begin{aligned} & 2016 \\ & \text { CPR } \end{aligned}$	$\begin{aligned} & 2016 \\ & \text { CPS } \\ & \hline \end{aligned}$	$\begin{aligned} & 2016 \\ & \text { LB } \\ & \hline \end{aligned}$	$\begin{aligned} & 2016 \\ & \text { LM } \\ & \hline \end{aligned}$	$\begin{aligned} & 2016 \\ & \text { LO } \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 2016 \\ & \text { LS } \\ & \hline \end{aligned}$	$\begin{aligned} & 2016 \\ & \text { M2 } \\ & \hline \end{aligned}$	2016 NE	$\begin{aligned} & 2016 \\ & \text { RP1 } \\ & \hline \end{aligned}$	$\begin{aligned} & 2016 \\ & \text { RP2 } \end{aligned}$
$\begin{aligned} & 2016 \\ & \text { CPB } \\ & \hline \end{aligned}$	NA											
$\begin{aligned} & 2016 \\ & \text { CPM } \\ & \hline \end{aligned}$	0.293	NA										
$\begin{aligned} & 2016 \\ & \text { CPR } \\ & \hline \end{aligned}$	0.583	0.250	NA									
$\begin{aligned} & 2016 \\ & \text { CPS } \\ & \hline \end{aligned}$	0.429	0.333	0.250	NA								
2016 LB	0.421	0.526	0.917	0.737	NA							

2016 LM	0.387	0.258	0.250	0.333	0.526	NA						
2016 LO	0.486	0.457	0.333	0.286	0.684	0.387	NA	NA	NA	NA	NA	NA
2016 LS	0.444	0.361	0.333	0.286	0.632	0.290	0.257	NA	NA	NA	NA	NA
2016 M2	0.355	0.258	0.417	0.381	0.579	0.258	0.290	0.258	NA	NA	NA	NA
2016 NE	0.419	0.355	0.333	0.381	0.789	0.419	0.323	0.355	0.323	NA	NA	NA
$\begin{aligned} & 2016 \\ & \text { RP1 } \end{aligned}$	0.625	0.500	0.500	0.571	0.842	0.417	0.125	0.208	0.333	0.375	NA	NA
$\begin{aligned} & 2016 \\ & R P 2 \end{aligned}$	0.545	0.364	0.417	0.524	0.842	0.500	0.136	0.227	0.364	0.227	0.364	NA

Pairwise species replacement (β sim) of

 pollinators| | 2011
 CPB | 2011
 CPM | 2011
 CPR | 2011
 CPS | 2011
 LM | 2011
 LO | M2 | 2011
 RP1 | 2011
 RP2 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 2011
 CPB | NA |
| 2011
 CPM | 0.453 | NA |
| 2011
 CPR | 0.553 | 0.289 | NA |
| 2011
 CPS | 0.472 | 0.492 | 0.289 | NA | NA | NA | NA | NA | NA |
| 2011 LM | 0.321 | 0.492 | 0.474 | 0.484 | NA | NA | NA | NA | NA |
| 2011 LO | 0.340 | 0.393 | 0.237 | 0.258 | 0.407 | NA | NA | NA | NA |
| $2011 \mathrm{M2}$ | 0.415 | 0.443 | 0.447 | 0.500 | 0.481 | 0.494 | NA | NA | NA |
| 2011
 RP1 | 0.491 | 0.500 | 0.447 | 0.431 | 0.414 | 0.362 | 0.379 | NA | NA |
| 2011
 $R P 2$ | 0.434 | 0.443 | 0.289 | 0.435 | 0.297 | 0.266 | 0.438 | 0.379 | NA |

	2012 CPB	2012 CPM	2012 CPR	CPS CPS	2012 LM	2012 LO	2012 LS	2012 M2	2012 RP1	2012 RP2
2012 CPB	NA									
2012 CPM	0.465	NA								
2012 CPR	0.400	0.440	NA							
2012 CPS	0.500	0.478	0.680	NA						
2012 LM	0.422	0.484	0.480	0.609	NA	NA	NA	NA	NA	NA
2012 LO	0.532	0.592	0.440	0.587	0.406	NA	NA	NA	NA	NA
2012 LS	0.361	0.426	0.440	0.543	0.443	0.475	NA	NA	NA	NA
$2012 ~ M 2 ~$	0.541	0.423	0.400	0.522	0.391	0.582	0.410	NA	NA	NA
2012 RP1	0.519	0.500	0.480	0.652	0.556	0.556	0.426	0.426	NA	NA
2012 $R P 2$	0.449	0.388	0.680	0.717	0.490	0.469	0.429	0.388	0.551	NA

	$\begin{aligned} & 2013 \\ & \text { CPB } \end{aligned}$	$\begin{aligned} & 2013 \\ & \text { CPM } \\ & \hline \end{aligned}$	$\begin{aligned} & 2013 \\ & \text { CPR } \\ & \hline \end{aligned}$	$\begin{aligned} & 2013 \\ & \text { CPS } \end{aligned}$	$\begin{aligned} & 2013 \\ & \text { LB } \end{aligned}$	$\begin{aligned} & 2013 \\ & \text { LM } \\ & \hline \end{aligned}$	$\begin{aligned} & 2013 \\ & \text { LO } \\ & \hline \end{aligned}$	$\begin{aligned} & 2013 \\ & \text { LS } \end{aligned}$	$\begin{aligned} & 2013 \\ & \text { M2 } \\ & \hline \end{aligned}$	$\begin{aligned} & 2013 \\ & \mathrm{NE} \\ & \hline \end{aligned}$	$\begin{aligned} & 2013 \\ & \text { RP1 } \\ & \hline \end{aligned}$	$\begin{aligned} & 2013 \\ & \text { RP2 } \\ & \hline \end{aligned}$
$\begin{aligned} & 2013 \\ & \text { CPB } \end{aligned}$	NA											
$\begin{aligned} & 2013 \\ & \text { CPM } \end{aligned}$	0.456	NA										
$\begin{aligned} & 2013 \\ & \text { CPR } \end{aligned}$	0.568	0.405	NA									
$\begin{aligned} & \hline 2013 \\ & \text { CPS } \end{aligned}$	0.567	0.467	0.459	NA								
2013 LB	0.583	0.563	0.622	0.542	NA							
2013 LM	0.397	0.459	0.378	0.417	0.375	NA						

2013 LO	0.426	0.471	0.297	0.433	0.375	0.441	NA	NA	NA	NA	NA	NA
2013 LS	0.456	0.488	0.432	0.450	0.458	0.463	0.388	NA	NA	NA	NA	NA
2013 M2	0.485	0.459	0.405	0.483	0.500	0.459	0.484	0.488	NA	NA	NA	NA
2013 NE	0.441	0.457	0.351	0.383	0.479	0.432	0.395	0.475	0.370	NA	NA	NA
$\begin{aligned} & 2013 \\ & \text { RP1 } \\ & \hline \end{aligned}$	0.515	0.519	0.432	0.483	0.438	0.444	0.383	0.438	0.420	0.457	NA	NA
$\begin{aligned} & \hline 2013 \\ & \text { RP2 } \\ & \hline \end{aligned}$	0.591	0.455	0.568	0.583	0.604	0.409	0.318	0.409	0.379	0.455	0.439	NA

	$\begin{aligned} & \hline 2014 \\ & \text { CPB } \\ & \hline \end{aligned}$	$\begin{aligned} & 2014 \\ & \text { CPM } \\ & \hline \end{aligned}$	$\begin{aligned} & 2014 \\ & \text { CPR } \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 2014 \\ & \text { CPS } \\ & \hline \end{aligned}$	$\begin{aligned} & 2014 \\ & \text { LB } \\ & \hline \end{aligned}$	$\begin{aligned} & 2014 \\ & \text { LM } \\ & \hline \end{aligned}$	$\begin{aligned} & 2014 \\ & \text { LO } \\ & \hline \end{aligned}$	$\begin{aligned} & 2014 \\ & \text { LS } \\ & \hline \end{aligned}$	$\begin{aligned} & 2014 \\ & \mathrm{M} 2 \\ & \hline \end{aligned}$	$\begin{aligned} & 2014 \\ & \mathrm{NE} \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 2014 \\ & \text { RP1 } \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 2014 \\ & \text { RP2 } \\ & \hline \end{aligned}$
$\begin{aligned} & 2014 \\ & \text { CPB } \\ & \hline \end{aligned}$	NA											
$\begin{aligned} & 2014 \\ & \text { CPM } \\ & \hline \end{aligned}$	0.500	NA										
$\begin{aligned} & 2014 \\ & \text { CPR } \end{aligned}$	0.667	0.500	NA									
$\begin{aligned} & 2014 \\ & \text { CPS } \\ & \hline \end{aligned}$	0.367	0.537	0.417	NA								
2014 LB	0.565	0.565	0.739	0.522	NA							
2014 LM	0.400	0.317	0.333	0.458	0.391	NA						
2014 LO	0.467	0.488	0.500	0.500	0.435	0.404	NA	NA	NA	NA	NA	NA
2014 LS	0.400	0.439	0.542	0.479	0.391	0.436	0.462	NA	NA	NA	NA	NA
2014 M2	0.500	0.512	0.500	0.478	0.435	0.435	0.391	0.435	NA	NA	NA	NA
2014 NE	0.333	0.439	0.500	0.396	0.435	0.508	0.385	0.436	0.261	NA	NA	NA
$\begin{aligned} & 2014 \\ & \text { RP1 } \end{aligned}$	0.467	0.488	0.583	0.532	0.565	0.447	0.426	0.489	0.413	0.298	NA	NA
$\begin{aligned} & 2014 \\ & \text { RP2 } \\ & \hline \end{aligned}$	0.500	0.537	0.583	0.479	0.522	0.429	0.469	0.429	0.391	0.347	0.319	NA

	$\begin{aligned} & 2015 \\ & \text { CPB } \end{aligned}$	$\begin{aligned} & 2015 \\ & \text { CPM } \\ & \hline \end{aligned}$	$\begin{aligned} & 2015 \\ & \text { CPR } \\ & \hline \end{aligned}$	$\begin{aligned} & 2015 \\ & \text { CPS } \end{aligned}$	$\begin{aligned} & 2015 \\ & \text { LB } \\ & \hline \end{aligned}$	$\begin{aligned} & 2015 \\ & \text { LM } \\ & \hline \end{aligned}$	$\begin{aligned} & 2015 \\ & \text { LO } \\ & \hline \end{aligned}$	$\begin{aligned} & 2015 \\ & \text { LS } \\ & \hline \end{aligned}$	$\begin{aligned} & 2015 \\ & \text { M2 } \\ & \hline \end{aligned}$	$\begin{aligned} & 2015 \\ & \mathrm{NE} \\ & \hline \end{aligned}$	$\begin{aligned} & 2015 \\ & \text { RP1 } \\ & \hline \end{aligned}$	$\begin{aligned} & 2015 \\ & \text { RP2 } \\ & \hline \end{aligned}$
$\begin{aligned} & 2015 \\ & \text { CPB } \end{aligned}$	NA											
$\begin{aligned} & 2015 \\ & \text { CPM } \\ & \hline \end{aligned}$	0.489	NA										
$\begin{aligned} & 2015 \\ & \text { CPR } \\ & \hline \end{aligned}$	0.500	0.438	NA									
$\begin{aligned} & 2015 \\ & \text { CPS } \end{aligned}$	0.333	0.250	0.500	NA								
2015 LB	0.574	0.593	0.375	0.417	NA							
2015 LM	0.702	0.600	0.375	0.333	0.700	NA						
2015 LO	0.488	0.463	0.313	0.250	0.561	0.561	NA	NA	NA	NA	NA	NA
2015 LS	0.667	0.619	0.500	0.417	0.595	0.524	0.561	NA	NA	NA	NA	NA
2015 M2	0.617	0.621	0.188	0.500	0.611	0.500	0.512	0.643	NA	NA	NA	NA
2015 NE	0.545	0.394	0.625	0.333	0.606	0.545	0.485	0.576	0.455	NA	NA	NA
$\begin{aligned} & 2015 \\ & \text { RP1 } \\ & \hline \end{aligned}$	0.667	0.578	0.375	0.417	0.667	0.511	0.512	0.595	0.578	0.576	NA	NA
$\begin{aligned} & 2015 \\ & \text { RP2 } \end{aligned}$	0.638	0.593	0.375	0.417	0.722	0.600	0.463	0.619	0.556	0.455	0.333	NA

	$\begin{aligned} & 2016 \\ & \text { CPB } \\ & \hline \end{aligned}$	$\begin{aligned} & 2016 \\ & \text { CPM } \\ & \hline \end{aligned}$	$\begin{aligned} & 2016 \\ & \text { CPR } \end{aligned}$	$\begin{aligned} & 2016 \\ & \text { CPS } \end{aligned}$	$\begin{aligned} & 2016 \\ & \text { LB } \end{aligned}$	$\begin{aligned} & 2016 \\ & \text { LM } \\ & \hline \end{aligned}$	$\begin{aligned} & 2016 \\ & \text { LO } \\ & \hline \end{aligned}$	$\begin{aligned} & 2016 \\ & \text { LS } \end{aligned}$	$\begin{aligned} & 2016 \\ & \text { M2 } \\ & \hline \end{aligned}$	$\begin{aligned} & 2016 \\ & \mathrm{NE} \\ & \hline \end{aligned}$	$\begin{aligned} & 2016 \\ & \text { RP1 } \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 2016 \\ & \text { RP2 } \end{aligned}$
$\begin{aligned} & 2016 \\ & \text { CPB } \\ & \hline \end{aligned}$	NA											
$\begin{aligned} & 2016 \\ & \text { CPM } \\ & \hline \end{aligned}$	0.538	NA										
$\begin{aligned} & 2016 \\ & \text { CPR } \end{aligned}$	0.583	0.625	NA									
$\begin{aligned} & 2016 \\ & \text { CPS } \\ & \hline \end{aligned}$	0.550	0.750	0.625	NA								
2016 LB	0.611	0.667	0.875	0.778	NA							

2016 LM	0.660	0.660	0.625	0.775	0.611	NA						
2016 LO	0.588	0.549	0.625	0.675	0.528	0.617	NA	NA	NA	NA	NA	NA
2016 LS	0.568	0.523	0.417	0.700	0.611	0.591	0.568	NA	NA	NA	NA	NA
2016 M2	0.574	0.500	0.542	0.575	0.444	0.447	0.490	0.386	NA	NA	NA	NA
2016 NE	0.633	0.577	0.625	0.650	0.583	0.532	0.588	0.477	0.517	NA	NA	NA
$\begin{aligned} & 2016 \\ & \text { RP1 } \\ & \hline \end{aligned}$	0.557	0.558	0.708	0.625	0.417	0.574	0.471	0.500	0.452	0.517	NA	NA
$\begin{aligned} & \hline 2016 \\ & \text { RP2 } \end{aligned}$	0.607	0.635	0.542	0.550	0.500	0.511	0.490	0.500	0.459	0.567	0.475	NA

Pairwise nestedness (β sne) of plants

	2011 CPB	2011 CPM	2011 CPR	2011 CPS	2011 LM	2011 LO	2011 M2	2011 RP1	RP2 RP2
2011 CPB	NA								
2011 CPM	0.000	NA							
2011 CPR	0.105	0.144	NA						
2011 CPS	0.028	0.029	0.148	NA	NA	NA	NA	NA	NA
2011 LM	0.048	0.060	0.119	0.014	NA	NA	NA	NA	NA
2011 LO	0.038	0.041	0.099	0.009	0.009	NA	NA	NA	NA
2011 M2	0.018	0.017	0.114	0.040	0.085	0.065	NA	NA	NA
2011 RP1	0.059	0.067	0.069	0.033	0.017	0.034	0.086	NA	NA
2011 RP2	0.063	0.063	0.084	0.033	0.018	0.036	0.086	0.000	NA

	2012 CPB	2012 CPM	2012 CPR	2012 CPS	2012 LM	2012 LO	2012 LS	2012 M2	2012 RP1	2012 RP2
2012 CPB	NA									
2012 CPM	0.142	NA								
2012 CPR	0.114	0.306	NA							
2012 CPS	0.044	0.159	0.112	NA						
2012 LM	0.021	0.174	0.158	0.023	NA	NA	NA	NA	NA	NA
2012 LO	0.009	0.141	0.123	0.039	0.011	NA	NA	NA	NA	NA
2012 LS	0.014	0.143	0.144	0.025	0.000	0.014	NA	NA	NA	NA
2012 M2	0.042	0.076	0.157	0.085	0.059	0.049	0.052	NA	NA	NA
2012 RP1	0.005	0.094	0.172	0.056	0.033	0.022	0.038	0.021	NA	NA
2012 RP2	0.083	0.296	0.012	0.072	0.145	0.182	0.169	0.171	0.236	NA

	$\begin{aligned} & 2013 \\ & \text { CPB } \end{aligned}$	$\begin{aligned} & 2013 \\ & \text { CPM } \\ & \hline \end{aligned}$	$\begin{aligned} & 2013 \\ & \text { CPR } \\ & \hline \end{aligned}$	$\begin{aligned} & 2013 \\ & \text { CPS } \\ & \hline \end{aligned}$	$\begin{aligned} & 2013 \\ & \text { LB } \\ & \hline \end{aligned}$	$\begin{aligned} & 2013 \\ & \text { LM } \\ & \hline \end{aligned}$	$\begin{aligned} & 2013 \\ & \text { LO } \\ & \hline \end{aligned}$	$\begin{aligned} & 2013 \\ & \text { LS } \\ & \hline \end{aligned}$	$\begin{aligned} & 2013 \\ & \text { M2 } \\ & \hline \end{aligned}$	$\begin{aligned} & 2013 \\ & \mathrm{NE} \\ & \hline \end{aligned}$	$\begin{aligned} & 2013 \\ & \text { RP1 } \\ & \hline \end{aligned}$	$\begin{aligned} & 2013 \\ & \text { RP2 } \end{aligned}$
$\begin{aligned} & 2013 \\ & \text { CPB } \\ & \hline \end{aligned}$	NA											
$\begin{aligned} & \hline 2013 \\ & \text { CPM } \\ & \hline \end{aligned}$	0.096	NA										
$\begin{aligned} & 2013 \\ & \text { CPR } \\ & \hline \end{aligned}$	0.140	0.369	NA									
$\begin{aligned} & 2013 \\ & \text { CPS } \end{aligned}$	0.099	0.239	0.090	NA								
$\begin{aligned} & \hline 2013 \\ & \text { LB } \\ & \hline \end{aligned}$	0.099	0.224	0.034	0.000	NA							

$\begin{aligned} & 2013 \\ & \text { LM } \\ & \hline \end{aligned}$	0.007	0.127	0.225	0.117	0.126	NA						
$\begin{aligned} & 2013 \\ & \text { LO } \\ & \hline \end{aligned}$	0.010	0.068	0.223	0.152	0.071	0.025	NA	NA	NA	NA	NA	NA
$\begin{aligned} & 2013 \\ & \text { LS } \\ & \hline \end{aligned}$	0.000	0.100	0.233	0.126	0.090	0.009	0.018	NA	NA	NA	NA	NA
$\begin{aligned} & 2013 \\ & \mathrm{M} 2 \\ & \hline \end{aligned}$	0.000	0.105	0.186	0.108	0.108	0.009	0.016	0.000	NA	NA	NA	NA
$\begin{aligned} & 2013 \\ & \mathrm{NE} \\ & \hline \end{aligned}$	0.006	0.123	0.248	0.126	0.067	0.000	0.030	0.009	0.010	NA	NA	NA
$\begin{aligned} & 2013 \\ & \text { RP1 } \end{aligned}$	0.093	0.280	0.069	0.009	0.006	0.156	0.243	0.187	0.145	0.166	NA	NA
$\begin{aligned} & 2013 \\ & R P 2 \\ & \hline \end{aligned}$	0.044	0.163	0.170	0.047	0.017	0.055	0.094	0.079	0.063	0.066	0.093	NA

	$\begin{aligned} & 2014 \\ & \text { CPB } \end{aligned}$	$\begin{aligned} & 2014 \\ & \text { CPM } \end{aligned}$	$\begin{aligned} & 2014 \\ & \text { CPR } \end{aligned}$	$\begin{aligned} & 2014 \\ & \text { CPS } \end{aligned}$	$\begin{aligned} & 2014 \\ & \text { LB } \end{aligned}$	$\begin{aligned} & 2014 \\ & \text { LM } \end{aligned}$	$\begin{aligned} & 2014 \\ & \text { LO } \end{aligned}$	$\begin{aligned} & 2014 \\ & \text { LS } \end{aligned}$	$\begin{aligned} & 2014 \\ & \text { M2 } \end{aligned}$	$\begin{aligned} & 2014 \\ & \text { NE } \end{aligned}$	$\begin{aligned} & 2014 \\ & \text { RP1 } \end{aligned}$	$\begin{aligned} & 2014 \\ & \text { RP2 } \\ & \hline \end{aligned}$
$\begin{aligned} & 2014 \\ & \text { CPB } \end{aligned}$	NA											
$\begin{aligned} & 2014 \\ & \text { CPM } \\ & \hline \end{aligned}$	0.000	NA										
$\begin{aligned} & 2014 \\ & \text { CPR } \end{aligned}$	0.097	0.140	NA									
$\begin{aligned} & 2014 \\ & \text { CPS } \end{aligned}$	0.085	0.085	0.029	NA								
$\begin{aligned} & 2014 \\ & \text { LB } \end{aligned}$	0.103	0.223	0.029	0.030	NA							
$\begin{aligned} & 2014 \\ & \text { LM } \\ & \hline \end{aligned}$	0.039	0.053	0.243	0.132	0.253	NA						
$\begin{aligned} & 2014 \\ & \text { LO } \\ & \hline \end{aligned}$	0.029	0.035	0.177	0.145	0.183	0.007	NA	NA	NA	NA	NA	NA
$\begin{aligned} & 2014 \\ & \text { LS } \\ & \hline \end{aligned}$	0.000	0.000	0.129	0.116	0.137	0.041	0.053	NA	NA	NA	NA	NA
$\begin{aligned} & 2014 \\ & \mathrm{M} 2 \\ & \hline \end{aligned}$	0.035	0.035	0.092	0.060	0.115	0.094	0.067	0.031	NA	NA	NA	NA
$\begin{aligned} & 2014 \\ & \mathrm{NE} \\ & \hline \end{aligned}$	0.054	0.061	0.078	0.053	0.074	0.105	0.102	0.067	0.027	NA	NA	NA
$\begin{aligned} & 2014 \\ & \text { RP1 } \\ & \hline \end{aligned}$	0.000	0.000	0.140	0.093	0.154	0.043	0.039	0.000	0.031	0.064	NA	NA
$\begin{aligned} & 2014 \\ & R P 2 \\ & \hline \end{aligned}$	0.051	0.054	0.046	0.045	0.086	0.081	0.113	0.067	0.021	0.000	0.061	NA

	$\begin{aligned} & 2015 \\ & \text { CPB } \end{aligned}$	$\begin{aligned} & 2015 \\ & \text { CPM } \end{aligned}$	$\begin{aligned} & 2015 \\ & \text { CPR } \end{aligned}$	$\begin{aligned} & 2015 \\ & \text { CPS } \end{aligned}$	$\begin{aligned} & 2015 \\ & \text { LB } \\ & \hline \end{aligned}$	$\begin{aligned} & 2015 \\ & \text { LM } \\ & \hline \end{aligned}$	$\begin{aligned} & 2015 \\ & \text { LO } \end{aligned}$	$\begin{aligned} & 2015 \\ & \text { LS } \end{aligned}$	$\begin{aligned} & 2015 \\ & \mathrm{M} 2 \\ & \hline \end{aligned}$	$\begin{aligned} & 2015 \\ & \mathrm{NE} \\ & \hline \end{aligned}$	$\begin{aligned} & 2015 \\ & \text { RP1 } \end{aligned}$	$\begin{aligned} & 2015 \\ & \text { RP2 } \\ & \hline \end{aligned}$
$\begin{aligned} & 2015 \\ & \text { CPB } \end{aligned}$	NA											
$\begin{aligned} & 2015 \\ & \text { CPM } \\ & \hline \end{aligned}$	0.010	NA										
$\begin{aligned} & 2015 \\ & \text { CPR } \\ & \hline \end{aligned}$	0.000	0.362	NA									
$\begin{aligned} & 2015 \\ & \text { CPS } \end{aligned}$	0.206	0.300	0.214	NA								
$\begin{aligned} & 2015 \\ & \text { LB } \end{aligned}$	0.037	0.072	0.163	0.124	NA							
$\begin{aligned} & 2015 \\ & \text { LM } \\ & \hline \end{aligned}$	0.000	0.013	0.357	0.206	0.049	NA						
$\begin{aligned} & 2015 \\ & \text { LO } \\ & \hline \end{aligned}$	0.028	0.030	0.568	0.292	0.077	0.055	NA	NA	NA	NA	NA	NA
$\begin{aligned} & 2015 \\ & \text { LS } \end{aligned}$	0.022	0.025	0.375	0.284	0.060	0.045	0.011	NA	NA	NA	NA	NA
$\begin{aligned} & 2015 \\ & \text { M2 } \\ & \hline \end{aligned}$	0.042	0.038	0.188	0.379	0.091	0.051	0.009	0.000	NA	NA	NA	NA
$\begin{aligned} & 2015 \\ & \mathrm{NE} \\ & \hline \end{aligned}$	0.032	0.058	0.170	0.248	0.016	0.041	0.099	0.088	0.109	NA	NA	NA
$\begin{aligned} & 2015 \\ & \mathrm{RP} 1 \\ & \hline \end{aligned}$	0.080	0.123	0.155	0.104	0.016	0.080	0.169	0.201	0.173	0.074	NA	NA
$\begin{aligned} & 2015 \\ & \text { RP2 } \\ & \hline \end{aligned}$	0.060	0.090	0.155	0.156	0.013	0.090	0.169	0.201	0.158	0.080	0.000	NA

	$\begin{aligned} & 2016 \\ & \text { CPB } \\ & \hline \end{aligned}$	$\begin{aligned} & 2016 \\ & \text { CPM } \\ & \hline \end{aligned}$	$\begin{aligned} & 2016 \\ & \text { CPR } \end{aligned}$	$\begin{aligned} & 2016 \\ & \text { CPS } \end{aligned}$	$\begin{aligned} & 2016 \\ & \text { LB } \\ & \hline \end{aligned}$	$\begin{aligned} & 2016 \\ & \text { LM } \\ & \hline \end{aligned}$	$\begin{aligned} & 2016 \\ & \text { LO } \\ & \hline \end{aligned}$	$\begin{aligned} & 2016 \\ & \text { LS } \end{aligned}$	$\begin{aligned} & 2016 \\ & \text { M2 } \\ & \hline \end{aligned}$	$\begin{aligned} & 2016 \\ & \mathrm{NE} \\ & \hline \end{aligned}$	$\begin{aligned} & 2016 \\ & \text { RP1 } \\ & \hline \end{aligned}$	$\begin{aligned} & 2016 \\ & \text { RP2 } \\ & \hline \end{aligned}$
$\begin{aligned} & 2016 \\ & \text { CPB } \end{aligned}$	NA											
$\begin{aligned} & 2016 \\ & \text { CPM } \\ & \hline \end{aligned}$	0.041	NA										

$\begin{aligned} & 2016 \\ & \text { CPR } \end{aligned}$	0.244	0.410	NA									
$\begin{aligned} & 2016 \\ & \text { CPS } \end{aligned}$	0.213	0.215	0.205	NA								
$\begin{aligned} & 2016 \\ & \text { LB } \end{aligned}$	0.240	0.174	0.019	0.013	NA							
$\begin{aligned} & 2016 \\ & \text { LM } \\ & \hline \end{aligned}$	0.119	0.103	0.331	0.128	0.114	NA						
$\begin{aligned} & 2016 \\ & \text { LO } \\ & \hline \end{aligned}$	0.070	0.043	0.326	0.179	0.094	0.037	NA	NA	NA	NA	NA	NA
$\begin{aligned} & 2016 \\ & \text { LS } \\ & \hline \end{aligned}$	0.068	0.041	0.333	0.188	0.114	0.053	0.010	NA	NA	NA	NA	NA
$\begin{aligned} & 2016 \\ & \mathrm{M} 2 \\ & \hline \end{aligned}$	0.126	0.103	0.258	0.119	0.101	0.000	0.043	0.055	NA	NA	NA	NA
$\begin{aligned} & 2016 \\ & \mathrm{NE} \\ & \hline \end{aligned}$	0.113	0.090	0.295	0.119	0.051	0.000	0.041	0.048	0.000	NA	NA	NA
$\begin{aligned} & 2016 \\ & \text { RP1 } \\ & \hline \end{aligned}$	0.118	0.131	0.167	0.029	0.018	0.074	0.163	0.158	0.085	0.080	NA	NA
$\begin{aligned} & 2016 \\ & \text { RP2 } \\ & \hline \end{aligned}$	0.160	0.192	0.172	0.011	0.012	0.085	0.197	0.187	0.108	0.131	0.028	NA

Pairwise nestedness (β sne) of pollinators

	2011 CPB	2011 CPM	2011 CPR	2011 CPS	2011 LM	2011 LO	2011 M2	2011 RP1	2011 RP2
2011 CPB	NA								
2011 CPM	0.038	NA							
2011 CPR	0.074	0.165	NA						
2011 CPS	0.041	0.004	0.171	NA	NA	NA	NA	NA	NA
2011 LM	0.142	0.072	0.190	0.069	NA	NA	NA	NA	NA
2011 LO	0.160	0.107	0.299	0.124	0.021	NA	NA	NA	NA
2011 M2	0.129	0.085	0.206	0.072	0.006	0.012	NA	NA	NA
2011 RP1	0.023	0.013	0.115	0.019	0.097	0.128	0.110	NA	NA
2011 RP2	0.053	0.013	0.181	0.009	0.082	0.112	0.073	0.031	NA

	2012 CPB	2012 CPM	2012 CPR	2012 CPS	2012 LM	2012 LO	2012 LS	2012 M2	2012 RP1	2012 RP2
2012 CPB	NA									
2012 CPM	0.048	NA								
2012 CPR	0.327	0.268	NA							
2012 CPS	0.149	0.111	0.095	NA						
2012 LM	0.081	0.027	0.228	0.064	NA	NA	NA	NA	NA	NA
2012 LO	0.017	0.022	0.291	0.109	0.062	NA	NA	NA	NA	NA
2012 LS	0.105	0.043	0.234	0.064	0.013	0.067	NA	NA	NA	NA
2012 M2	0.008	0.062	0.335	0.150	0.096	0.023	0.107	NA	NA	NA
2012 RP1	0.107	0.068	0.191	0.028	0.038	0.084	0.035	0.137	NA	NA
2012 RP2	0.148	0.112	0.104	0.009	0.068	0.124	0.062	0.174	0.022	NA

| | 2013 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| CPB | |

$\begin{aligned} & 2013 \\ & \text { CPR } \end{aligned}$	0.128	0.234	NA									
$\begin{aligned} & 2013 \\ & \text { CPS } \\ & \hline \end{aligned}$	0.027	0.092	0.128	NA								
$\begin{aligned} & 2013 \\ & \text { LB } \\ & \hline \end{aligned}$	0.072	0.122	0.049	0.051	NA							
$\begin{aligned} & 2013 \\ & \text { LM } \\ & \hline \end{aligned}$	0.115	0.044	0.286	0.146	0.220	NA						
$\begin{aligned} & 2013 \\ & \text { LO } \\ & \hline \end{aligned}$	0.089	0.024	0.303	0.122	0.199	0.020	NA	NA	NA	NA	NA	NA
$\begin{aligned} & 2013 \\ & \text { LS } \\ & \hline \end{aligned}$	0.044	0.016	0.209	0.079	0.135	0.060	0.046	NA	NA	NA	NA	NA
$\begin{aligned} & 2013 \\ & \text { M2 } \\ & \hline \end{aligned}$	0.093	0.038	0.269	0.124	0.171	0.005	0.014	0.052	NA	NA	NA	NA
$\begin{aligned} & 2013 \\ & \mathrm{NE} \\ & \hline \end{aligned}$	0.049	0.013	0.242	0.092	0.133	0.060	0.042	0.003	0.060	NA	NA	NA
$\begin{aligned} & 2013 \\ & \text { RP1 } \\ & \hline \end{aligned}$	0.042	0.012	0.212	0.077	0.144	0.058	0.043	0.003	0.055	0.000	NA	NA
$\begin{aligned} & 2013 \\ & \text { RP2 } \\ & \hline \end{aligned}$	0.006	0.069	0.122	0.020	0.063	0.121	0.116	0.057	0.121	0.056	0.057	NA

	$\begin{aligned} & 2014 \\ & \text { CPB } \end{aligned}$	$\begin{aligned} & 2014 \\ & \text { CPM } \\ & \hline \end{aligned}$	$\begin{aligned} & 2014 \\ & \text { CPR } \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 2014 \\ & \text { CPS } \\ & \hline \end{aligned}$	$\begin{aligned} & 2014 \\ & \text { LB } \\ & \hline \end{aligned}$	$\begin{aligned} & 2014 \\ & \text { LM } \\ & \hline \end{aligned}$	$\begin{aligned} & 2014 \\ & \text { LO } \\ & \hline \end{aligned}$	$\begin{aligned} & 2014 \\ & \text { LS } \\ & \hline \end{aligned}$	$\begin{aligned} & 2014 \\ & \text { M2 } \\ & \hline \end{aligned}$	$\begin{aligned} & 2014 \\ & \mathrm{NE} \\ & \hline \end{aligned}$	$\begin{aligned} & 2014 \\ & \text { RP1 } \end{aligned}$	$\begin{aligned} & 2014 \\ & R P 2 \\ & \hline \end{aligned}$
$\begin{aligned} & 2014 \\ & \text { CPB } \\ & \hline \end{aligned}$	NA											
$\begin{aligned} & 2014 \\ & \text { CPM } \end{aligned}$	0.077	NA										
$\begin{aligned} & 2014 \\ & \text { CPR } \\ & \hline \end{aligned}$	0.037	0.131	NA									
$\begin{aligned} & \hline 2014 \\ & \text { CPS } \end{aligned}$	0.146	0.036	0.194	NA								
$\begin{aligned} & 2014 \\ & \text { LB } \end{aligned}$	0.057	0.122	0.006	0.168	NA							
$\begin{aligned} & 2014 \\ & \text { LM } \\ & \hline \end{aligned}$	0.221	0.155	0.307	0.081	0.291	NA						
$\begin{aligned} & 2014 \\ & \text { LO } \\ & \hline \end{aligned}$	0.143	0.061	0.184	0.020	0.219	0.066	NA	NA	NA	NA	NA	NA
$\begin{aligned} & 2014 \\ & \text { LS } \\ & \hline \end{aligned}$	0.176	0.082	0.180	0.035	0.250	0.047	0.015	NA	NA	NA	NA	NA
$\begin{aligned} & 2014 \\ & \text { M2 } \\ & \hline \end{aligned}$	0.105	0.028	0.157	0.011	0.188	0.097	0.037	0.050	NA	NA	NA	NA
$\begin{aligned} & 2014 \\ & \mathrm{NE} \\ & \hline \end{aligned}$	0.237	0.119	0.224	0.082	0.263	0.008	0.059	0.038	0.115	NA	NA	NA
$\begin{aligned} & 2014 \\ & \text { RP1 } \\ & \hline \end{aligned}$	0.118	0.035	0.135	0.005	0.149	0.089	0.029	0.040	0.006	0.102	NA	NA
$\begin{aligned} & 2014 \\ & \text { RP2 } \\ & \hline \end{aligned}$	0.120	0.041	0.143	0.005	0.173	0.080	0.016	0.033	0.019	0.082	0.014	NA

	2015 CPB	2015 CPM	2015 CPR	2015 CPS	2015 LB	2015 LM	2015 LO	2015 LS	2015 M2	2015 NE	2015 RP1	2015 RP2
2015 CPB	NA											
2015 CPM	0.053	NA										
2015 CPR	0.246	0.319	NA									
2015 CPS	0.395	0.493	0.071	NA								
2015 LB	0.029	0.015	0.339	0.371	NA							
2015 LM	0.009	0.030	0.322	0.409	0.012	NA						
2015 LO	0.035	0.092	0.302	0.410	0.060	0.043	NA	NA	NA	NA	NA	NA
2015 LS	0.019	0.061	0.224	0.324	0.051	0.041	0.005	NA	NA	NA	NA	NA
2015 M2	0.040	0.000	0.461	0.329	0.014	0.037	0.084	0.057	NA	NA	NA	NA
2015 NE	0.080	0.167	0.130	0.311	0.095	0.093	0.056	0.051	0.150	NA	NA	NA
2015 RP1	0.007	0.053	0.297	0.338	0.030	0.026	0.023	0.014	0.053	0.065	NA	NA
2015 RP2	0.025	0.015	0.339	0.371	0.000	0.015	0.073	0.048	0.016	0.132	0.061	NA

	2016 CPB	2016 CPM	2016 CPR	2016 CPS	2016 LB	2016 LM	2016 LO	2016 LS	2016 M2	2016 NE	2016 RP1	2016 RP2
2016 CPB	NA											
2016 CPM	0.037	NA										
2016 CPR	0.181	0.138	NA									
2016 CPS	0.094	0.033	0.094	NA								
2016 LB	0.100	0.061	0.025	0.012	NA							
2016 LM	0.044	0.017	0.121	0.018	0.052	NA						
2016 LO	0.037	0.004	0.135	0.039	0.081	0.016	NA	NA	NA	NA	NA	NA
2016 LS	0.070	0.040	0.172	0.014	0.039	0.013	0.032	NA	NA	NA	NA	NA
2016 M2	0.007	0.048	0.205	0.095	0.152	0.080	0.054	0.109	NA	NA	NA	NA
2016 NE	0.003	0.030	0.161	0.070	0.104	0.057	0.033	0.080	0.012	NA	NA	NA
2016 RP1	0.004	0.039	0.129	0.081	0.155	0.059	0.052	0.085	0.004	0.008	NA	NA
2016 $R P 2$	0.000	0.029	0.200	0.094	0.129	0.063	0.046	0.081	0.009	0.004	0.004	NA

Pairwise ratio of nestedness to Sørensen dissimilarity (ßratio) of plants

	2011 CPB	2011 CPM	2011 CPR	2011 CPS	2011 LM	2011 LO	2011 M2	2011 RP1	2011 RP2
2011 CPB	NA								
2011 CPM	0.000	NA							
2011 CPR	0.145	0.233	NA						
2011 CPS	0.051	0.057	0.308	NA	NA	NA	NA	NA	NA
2011 LM	0.097	0.156	0.238	0.025	NA	NA	NA	NA	NA
2011 LO	0.076	0.085	0.159	0.019	0.019	NA	NA	NA	NA
$2011 \mathrm{M2}$	0.059	0.046	0.156	0.073	0.247	0.158	NA	NA	NA
2011 RP1	0.102	0.130	0.107	0.065	0.034	0.099	0.172	NA	NA
2011 RP2	0.115	0.115	0.150	0.065	0.039	0.114	0.172	0.000	NA

	2012 CPB	2012 CPM	2012 CPR	2012 CPS	2012 LM	2012 LO	2012 LS	2012 M2	2012 RP1	2012 RP2
2012 CPB	NA									
2012 CPM	0.416	NA								
2012 CPR	0.162	0.510	NA							
2012 CPS	0.077	0.284	0.214	NA						
2012 LM	0.051	0.493	0.309	0.036	NA	NA	NA	NA	NA	NA
2012 LO	0.018	0.338	0.188	0.074	0.031	NA	NA	NA	NA	NA
2012 LS	0.022	0.308	0.259	0.043	0.000	0.075	NA	NA	NA	NA
2012 M2	0.111	0.176	0.229	0.163	0.130	0.115	0.100	NA	NA	NA
2012 RP1	0.007	0.183	0.294	0.104	0.084	0.060	0.132	0.037	NA	NA
2012 $R P 2$	0.111	0.516	0.020	0.115	0.303	0.450	0.432	0.278	0.680	NA

	$\begin{aligned} & 2013 \\ & \text { CPB } \\ & \hline \end{aligned}$	$\begin{aligned} & 2013 \\ & \text { CPM } \\ & \hline \end{aligned}$	$\begin{aligned} & 2013 \\ & \text { CPR } \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 2013 \\ & \text { CPS } \end{aligned}$	$\begin{aligned} & 2013 \\ & \text { LB } \\ & \hline \end{aligned}$	$\begin{aligned} & 2013 \\ & \text { LM } \\ & \hline \end{aligned}$	$\begin{aligned} & 2013 \\ & \text { LO } \\ & \hline \end{aligned}$	$\begin{aligned} & 2013 \\ & \text { LS } \\ & \hline \end{aligned}$	$\begin{aligned} & 2013 \\ & \text { M2 } \\ & \hline \end{aligned}$	$\begin{aligned} & 2013 \\ & \mathrm{NE} \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 2013 \\ & \mathrm{RP} 1 \\ & \hline \end{aligned}$	$\begin{aligned} & 2013 \\ & R P 2 \\ & \hline \end{aligned}$
$\begin{aligned} & 2013 \\ & \text { CPB } \\ & \hline \end{aligned}$	NA											
$\begin{aligned} & 2013 \\ & \text { CPM } \\ & \hline \end{aligned}$	0.219	NA										
$\begin{aligned} & 2013 \\ & \text { CPR } \end{aligned}$	0.183	0.596	NA									
$\begin{aligned} & 2013 \\ & \text { CPS } \\ & \hline \end{aligned}$	0.159	0.439	0.152	NA								
2013 LB	0.159	0.391	0.040	0.000	NA							
2013 LM	0.014	0.382	0.375	0.231	0.266	NA						
2013 LO	0.016	0.135	0.338	0.304	0.093	0.057	NA	NA	NA	NA	NA	NA
2013 LS	0.000	0.242	0.383	0.243	0.137	0.020	0.051	NA	NA	NA	NA	NA
2013 M2	0.000	0.268	0.271	0.184	0.184	0.026	0.036	0.000	NA	NA	NA	NA
2013 NE	0.011	0.343	0.442	0.266	0.093	0.000	0.092	0.026	0.034	NA	NA	NA
$\begin{aligned} & 2013 \\ & \mathrm{RP} 1 \\ & \hline \end{aligned}$	0.136	0.552	0.109	0.015	0.008	0.364	0.842	0.506	0.285	0.421	NA	NA
$\begin{aligned} & 2013 \\ & \text { RP2 } \\ & \hline \end{aligned}$	0.067	0.313	0.313	0.082	0.020	0.114	0.226	0.217	0.129	0.170	0.290	NA

	2014 CPB	2014 CPM	2014 CPR	2014 CPS	2014 LB	2014 LM	2014 LO	2014 LS	2014 M2	2014 NE	2014 RP1	2014 RP2
2014 CPB	NA											
2014 CPM	0.000	NA										
CPR CP14	0.150	0.286	NA									
2014 CPS	0.145	0.145	0.067	NA								
2014 LB	0.137	0.487	0.042	0.038	NA							
2014 LM	0.074	0.154	0.618	0.225	0.462	NA						
2014 LO	0.054	0.077	0.336	0.285	0.280	0.013	NA	NA	NA	NA	NA	NA
2014 LS	0.000	0.000	0.244	0.267	0.206	0.083	0.290	NA	NA	NA	NA	NA
2014 M2	0.097	0.097	0.169	0.107	0.178	0.273	0.147	0.073	NA	NA	NA	NA
2014 NE	0.123	0.165	0.164	0.127	0.102	0.234	0.249	0.226	0.091	NA	NA	NA
2014 $R P 1$	0.000	0.000	0.286	0.169	0.247	0.094	0.099	0.000	0.073	0.192	NA	NA
2014 $R P 2$	0.107	0.123	0.066	0.091	0.128	0.139	0.330	0.226	0.048	0.000	0.165	NA

	2015 CPB	2015 CPM	2015 CPR	2015 CPS	2015 LB	2015 LM	2015 LO	2015 LS	2015 M2	2015 NE	2015 RP1	2015 RP2
2015 CPB	NA											
2015 CPM	0.020	NA										
2015 CPR	0.000	0.420	NA									
2015 CPS	0.292	0.500	0.300	NA								
2015 LB	0.051	0.132	0.179	0.171	NA							
2015 LM	0.000	0.033	0.417	0.292	0.078	NA						
2015 LO	0.037	0.047	0.694	0.422	0.108	0.117	NA	NA	NA	NA	NA	NA
2015 LS	0.031	0.043	0.429	0.415	0.081	0.097	0.031	NA	NA	NA	NA	NA
2015 M2	0.083	0.107	0.200	0.655	0.147	0.133	0.020	0.000	NA	NA	NA	NA
2015 NE	0.057	0.148	0.185	0.453	0.023	0.098	0.206	0.188	0.314	NA	NA	NA
2015 RP1	0.132	0.259	0.171	0.147	0.023	0.132	0.324	0.533	0.370	0.202	NA	NA
2015 RP2	0.085	0.145	0.171	0.280	0.017	0.161	0.324	0.533	0.309	0.255	0.000	NA

	$\begin{aligned} & 2016 \\ & \text { CPB } \\ & \hline \end{aligned}$	$\begin{aligned} & 2016 \\ & \text { CPM } \\ & \hline \end{aligned}$	$\begin{aligned} & 2016 \\ & \text { CPR } \\ & \hline \end{aligned}$	$\begin{aligned} & 2016 \\ & \text { CPS } \\ & \hline \end{aligned}$	$\begin{aligned} & 2016 \\ & \text { LB } \\ & \hline \end{aligned}$	$\begin{aligned} & 2016 \\ & \text { LM } \\ & \hline \end{aligned}$	$\begin{aligned} & 2016 \\ & \text { LO } \\ & \hline \end{aligned}$	$\begin{aligned} & 2016 \\ & \text { LS } \\ & \hline \end{aligned}$	$\begin{aligned} & 2016 \\ & \text { M2 } \\ & \hline \end{aligned}$	$\begin{aligned} & 2016 \\ & \mathrm{NE} \\ & \hline \end{aligned}$	$\begin{aligned} & 2016 \\ & \text { RP1 } \\ & \hline \end{aligned}$	$\begin{aligned} & 2016 \\ & \text { RP2 } \end{aligned}$
$\begin{aligned} & 2016 \\ & \text { CPB } \\ & \hline \end{aligned}$	NA											
$\begin{aligned} & 2016 \\ & \text { CPM } \\ & \hline \end{aligned}$	0.122	NA										
$\begin{aligned} & 2016 \\ & \text { CPR } \end{aligned}$	0.295	0.621	NA									
$\begin{aligned} & 2016 \\ & \text { CPS } \\ & \hline \end{aligned}$	0.332	0.392	0.450	NA								
2016 LB	0.364	0.248	0.020	0.018	NA							
2016 LM	0.236	0.285	0.570	0.278	0.178	NA						
2016 LO	0.126	0.086	0.495	0.385	0.120	0.088	NA	NA	NA	NA	NA	NA
2016 LS	0.132	0.103	0.500	0.397	0.153	0.154	0.039	NA	NA	NA	NA	NA
2016 M2	0.262	0.285	0.382	0.238	0.149	0.000	0.129	0.177	NA	NA	NA	NA
2016 NE	0.212	0.202	0.469	0.238	0.060	0.000	0.113	0.119	0.000	NA	NA	NA
$\begin{aligned} & 2016 \\ & \text { RP1 } \\ & \hline \end{aligned}$	0.159	0.207	0.250	0.048	0.021	0.151	0.566	0.432	0.203	0.175	NA	NA
$\begin{aligned} & 2016 \\ & \text { RP2 } \end{aligned}$	0.227	0.345	0.292	0.021	0.014	0.145	0.591	0.451	0.229	0.366	0.071	NA

Pairwise ratio of nestedness to Sørensen dissimilarity (β ratio) of pollinators

	2011 CPB	2011 CPM	2011 CPR	2011 CPS	2011 LM	2011 LO	2011 M2	2011 RP1	RP2
2011 CPB	NA								
2011 CPM	0.078	NA							
2011 CPR	0.118	0.363	NA						
R CPS	0.081	0.008	0.371	NA	NA	NA	NA	NA	NA
2011 LM	0.307	0.127	0.286	0.124	NA	NA	NA	NA	NA
2011 LO	0.321	0.213	0.558	0.325	0.049	NA	NA	NA	NA
$2011 \mathrm{M2}$	0.237	0.161	0.315	0.127	0.013	0.024	NA	NA	NA
2011 RP1	0.045	0.025	0.205	0.042	0.190	0.261	0.225	NA	NA
2011 RP2	0.109	0.029	0.385	0.020	0.217	0.296	0.143	0.074	NA

	2012 CPB	2012 CPM	2012 CPR	2012 CPS	2012 LM	2012 LO	2012 LS	2012 M2	2012 RP1	2012 RP2
2012 CPB	NA									
2012 CPM	0.094	NA								
2012 CPR	0.450	0.379	NA							
2012 CPS	0.229	0.189	0.122	NA						
2012 LM	0.162	0.052	0.322	0.095	NA	NA	NA	NA	NA	NA
2012 LO	0.031	0.036	0.398	0.157	0.133	NA	NA	NA	NA	NA
2012 LS	0.226	0.093	0.348	0.105	0.029	0.124	NA	NA	NA	NA
2012 M2	0.014	0.127	0.455	0.223	0.198	0.037	0.207	NA	NA	NA
2012 RP1	0.172	0.120	0.285	0.041	0.063	0.131	0.076	0.244	NA	NA
2012 RP2	0.248	0.224	0.132	0.012	0.121	0.209	0.127	0.310	0.038	NA

	2013 CPB	2013 CPM	2013 CPR	2013 CPS	2013 LB	2013 LM	2013 LO	2013 LS	2013 M2	2013 NE	2013 RP1	2013 RP2
2013												
CPB	NA											

$\begin{aligned} & 2013 \\ & \text { CPM } \end{aligned}$	0.117	NA										
$\begin{aligned} & 2013 \\ & \text { CPR } \\ & \hline \end{aligned}$	0.184	0.366	NA									
$\begin{aligned} & \hline 2013 \\ & \text { CPS } \\ & \hline \end{aligned}$	0.046	0.165	0.218	NA								
2013 LB	0.110	0.178	0.073	0.086	NA							
2013 LM	0.224	0.087	0.430	0.259	0.369	NA						
2013 LO	0.173	0.048	0.505	0.220	0.347	0.044	NA	NA	NA	NA	NA	NA
2013 LS	0.088	0.031	0.325	0.149	0.228	0.114	0.106	NA	NA	NA	NA	NA
2013 M2	0.161	0.077	0.399	0.205	0.255	0.012	0.027	0.096	NA	NA	NA	NA
2013 NE	0.100	0.028	0.408	0.193	0.218	0.121	0.096	0.007	0.139	NA	NA	NA
$\begin{aligned} & 2013 \\ & \text { RP1 } \\ & \hline \end{aligned}$	0.076	0.022	0.329	0.137	0.248	0.116	0.100	0.008	0.116	0.000	NA	NA
$\begin{aligned} & 2013 \\ & \text { RP2 } \\ & \hline \end{aligned}$	0.010	0.131	0.177	0.033	0.094	0.228	0.267	0.122	0.242	0.109	0.115	NA

	$\begin{aligned} & 2014 \\ & \text { CPB } \\ & \hline \end{aligned}$	$\begin{aligned} & 2014 \\ & \text { CPM } \\ & \hline \end{aligned}$	$\begin{aligned} & 2014 \\ & \text { CPR } \\ & \hline \end{aligned}$	$\begin{aligned} & 2014 \\ & \text { CPS } \\ & \hline \end{aligned}$	$\begin{aligned} & 2014 \\ & \text { LB } \\ & \hline \end{aligned}$	$\begin{aligned} & 2014 \\ & \text { LM } \\ & \hline \end{aligned}$	$\begin{aligned} & 2014 \\ & \text { LO } \\ & \hline \end{aligned}$	$\begin{aligned} & 2014 \\ & \text { LS } \\ & \hline \end{aligned}$	$\begin{aligned} & 2014 \\ & \text { M2 } \\ & \hline \end{aligned}$	$\begin{aligned} & 2014 \\ & \mathrm{NE} \\ & \hline \end{aligned}$	$\begin{aligned} & 2014 \\ & \text { RP1 } \\ & \hline \end{aligned}$	$\begin{aligned} & 2014 \\ & \text { RP2 } \end{aligned}$
$\begin{aligned} & 2014 \\ & \text { CPB } \end{aligned}$	NA											
$\begin{aligned} & 2014 \\ & \text { CPM } \end{aligned}$	0.134	NA										
$\begin{aligned} & 2014 \\ & \text { CPR } \end{aligned}$	0.053	0.207	NA									
$\begin{aligned} & 2014 \\ & \text { CPS } \\ & \hline \end{aligned}$	0.285	0.064	0.318	NA								
2014 LB	0.092	0.178	0.007	0.244	NA							
2014 LM	0.356	0.328	0.480	0.151	0.426	NA						
2014 LO	0.235	0.110	0.269	0.038	0.335	0.141	NA	NA	NA	NA	NA	NA
2014 LS	0.306	0.157	0.249	0.069	0.390	0.097	0.032	NA	NA	NA	NA	NA
2014 M2	0.174	0.052	0.239	0.023	0.302	0.182	0.087	0.104	NA	NA	NA	NA
2014 NE	0.415	0.213	0.310	0.171	0.377	0.015	0.133	0.081	0.306	NA	NA	NA
$\begin{aligned} & 2014 \\ & \text { RP1 } \end{aligned}$	0.201	0.067	0.188	0.009	0.209	0.166	0.064	0.076	0.015	0.255	NA	NA
$\begin{aligned} & 2014 \\ & \text { RP2 } \\ & \hline \end{aligned}$	0.194	0.071	0.197	0.011	0.249	0.158	0.032	0.071	0.047	0.190	0.043	NA

	$\begin{aligned} & 2015 \\ & \text { CPB } \end{aligned}$	$\begin{aligned} & 2015 \\ & \text { CPM } \end{aligned}$	$\begin{aligned} & 2015 \\ & \text { CPR } \end{aligned}$	$\begin{aligned} & 2015 \\ & \text { CPS } \\ & \hline \end{aligned}$	$\begin{aligned} & 2015 \\ & \text { LB } \end{aligned}$	$\begin{aligned} & 2015 \\ & \text { LM } \end{aligned}$	$\begin{aligned} & 2015 \\ & \text { LO } \\ & \hline \end{aligned}$	$\begin{aligned} & 2015 \\ & \text { LS } \\ & \hline \end{aligned}$	$\begin{aligned} & 2015 \\ & \text { M2 } \end{aligned}$	$\begin{aligned} & 2015 \\ & \text { NE } \end{aligned}$	$\begin{aligned} & 2015 \\ & \text { RP1 } \end{aligned}$	$\begin{aligned} & 2015 \\ & \text { RP2 } \end{aligned}$
$\begin{aligned} & 2015 \\ & \text { CPB } \end{aligned}$	NA											
$\begin{aligned} & 2015 \\ & \text { CPM } \\ & \hline \end{aligned}$	0.099	NA										
$\begin{aligned} & 2015 \\ & \text { CPR } \end{aligned}$	0.330	0.422	NA									
$\begin{aligned} & 2015 \\ & \text { CPS } \\ & \hline \end{aligned}$	0.543	0.663	0.125	NA								
2015 LB	0.049	0.024	0.475	0.471	NA							
2015 LM	0.013	0.047	0.462	0.551	0.016	NA						
2015 LO	0.067	0.166	0.491	0.621	0.097	0.072	NA	NA	NA	NA	NA	NA
2015 LS	0.027	0.090	0.310	0.438	0.078	0.073	0.009	NA	NA	NA	NA	NA
2015 M2	0.061	0.000	0.711	0.397	0.022	0.069	0.141	0.082	NA	NA	NA	NA
2015 NE	0.127	0.297	0.172	0.483	0.136	0.146	0.103	0.081	0.248	NA	NA	NA
$\begin{aligned} & 2015 \\ & \text { RP1 } \\ & \hline \end{aligned}$	0.011	0.084	0.442	0.448	0.043	0.048	0.042	0.023	0.084	0.102	NA	NA
$\begin{aligned} & 2015 \\ & \text { RP2 } \\ & \hline \end{aligned}$	0.038	0.024	0.475	0.471	0.000	0.025	0.137	0.071	0.028	0.225	0.154	NA

	2016 CPB	2016 CPM	2016 CPR	2016 CPS	2016 LB	2016 LM	2016 LO	2016 LS	2016 M2	2016 NE	2016 RP1	2016 RP2
2016												
CPB	NA											

$\begin{aligned} & 2016 \\ & \text { CPM } \\ & \hline \end{aligned}$	0.064	NA										
$\begin{aligned} & 2016 \\ & \text { CPR } \\ & \hline \end{aligned}$	0.237	0.181	NA									
$\begin{aligned} & 2016 \\ & \text { CPS } \end{aligned}$	0.145	0.042	0.130	NA								
2016 LB	0.141	0.083	0.028	0.015	NA							
2016 LM	0.063	0.025	0.163	0.023	0.078	NA						
2016 LO	0.059	0.008	0.178	0.055	0.134	0.025	NA	NA	NA	NA	NA	NA
2016 LS	0.110	0.071	0.292	0.020	0.060	0.022	0.053	NA	NA	NA	NA	NA
2016 M2	0.012	0.087	0.275	0.142	0.254	0.153	0.099	0.220	NA	NA	NA	NA
2016 NE	0.005	0.050	0.205	0.097	0.152	0.097	0.054	0.144	0.022	NA	NA	NA
$\begin{aligned} & 2016 \\ & \text { RP1 } \\ & \hline \end{aligned}$	0.006	0.065	0.154	0.115	0.271	0.093	0.099	0.145	0.010	0.015	NA	NA
$\begin{aligned} & 2016 \\ & \text { RP2 } \\ & \hline \end{aligned}$	0.000	0.044	0.269	0.145	0.205	0.111	0.085	0.139	0.019	0.006	0.009	NA

