Conservation of Greater Sage-Grouse

A SYNTHESIS OF CURRENT TRENDS AND FUTURE MANAGEMENT

Abstract. Recent analyses of Greater Sage-Grouse (*Centrocercus urophasianus*) populations indicate substantial declines in many areas but relatively stable populations in other portions of the species’ range. Sagebrush (*Artemisia* spp.) habitats necessary to support sage-grouse are being burned by large wildfires, invaded by nonnative plants, and developed for energy resources (gas, oil, and wind). Management on public lands, which contain 70% of sagebrush habitats, has changed over the last 30 years from large sagebrush control projects directed at enhancing livestock grazing to a greater emphasis on projects that often attempt to improve or restore ecological integrity. Nevertheless, the mandate to manage public lands to provide traditional consumptive uses as well as recreation and wilderness values is not likely to change in the near future. Consequently, demand and use of resources contained in sagebrush landscapes plus the associated infrastructure to support increasing human populations in the western United States will continue to challenge efforts to conserve Greater Sage-Grouse. The continued widespread distribution of sage-grouse, albeit at very low densities in some areas, coupled with large areas of important sagebrush habitat that are relatively unaffected by the human footprint, suggest that Greater Sage-Grouse populations may be able to persist into the future. We summarize the status of sage-grouse populations and habitats, provide a synthesis of major threats and challenges to conservation of sage-grouse, and suggest a roadmap to attaining conservation goals.

Key Words: *Centrocercus urophasianus*, Greater Sage-Grouse, habitats, management, populations, restoration, sagebrush.

Conservación del Greater Sage-Grouse: Una Síntesis de las Tendencias Actuales y del Manejo Futuro

Resumen. Los análisis recientes de poblaciones de Greater Sage-Grouse (*Centrocercus urophasianus*) indican declinaciones substanciales en muchas áreas, pero con poblaciones relativamente estables en otras porciones de la distribución de esta especie. Los hábitats de artemisa (*Artemisia* spp.)

The Greater Sage-Grouse (Centrocercus urophasianus; hereafter, sage-grouse), now occupies only 56% of its likely distribution prior to European settlement (Schroeder et al. 2004). Range-wide, populations have been declining at an average of 2.0% per year from 1965 to 2003 (Connelly et al. 2004). Concerns about declining sage-grouse populations (Braun 1995, Connelly and Braun 1997, Connelly et al. 2004, Schroeder et al. 2004) coupled with information on habitat loss (Connelly et al. 2004) have prompted multiple petitions to list the species under the Endangered Species Act (Stiver, this volume, chapter 2).

The United States Fish and Wildlife Service determined in 2010 that listing Greater Sage-Grouse under the Endangered Species Act was biologically warranted but was precluded by other higher priorities (United States Department of the Interior 2010). During the four years since the first detailed range-wide analysis of sage-grouse populations and sagebrush habitats (Connelly et al. 2004), negative impacts of energy development and West Nile virus on Greater Sage-Grouse were documented (Naugle et al. 2004, 2005; Holloran et al. 2005; Aldridge and Boyce 2007; Doherty et al. 2008; Walker 2008). Hundreds of thousands of hectares of sagebrush (Artemisia spp.) steppe were also burned by wildfire (Miller et al., this volume, chapter 10; Baker, this volume, chapter 11). Large-scale conversion of sagebrush-dominated landscapes to exotic annual grasslands following these fires further increases the likelihood of future fire (Miller et al., this volume, chapter 10) and decreases any potential for recovery or restoration (Pyke, this volume, chapter 23). Along with these habitat changes, sage-grouse populations in some portions of the species’ range have continued to decline (Garton et al., this volume, chapter 15) despite the collaborative efforts of many local working groups (Stiver, this volume, chapter 2).

We do not expect land uses to decrease, because growing human populations will increase demand for traditional consumptive resources and recreation. Thus, the human footprint (Leu and Hanser, this volume, chapter 13) is likely to continue to influence sagebrush-dominated landscapes (Knick et al., this volume, chapter 12). Nevertheless, the continued widespread distribution of sage-grouse (although some areas have very low densities) and relatively large areas providing key sagebrush habitats suggest that long-term conservation of sage-grouse populations should be possible. This chapter summarizes information on Greater Sage-Grouse populations and habitats presented in this volume, provides a synthesis of major threats and challenges to conservation of Greater Sage-Grouse, and suggests a roadmap to attaining conservation goals.

Palabras Clave: artemisa (sagebrush), Centrocercus urophasianus, gestión, Greater Sage-Grouse, hábitats, poblaciones, restauración.
CURRENT KNOWLEDGE OF POPULATIONS

The Greater Sage-Grouse is genetically distinct from the congeneric Gunnison Sage-Grouse (*Centrocercus minimus*). Greater Sage-Grouse populations in Washington and the Lyon-Mono population, spanning the border between Nevada and California, also have unique genetic characteristics (Oyler-McCance and Quinn, this volume, chapter 5) but have not been described as separate species. The distribution of genetic variation has shifted gradually across the range, suggesting movement among neighboring populations is not yet likely across the species’ range (Oyler-McCance et al. 2005b). Most populations have similar levels of genetic diversity even at the periphery of the range. With declining populations and habitat as well as increased threats from anthropogenic sources, however, current connectivity among populations may become eroded.

Although Moynahan et al. (2006) reported relatively high mortality during one winter of their study, sage-grouse generally have low over-winter mortality (<20%) and relatively high annual survival (30–78%). The average likelihood of a female nesting in a given year varies from 63% to 100% and averages 82% in the eastern part of the species’ range and 78% in the western portion of the range (Connelly et al., this volume, chapter 3). Clutch size of sage-grouse averages six to nine eggs and nest success rates average 52% in relatively nonaltered habitats, while those in altered habitats average 37% (Connelly et al., this volume, chapter 3). Adult female sage-grouse survival is greater than adult male survival and adults have lower survival than yearlings, but not all estimates of survival rates are directly comparable (Zablan et al. 2003; Connelly et al., this volume, chapter 3). These relatively high survival rates and low reproductive rates suggest that sage-grouse populations may be slow to respond to improved habitat conditions.

Many populations are migratory (Connelly et al., this volume, chapter 3). Lengthy migration between separate seasonal ranges is one of the more distinctive characteristics of many sage-grouse populations (Connelly et al. 1988, 2000b). These migratory movements (>20 km) and large annual home ranges (>600 km²) help integrate sage-grouse populations across vast landscapes of sagebrush-dominated habitats (Connelly et al., this volume, chapter 3; Knick and Hanser, this volume, chapter 16).

All state and provincial fish and wildlife agencies monitor sage-grouse breeding populations annually, but monitoring techniques have varied somewhat among areas and years both within and among agencies. This methodological variation complicates attempts to understand grouse population trends and make comparisons among areas (Connelly et al. 2004). Population monitoring efforts increased substantially between 1965 and 2007 throughout the range of sage-grouse (Garton et al., this volume, chapter 15). The largest increases in effort occurred in the Great Plains Sage-Grouse Management Zone (SMZ)(parts of Alberta, Saskatchewan, Montana, North Dakota, South Dakota, and Wyoming) and Colorado Plateau SMZ (representing parts of Utah and Colorado). In 2007, a minimum of 88,816 male sage-grouse were counted on 5,042 leks throughout western North America (Garton et al., this volume, chapter 15).

CURRENT KNOWLEDGE OF HABITATS

Invasive plant species, wildfires, weather, and climate change are major influences on sagebrush habitats and present significant challenges to long-term conservation (Miller et al., this volume, chapter 10; Baker, this volume, chapter 11). All of these factors are spatially pervasive and have considerable potential to influence processes within sagebrush communities. In addition, habitat loss or degradation can have a significant influence on sage-grouse populations by increasing the role of predation and disease (Hagen, this volume, chapter 6; Walker and Naugle, this volume, chapter 9).

Cheatgrass (*Bromus tectorum*) has invaded many of the lower-elevation, more-xeric sagebrush landscapes in the western United States. A large proportion of the remaining sagebrush communities is at moderate to high risk of invasion by cheatgrass (Connelly et al. 2004; Wisdom et al. 2005a; Miller et al., this volume, chapter 10). Moreover, juniper (*Juniperus* spp.) and pinyon (*Pinus* spp.) woodlands have expanded into sagebrush habitats at higher elevations (Miller et al., this volume, chapter 10). Numbers of fires and total area burned have increased since 1980 throughout most sagebrush-dominated habitats.

Sage-grouse have been eliminated from many former areas of their likely distribution prior to Euro-American settlement (Schroeder et al. 2004, Aldridge et al. 2008). Extirpated ranges had a lower percent area of sagebrush compared to those.
currently occupied by sage-grouse. Extirpated ranges also were at lower elevation, contained greater levels of human infrastructure such as transmission lines and communication towers, and had more private landownership relative to occupied regions (Wisdom et al., this volume, chapter 18). Moreover, this analysis identified those areas currently occupied by sage-grouse but characterized by environmental features most similar to extirpated range. These areas generally were concentrated in small, disjunct portions of occupied range and along peripheries of the current sage-grouse distribution (Wisdom et al., this volume, chapter 18). These regions will likely not support populations far into the future without active restoration or management that improves habitat conditions. In contrast, areas characterized by environmental factors where sage-grouse were most likely to persist were concentrated in the largest, most contiguous portions of occupied range in Oregon, Idaho, Nevada, and western Wyoming (Wisdom et al., this volume, chapter 18).

Urbanization and increasing human populations throughout much of the sage-grouse distribution have resulted in an extensive system of roads, power lines, railroads, and communication towers with an expanding influence on sagebrush habitats (Knick et al., this volume, chapter 12). Less than 5% of current sagebrush habitats was >2.5 km from a mapped road (Knick et al., this volume, chapter 12). Roads and other corridors promote invasion of exotic plants, provide travel routes for predators, and facilitate human access into sagebrush habitats. Human-caused fires also were closely related to existing roads.

Wildfire dynamics under the historic range of variation were likely characterized in all sagebrush landscapes by infrequent episodes of large, high-severity fires followed by long interludes with smaller, patchier fires, allowing mature sagebrush to dominate for extended periods (Baker 2006). Fire rotation, estimated from recent fire records, suggests fire exclusion had little effect on fire in sagebrush ecosystems, especially in more xeric areas. Instead, cheatgrass invasion, increases in number of human-set fires, and global warming have resulted in greatly increased amounts of fire relative to the historic variation in the Columbia Basin, Northern Great Basin, Southern Great Basin, and Snake River Plain SMZs (Baker, this volume, chapter 11). In addition, global climate change is likely to further promote cheatgrass and increase frequency of fire (Miller et al., this volume, chapter 10).

Additional fire created by widespread prescribed burning of sagebrush is unnecessary and exacerbates this increasing dominance of fire, particularly in lower-elevation landscapes dominated by Wyoming big sagebrush (Artemisia tridentata spp. wyomingensis) (Baker 2006a; Baker, this volume, chapter 11). Sagebrush ecosystems in these low-productivity regions characterized by low resilience and resistance to disturbance would benefit from rest, rather than the increased levels of disturbance that prescribed fire contributes to the natural regime. Thus, fire suppression is appropriate where cheatgrass invasion or expansion is likely to impede restoration treatments or natural recovery of native plant communities (Baker, this volume, chapter 11; Pyke, this volume, chapter 23).

Energy development for oil and gas influences sagebrush habitats by physical removal of habitat to construct well pads, roads, power lines, and pipelines (Naugle et al., this volume, chapter 20; Doherty et al., this volume, chapter 21). Indirect effects include habitat fragmentation and soil disturbance along roads, spread of exotic plants, and increased predation from raptors that have access to new perches for nesting and hunting (Knick et al., this volume, chapter 12; Naugle et al., this volume, chapter 20). Available evidence clearly supports the conclusion that conserving large landscapes with suitable habitat is important for conservation of sage-grouse, but that doing so involves overcoming numerous environmental challenges (Miller et al., this volume, chapter 10).

By creating habitat characteristics specific to sage-grouse requirements (Connelly et al., this volume, chapter 4), managers have adopted an umbrella concept that should similarly benefit other wildlife species dependent on sagebrush (Hanser and Knick, this volume, chapter 19). Passerine birds associated with sagebrush steppe habitats had high levels of overlap with sage-grouse along multiscale environmental gradients. However, this overlap was primarily a function of the broad range of sagebrush habitats used by sage-grouse (Hanser and Knick, this volume, chapter 19). Management that focuses on creating a narrow set of plot-scale conditions for a single species or site restoration will likely be less effective in addressing the needs of multiple species than restoration efforts that recognize landscape heterogeneity and multiscale
organization of habitats (Hanser and Knick, this volume, chapter 19).

THREATS

Predation is often identified as a potential threat to sage-grouse (Schroeder and Baydack 2001; Hagen, this volume, chapter 6). However, predator management studies have not provided sufficient evidence to support implementation of predator control to improve sage-grouse populations over broad geographic or temporal scales. The limited information available suggests predator management may provide short-term relief for a sage-grouse population sink in the few cases where this situation has been documented (Hagen, this volume, chapter 6).

Hunting has also been identified as a management concern for sage-grouse populations (Connelly et al. 2003a; Reese and Connelly, this volume, chapter 7). Nine of 11 states with sage-grouse presently have hunting seasons for this species. Sage-grouse normally experience high survival over winter (Wik 2002; Hausleiter 2003, Beck et al. 2006; Battazo 2007); thus, mortality from hunter harvest in September and October may not be totally compensatory. Nevertheless, harvest mortality is low on most populations of sage-grouse, and no studies have demonstrated that hunting is a primary cause reducing populations (Reese and Connelly, this volume, chapter 7).

Despite the prevalence of organisms that may infect individual birds, population-level effects of parasites and disease have rarely been documented in sage-grouse (Christiansen and Tate, this volume, chapter 8). However, West Nile virus has shown greater impact on sage-grouse populations than any other infectious agent detected to date. This virus was an important new source of mortality in low- and mid-elevation sage-grouse populations range-wide from 2003 to 2007 (Naugle et al. 2004; Walker et al. 2007b; Walker 2008; Walker and Naugle, this volume, chapter 9). West Nile virus can significantly reduce survival and may lead to local and regional population declines. Simulations of West Nile virus mortality projected reduced growth of susceptible sage-grouse populations by an average of 0.06% to 0.09% per year. However, marked spatial and annual fluctuations in nest success, chick survival, and other sources of adult mortality may mask population-level impacts in most years. Resistance to West Nile virus–related disease appears to be low but is expected to increase slowly over time (Walker et al. 2007b; Walker and Naugle, this volume, chapter 9).

Livestock grazing is the most widespread use of sage-grouse habitats, but data used by agencies (e.g., permitted animal unit months) do not provide information on management regime, habitat condition, or type of livestock that allows the assessment of direct effects of grazing at large spatial scales (Milchunas and Lauenroth 1993; Jones 2000; Knick et al., this volume, chapter 12). These data may be collected for individual allotments. However, they often are subjective estimates or are not collected systematically across a region or through time in a way that permits an evaluation of grazing levels and intensity relative to habitat condition. Consequently, the significance of decreased numbers of livestock on public lands (Mitchell 2000) cannot be interpreted without corresponding information on changes in habitat productivity. Thus, the direct effect of livestock grazing expressed through habitat changes to population-level responses of sage-grouse cannot be addressed using existing information.

The effects of livestock grazing management, however, can have significant influences on landscape patterns and processes (Freilich et al. 2003; Miller et al., this volume, chapter 10; Knick et al., this volume, chapter 12). Large treatments designed to remove sagebrush and increase forage for livestock may no longer be the primary emphasis by agencies for management of public lands. Nevertheless, habitat manipulations, water developments, and fencing are still widely implemented to manage livestock grazing, and large-scale treatments still occur on some private lands. More than 1,000 km of fences were constructed annually on public lands from 1996 to 2002; linear density of fences exceeded 2 km/km² in some regions of the sagebrush biome (Knick et al., this volume, chapter 12). Fences provide perches for raptors and modify access and movements by humans and livestock, thus exerting a new mosaic of disturbance and use on the landscape (Freilich et al. 2003).

Development of oil and gas resources will continue to be a major influence on sagebrush habitats and sage-grouse because advanced technology allows access to reserves, high demand for these resources will continue, and a large number of applications have been approved and are still being submitted and approved annually. Future oil and gas development is projected
to cause a 7–19% decline from 2007 sage-grouse lek population counts and impact 3,700,000 ha of sagebrush shrublands and 1,100,000 ha of grasslands throughout much of the current and likely historical range of sage-grouse (Copeland et al. 2009). Sagebrush landscapes developed for energy production contained twice as many roads and power lines, and in some areas where ranching, energy development, and tillage agriculture coincided, human features were so dense that every 1 km² could be bounded by a road and bisected by a power line (Naugle et al., this volume, chapter 20). Sage-grouse respond negatively to different types of development, and conventional densities of oil and gas wells likely far exceed the species’ threshold of tolerance (Naugle et al., this volume, chapter 20). Noise disturbance from construction activities and vehicles may also disrupt sage-grouse breeding and nesting (Lyon and Anderson 2003).

Highly productive regions with deeper soils throughout the sagebrush biome have been converted to agriculture, in contrast to relatively xeric areas with rather shallow soils that characterize the larger landscapes still dominated by sagebrush. Agriculture currently influences 49% of sagebrush habitats within the sage-grouse range through habitat loss or by large-scale fragmentation of remaining sagebrush. Potential predators on sage-grouse nests, such as Common Ravens (Corvus corax; Coates 2007), are subsidized by agriculture and associated practices. In addition, insecticides can be a major cause of mortality for sage-grouse attracted to lush croplands during summer brood-rearing (Blus et al. 1989).

The human footprint is defined as the cumulative extent to which anthropogenic resources and actions influence sagebrush ecosystems within the range of sage-grouse (Leu and Hanser, this volume, chapter 13). The levels and broad-scale effects of the human footprint across the sage-grouse distribution strongly support the importance of managing and maintaining sagebrush habitats at larger spatial scales than currently recognized by land management agencies (Leu and Hanser, this volume, chapter 13). The greatest influence of the human footprint was within the Columbia Basin (Leu and Hanser, this volume, chapter 13). Populations within the Columbia Basin, which had the highest levels of human footprint, are decreasing and have a reasonably high likelihood of declining to <50 sage-grouse within 100 years (Garton et al., this volume, chapter 15).

The cumulative and interactive impact of multiple disturbances, continued spread and dominance of invasive species, and increased impacts of land use have the most significant influence on the trajectory of sagebrush ecosystems, rather than any single source (Knick et al., this volume, chapter 12). Sage-grouse populations and sagebrush habitats that once were continuous now are separated by agriculture, urbanization, and development. Thus, understanding how to conserve sage-grouse involves multiscale patterns and dynamics in sagebrush ecosystems as well as population trends, behavior, and ecology of sage-grouse (Knick et al., this volume, chapter 12).

Fifteen major threats (Table 24.1) have been identified in recent syntheses of sage-grouse conservation issues (Connelly and Braun 1997; Braun 1998; Connelly et al. 2004; Knick and Connelly, this volume). These reports generally agreed that energy development, drought, and wildfire posed a serious risk to sage-grouse conservation. Drought was listed in all reports, while energy development and wildfire were listed in three of four reports. Invasive species, grazing management, and urban development were listed in two of the three reports (Table 24.1). In addition, one federal agency and two state agencies convened expert panels to assess threats to sage-grouse populations (Table 24.2). Together, these panels listed 15 threats to sage-grouse and collectively identified energy development, wildfire, urban development, West Nile virus, conifer encroachment, and invasive species as the most serious threats to sage-grouse conservation. Considered as a whole, these seven different assessments of threats identified two levels of risk. Energy development, invasive species, drought, grazing management, and wildfire, listed on five threat assessments, constitute the first level and could be judged as the most significant range-wide threats to sage-grouse conservation. Urbanization and West Nile virus, listed on three or four assessments, represent the second level, suggesting a broad concern about these issues as well. Infrastructure was listed on two assessments and fences, roads, and reservoirs (all potential energy-related infrastructures) were listed separately on a third assessment. In summary, these efforts to identify threats
suggest that energy development, invasive species, wildfire, grazing management, urbanization, West Nile virus, and infrastructure pose the greatest risk to long-term conservation of sage-grouse. The relative importance of each of these threats undoubtedly varies throughout the range of sage-grouse.

POPULATION AND HABITAT TRAJECTORIES

Lek size declined over the assessment period (1965–2007) for 20 of 28 (71%) populations that had sufficient data for analysis (Garton et al., this volume, chapter 15). Average rates of change declined between the 1995–1999 and 2000–2007 analysis periods for 20 of 26 (77%) populations (Garton et al., this volume, chapter 15). Nevertheless, 20 of 29 (69%) populations had an average rate of change ≥ 1 while nine of 29 (31%) populations had an average rate of change ≤ 1.0 for the 2000–2007 analysis period. Although lek size and average rates of change declined for six of seven management zones, all but one had an average rate of change ≥ 1.0 during the 2000–2007 analysis period. Only the Columbia Basin management zone had an average rate of change ≤ 1.0 during the last analysis period (Garton et al., this volume, chapter 15).

For 86% of management zones and 50% of populations, the best statistical model indicated a declining carrying capacity through time of -1.8% to -11.6% per year, and 18% of models for all populations and management zones indicated a lower carrying capacity in the last 20 years (1987–2007) compared to the first 20 years (1967–1987) of analysis (Garton et al., this volume, chapter 15). These lower carrying capacities support other findings in this volume suggesting that declines in quality and quantity of habitat for sage-grouse are continuing across regional and range-wide scales (Miller et al., this volume, chapter 10; Baker, this volume, chapter 11; Knick et al., this volume, chapter 12; Leu and Hanser, this volume, chapter 13). Forecasts of future population

TABLE 24.1

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Agriculture</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Droughta</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Energy development</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Fences</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Grazing management</td>
<td>X</td>
<td></td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Hunting</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Invasive species</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Predation</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Power lines</td>
<td>X</td>
<td></td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Reservoirs</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Roads</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Urban developmentb</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Vegetation treatments</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>West Nile virusc</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Wildfire</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
</tbody>
</table>

a Includes climate change induced drought.

b Includes factors associated with the human footprint.

c West Nile virus was first detected within Greater Sage-grouse range in 2002 after completion of the 1997 and 1998 assessments (Naugle et al. 2004).
viability across 27 populations and all management zones suggest that 96% of populations and all management zones will likely remain above effective population sizes of 50 within the next 30 years. However, 78% of populations and 29% of management zones are likely to decline below effective population sizes of 500 within 100 years if current conditions and trends persist (Johnson et al., this volume, chapter 17). In contrast, associations were negative with the coverage of agriculture and exotic plant species. Trends also tended to be lower for leks at which a greater proportion of the surrounding landscape had been burned (Johnson et al., this volume, chapter 17). Few leks were within 5 km of developed land, and trends were lower for those leks with more developed land within 5 or 18 km of the lek. Lek counts were reduced where communication towers were nearby, whereas no effects of power lines were detected. Producing oil or natural gas wells and paved highways, but not secondary roads, were also associated with lower counts (Johnson et al., this volume, chapter 17). Roads, power lines and other disturbances that have been in place for many years may have affected lek attendance in years prior to this analysis period (1997–2007), while other disturbances, such as communication towers, are relatively new; their effects may be expressed in the current data or may not have been detected due to lags in population response. Conversion of sagebrush habitats to cultivation and paved highways that occurred before the 1997–2007 study period likely continues to influence sage-grouse populations (Johnson et al., this volume, chapter 17). Sage-grouse now occupy <60% of their probable historical range prior to European settlement (Connelly and Braun 1997, Schroeder et al. 2004). Moreover, synergistic feedbacks among invasive plant species, fire, and climate change coupled with current trajectories of habitat changes and rates of disturbance, both natural and human-caused, likely will continue to change sagebrush communities and create challenges for future conservation and management of sage-grouse populations and habitat.

CHALLENGES TO SAGE-GROUSE CONSERVATION

Conservation programs for sage-grouse populations and habitat can be developed to address threats (Stiver, this volume, chapter 2), but administrative or natural impediments to development and implementation of successful programs may...
still exist (Forbis et al. 2006). Land management agencies continually make decisions regarding land use actions and vegetation management (Knick et al., this volume, chapter 12). These agencies also develop programs to address potential or actual environmental issues including wildfire, invasive species, and vegetation restoration or rehabilitation efforts (Miller et al., this volume, chapter 10; Baker, this volume, chapter 11; Pyke, this volume, chapter 23). The continued interest in prescribed burning and other forms of sagebrush reduction in sagebrush-dominated landscapes (Wyoming Interagency Vegetation Committee 2002; Davies et al. 2008, 2009), despite a large body of evidence documenting the negative effects of these actions on sage-grouse, may continue to degrade and fragment sage-grouse habitats. Similarly, development of energy-related projects in key habitats will continue to negatively affect important sage-grouse habitat (Knick et al., this volume, chapter 12; Naugle et al., this volume, chapter 20).

Natural phenomena may act to degrade or eliminate sage-grouse habitat. Wildfire (Baker et al. 2006, this volume, chapter 11; Miller et al., this volume, chapter 10) and drought (Patterson 1952, Connelly and Braun 1997, Connelly et al. 2000a) can negatively affect sage-grouse populations. The incidence of wildfire may be reduced by suppression efforts, but fire will never be eliminated as a threat to sagebrush-dominated landscapes. Periodic drought will also be part of the arid west and pose a threat to sage-grouse productivity by reducing nest and chick survival (Connelly et al. 2000a). In addition, restoration following treatments, such as prescribed fire, often is severely hindered or is unsuccessful because of unpredictable weather and lack of precipitation necessary for plant establishment (Pyke, this volume, chapter 23).

Climate change also has an important influence on sagebrush landscapes (Miller et al., this volume, chapter 10). Climate change scenarios for the sagebrush region predict increasing temperature, atmospheric carbon dioxide, and severe weather events, all of which favor cheatgrass expansion and increased wildfire (Miller et al., this volume, chapter 10). Approximately 12% of the current distribution of sagebrush is predicted to be replaced by expansion of other woody vegetation for each 1°C increase in temperature (Miller et al., this volume, chapter 10). All of these factors are likely to result in a loss of sagebrush and decline of sage-grouse.

A broad array of invasive plants is widely distributed across the range of sage-grouse, has a major influence on the structure and function of sagebrush habitats, and presents significant challenges to the long-term conservation of sagebrush-dominated landscapes (Miller et al., this volume, chapter 10). Many sagebrush communities at low elevations are at moderate to high risk of invasion by cheatgrass (Wisdom et al. 2005b; Miller et al., this volume, chapter 10). At higher elevations, woodland expansion has altered the fire regime and resulted in loss of sagebrush and the understory of grasses and forbs (Miller et al., this volume, chapter 10).

Invasions into native plant communities may be sequential as initial invaders are replaced by a series of new exotics or by species adapting to new habitats within their range (Young and Longland 1996). For example, areas that were once dominated by cheatgrass in some locations in southwestern Idaho are now characterized by medusahead (Taeniatherum caput-medusae; Miller et al., this volume, chapter 10). Rush skeletonweed (Chondrilla juncea), which originally was localized to disturbed areas in drier sagebrush grassland communities, is now invading areas previously dominated by medusahead (Sheley et al. 1999) and following wildfire (Kinter et al. 2007).

Free-roaming equids (horses [Equus caballus] and burros [E. asinus]) in the United States were introduced to North America near the end of the 16th century. These species could be considered invasive, but they have unique management status and by law are neither hunted nor as intensively managed as livestock (Beever and Aldridge, this volume, chapter 14). Free-roaming horses can exert direct influences on structure and composition of vegetation and soils in sagebrush communities, as well as indirectly affect numerous animal groups whose abundance collectively may indicate the ecological integrity of such communities (Beever and Aldridge, this volume, chapter 14). Compared to ecologically similar sites in which horses were removed in the western Great Basin, sites that still supported wild horses had lower shrub cover, higher compaction of soil surfaces, more fragmented shrub canopy, lower grass cover, lower total vegetative cover, lower plant species richness, and lower density of ant mounds (Beever and Aldridge, this volume, chapter 14). Greater density of ant mounds at horse-free sites than at horse-occupied sites suggests
that at least a portion of the invertebrate community is more robust at horse-removed sites, and may also reflect differences in level of ecological function (Beever and Herrick 2006).

Restoration of sage-grouse habitat is more complex than typical restoration projects, which often focus on individual sites and have objectives specific to that location (Pyke, this volume, chapter 23). Successful restoration of sage-grouse habitat will not only necessitate vegetation changes in a single area but will also require connectivity among patches of currently intact vegetation (Wisdom et al. 2005b; Meinke et al. 2009; Knick and Hanser, this volume, chapter 16; Pyke, this volume, chapter 23). Additionally, availability and cost are major obstructions to the use of native seeds in revegetation projects (McArthur 2004), and equipment for planting native seeds is not widely available (Wiedemann 2005).

Many partnerships and working groups throughout the West have begun to initiate efforts to assist in conservation of sage-grouse, including some restoration projects (Western Governors’ Association 2004). Unfortunately, to the best of our knowledge, the effectiveness of these actions in stabilizing or increasing sage-grouse populations has yet to be documented. In part, this is because some projects are too recent to demonstrate positive effects, while others may have had competing interests or lacked a complete understanding of the ecological challenges during planning and implementation.

A ROADMAP TO CONSERVATION

Realistic approaches to issues, understanding threats, and implementing levels of effort appropriate to combat inherent challenges are important considerations in developing long-term conservation plans. We discuss many of the key issues presented in this volume and, based on the chapters within this volume, attempt to provide some insight and guidance to addressing these issues, threats, and challenges within the broad context of sage-grouse conservation.

Population Management

Harvest Management

Hunting opportunity for sage-grouse has been reduced where data suggested a negative impact from hunting and in response to general population declines of known and unknown origin. Seasons may need to be adjusted or reduced as necessary in those regions where sage-grouse continue to decline or are at risk of extirpation from other causes of mortality (Reese and Connelly, this volume, chapter 7). A risk-sensitive harvest strategy (Williams et al. 2004a) that avoids reducing individual populations of sage-grouse will require new research and continued routine population monitoring. We suggest social implications, as well as biological effects, are important considerations for management in areas where harvest is strictly controlled or altered to better conserve sage-grouse (Reese and Connelly, this volume, chapter 7).

Predation Management

Thus far, little information suggests that predator management should be routinely applied to conserve sage-grouse populations (Schroeder and Baydack 2001; Hagen, this volume, chapter 6). Where predator management is necessary, both lethal and nonlethal methods might be needed to buffer population sinks to increase survival and recruitment of grouse in these areas in the short-term (two to three years) from adverse effects of predation rates. The relatively broad financial and political costs to removing predators at a scale and extent that may be effective is no longer likely to be socially or ecologically viable (Messmer et al. 1999). Because of these considerations, predator management for sage-grouse has generally been accomplished most efficiently by manipulating habitat rather than by predator removal to enhance populations (Schroeder and Baydack 2001). For future sage-grouse conservation efforts, we recommend quantifying predator communities as they relate to demographic rates and habitat variables so the predator-cover complex as it pertains to sage-grouse life history can be better understood (Hagen, this volume, chapter 6). Additionally, information is needed on how species that prey on sage-grouse respond to anthropogenic changes on sagebrush-dominated landscapes (Coates 2007).

Disease Management

Documentation of population-level effects of parasites, infectious diseases, and noninfectious
diseases related to toxicants is rare (Christiansen and Tate, this volume, chapter 8). Thus, little recent emphasis has been placed on managing this aspect of sage-grouse biology. Within the last few years, West Nile virus has had severe effects on some sage-grouse populations (Walker and Naugle, this volume, chapter 9). The severity of the potential impact and the need for more information require future studies to better document effects and relate outbreaks to environmental variables. The potential implications of climate change further underscore the need to effectively monitor disease impacts on sage-grouse (Christiansen and Tate, this volume, chapter 8; Miller et al., this volume, chapter 10). Many pathogens are sensitive to temperature, rainfall, and humidity (Harvell et al. 2002). Warmer climates can increase pathogen development and survival rates, disease transmission, and host susceptibility. Most host-parasite systems are likely to experience more frequent or severe disease impacts with warming climates (Harvell et al. 2002).

Habitat Management

Habitat Protection

Much sage-grouse habitat has been lost or altered, but substantial habitat still exists to support this species in many parts of its range (Connelly et al. 2004; Schroeder et al. 2004; Leu and Hanser, this volume, chapter 13). Characteristics of important habitats and general guidelines for protecting and managing these habitats are well known (Connelly et al. 2000b, Crawford et al. 2004, Hagen et al. 2007). We suggest the most effective strategy to stabilize or recover many sage-grouse populations will be protecting existing sagebrush habitat (Stiver et al. 2006). Energy development and other anthropogenic change represent substantial challenges to protecting existing habitat, and will require development and implementation of broad-scale and long-term conservation plans (Stiver et al. 2006; Stiver, this volume, chapter 2) that are carefully developed using the best available data. A wide range of local and regional concerns may need to be considered, including urban development, fire, grazing (livestock, equid, and wildlife), fragmentation, roads, structures, invasive species, West Nile virus, and habitat quality and quantity. The importance of each of these issues varies spatially and temporally.

Landscapes with high biological value for sage-grouse and high risk for development represent the greatest challenge facing land use managers. This is a concern because 44% of areas with high biological value are at risk for energy development (Doherty et al., this volume, chapter 21). The rapid pace and scale of energy development is a major issue, because areas being developed include some of the largest remaining sagebrush landscapes with the highest densities of sage-grouse in North America (Connelly et al. 2004; Doherty et al., this volume, chapter 21). Sage-grouse conservation faces major challenges in the eastern portion of the species' range, where 44% of the lands that the federal government has authority to control for oil and gas development has been authorized for exploration and development (Naugle et al., this volume, chapter 20; Doherty et al., this volume, chapter 21). Severity of impacts and extensive leasing of the public mineral estate suggest a need for landscape-scale conservation (Holloran 2005, Aldridge and Boyce 2007, Walker et al. 2007a). Lease sales continue, despite concerns, because no policy is in place that would permit an environmental assessment of risk at the scale at which impacts occur.

Areas of high biological value combined with low energy potential represent regions where conservation actions can be immediately implemented (Doherty et al., this volume, chapter 21). Currently, 17% of the eastern sage-grouse range has high biological value and low risk from energy development (Doherty et al., this volume, chapter 21). Maintaining these quality sage-grouse habitats, especially in areas adjacent to development or where development is planned, will be critical to ensure genetic connectivity (Oyler-McCance et al. 2005a,b) and persistence of source populations for natural recolonization after energy development activities have ceased (Gonzalez et al. 1998). Reducing risks from other stressors to sagebrush habitats will be an important component of conservation strategies in high value and low energy potential areas (Klebenow 1970; Connelly et al. 2000a,b; Leonard et al. 2000; Smith et al. 2005; Walker et al. 2007a). Habitat loss to agricultural development (Farrell et al. 2006, United States Government Accounting Office 2007), urban and exurban expansion (Theobald 2003, 2005), and conversion to communities dominated by invasive plants (e.g., cheatgrass; Bergquist et al. 2007) are significant concerns in many of these regions.
Conservation easements are one tool to reduce residential development and agricultural conversion on private lands (Kiesecker et al. 2007). A preponderance of private surface ownership in Montana and Utah coupled with low risks of development make core regions in many parts of these states ideal places to develop incentives for ranching and rural lifestyles through long-term programs such as the Conservation Reserve Program (CRP; Schroeder and Vander Haegen, this volume, chapter 22). Opportunities for easements and management programs are available in other states, but long-term viability of them is a public policy decision (Doherty et al., this volume, chapter 21).

Areas of low biological value and low energy potential represent low-conflict opportunities for sage-grouse and could be important in maintaining connectivity to high value core regions (Doherty et al., this volume, chapter 21). Restoration of these linkage habitats will be a key strategy in some areas. Many of the low value and low potential areas identified by Doherty et al. (this volume, chapter 21) are the same areas where continued range contraction is expected to be most severe (Aldridge et al. 2008; Garton et al., this volume, chapter 15). Aggressive habitat protection and restoration programs may be necessary to maintain the biological integrity of fringe populations in North Dakota, South Dakota, northern Montana, and Canada. Explicitly combining information about vulnerability of landscapes to anthropogenic risk allows planners to consider the relative urgency and likelihood of success of a given conservation strategy (Wilson et al. 2005, Copeland et al. 2007, Pressey and Bottrill 2008). Core regions and assessment of potential impacts these regions may experience represent a starting point to begin conservation of landscapes where results will have the largest benefit to populations. Prioritizing landscapes simply reflects the reality that threats are large, resources are limited, and conservation actions targeting all remaining populations are not feasible (Wisdom et al. 2005c, Meinke et al. 2009). Identification of core regions represents a proactive attempt to maintain a viable and connected set of populations before the opportunity to do so is lost (Knick and Hanser, this volume, chapter 16; Doherty et al., this volume, chapter 21).

Strategies that are integrated among all states and provinces involved for landscape-scale conservation are most likely to be successful. Successful implementation of conservation strategies in one state or province may not be sufficient to compensate for losses in other areas. Conservation concerns related to sage-grouse will present challenges until collaborative landscape planning and conservation are implemented. Doherty et al. (this volume, chapter 21) provide a framework for planning across political boundaries and suggestions for measuring success.

Habitat Restoration

Much of the original sage-grouse habitat has been permanently lost to agricultural development and urban areas, and the remaining habitat ranges in condition from high quality to inadequate (Pyke, this volume, chapter 23). Sage-grouse require somewhat different seasonal habitats distributed over large areas to complete their life cycle. Thus, restoration that incorporates a broad perspective when considering when and where to restore lands is likely to be the most effective for improving sage-grouse habitat. Restoration decisions are often difficult because of economics, restoration potentials, status of existing habitat, and logistics such as landownership or topography (Knick, this volume, chapter 1).

Prioritization is an important first step in a successful restoration plan for selecting sites when resources are limited (Wisdom et al. 2005c, Meinke et al. 2009). The triage approach is an initial prioritization technique where ecosystems are grouped into three categories, one that receives immediate care and two others where no urgent care is warranted (Pyke, this volume, chapter 23). The category provided immediate care and intervention has significant damage requiring immediate intervention to aid likely recovery. The second category needs no immediate intervention and, with some later treatment, will likely recover, whereas the third category represents areas so severely damaged they could not recover even with intervention (Kennedy et al. 1996, Samways 2000). A framework was presented (Doherty et al., this volume, chapter 21) that demonstrated trade-offs between sage-grouse conservation and energy development. However, landscape planning for sage-grouse is likely to be most successful if it includes restoration and identifies core regions (Doherty et al., this volume, chapter 21) that reflect seasonal habitats and migration of
radio-marked sage-grouse (Connelly et al. 1988, Aldridge and Boyce 2007, Doherty et al. 2008) to ensure priority landscapes meet, or with restoration will contribute to, all habitat needs. Moreover, future modeling of other relevant risks, such as invasive species, will help ensure that gains in conservation will not be offset by unknown risks (Doherty et al., this volume, chapter 21).

Functioning landscapes that consist of an integrated mosaic of individual sites are important objectives when considering type and level of restoration intervention for improving sage-grouse habitat (Pyke, this volume, chapter 23). Reasons for considering larger areas than the restoration site alone are based on criteria relating to sage-grouse biology as well as the likelihood of restoration success. Sage-grouse have large annual and seasonal home ranges (Connelly et al. 2000b) that often exceed the size of restoration projects. In addition to enhancing existing native habitats, restoring adjacent lands presently in tillage agriculture to sagebrush-dominated grasslands could facilitate the larger goal of landscape restoration (Schroeder and Vander Haegen, this volume, chapter 22).

Effective restoration and rehabilitation of sage-grouse habitat focuses on maintaining or improving key habitat components necessary for survival and reproductive success. We caution that simply replacing vegetation components may not produce the intended benefit to sage-grouse populations. The negative influence of fire and the human footprint, not sagebrush quantity or configuration, were the significant factors in persistence of sage-grouse leks (Knick and Hanser, this volume, chapter 16). Reestablishing suitable vegetation will be difficult because of increasing fire frequencies throughout much of the sage-grouse range coupled with long periods for vegetation recovery (Baker, this volume, chapter 11). Increasing levels of all land uses for traditional commodity development as well as for recreation and exurban living by a growing human population also indicate that the human footprint will continue to be a primary impediment to successful restoration.

Passive restoration goals focus on maintaining sagebrush cover while increasing grass cover and height and increasing forb cover and reproduction (Pyke, this volume, chapter 23). This could be achieved through setting appropriate livestock stocking levels while shifting grazing seasons to periods when active growth is slow and plant reproduction has not been initiated (Kirby and Grosz 1995, Norton 2005, Sidle 2005). Active restoration is necessary in some situations to reestablish a sagebrush overstory with an understory mixture of native forbs and short, mid, and tall grasses (Pyke, this volume, chapter 23). Appropriate native sagebrush species and subspecies for the site are significant factors in successful restoration for sage-grouse. Nevertheless, we recognize that some efforts may require introduced species such as palatable forbs and bunchgrasses to quickly stabilize soils as well as different techniques to achieve similar goals.

Effective restoration will require protection and proper management for maintenance of intact, healthy sagebrush grasslands, while identifying those lands where modifications to management might improve quality habitat for sage-grouse (Pyke, this volume, chapter 23). Strategic placement will be critical for enhancing the likelihood of restoration success while minimizing costs. Unfortunately, sagebrush grassland restoration is largely in its infancy. Large acreages are still being affected by invasive species and wildfire, while funding and resources necessary for rehabilitating these areas are often severely limited. Farm programs such as the CRP have the potential to affect large portions of the landscape and positively influence sage-grouse populations in some parts of the species’ range (Schroeder and Vander Haegen, this volume, chapter 22). However, these programs can only be applied to private lands; comparable programs to affect public land at a similar scale with effective restoration are needed. We are concerned that many lands currently in the CRP and benefiting sage-grouse populations are increasingly being converted to other uses, such as production of biofuels (Fargione et al. 2009).

Monitoring and Assessment

Throughout the sagebrush biome, various natural and anthropogenic actions are and will be occurring that may have positive (e.g., restoration work) or negative (e.g., energy development, wildfire) effects on sage-grouse. Monitoring and assessment activities are necessary to provide an objective appraisal of the effects of potentially positive activities and assess the relative damage to sage-grouse populations or habitats of potentially negative actions.
Protocols that include statistically sound sampling and analysis designs are necessary to obtain unbiased information. Casual field surveys, ocular assessment, and other forms of subjective evaluation provide unreliable information. For proposed projects that occupy spatially discrete (as opposed to dispersed) areas, a before-after-control-impact (BACI) design may provide the most powerful statistical approach.

To assess population effects, we recommend that BACI include marking sage-grouse at each impact and control site. Required sample sizes of marked birds will vary depending on size and extent of the grouse population being considered, questions being asked, and marking technology employed. We recommend capturing and marking birds in a manner that allows sampling of the entire project area, focusing on leks most proximate to the proposed impact site(s). We also recommend marking additional female grouse in an 18-km buffer zone to characterize the migratory status of the population, but this sample will not allow evaluation of avoidance behavior. Because of the effect of lag periods on population response, a minimum of at least three years pre-construction and four years post-construction may be required in addition to the year of construction to fully assess project effects on grouse populations. Given the lifespan of sage-grouse, strong fidelity to breeding areas, and lag effects in population dynamics, some longer-term (8–12 years), less-intensive monitoring will be necessary to fully assess impacts.

Unbiased characterization of habitat use or habitat change requires a random sampling approach and often a stratified random sample. Strata will depend on vegetation, treatment, and topographic characteristics of the area. Most habitat assessments will include measurements of one or more of the following: cover, height, density, frequency, and visual obstruction for individual plant species or groups of species (Connelly et al. 2003b). Density, height, and frequency are direct measurements or counts, but canopy or foliar cover can be estimated by several techniques. Well-recognized techniques that are largely free of observer bias and that can be easily replicated in other studies are important in ensuring widespread application and interpretation of results.

We have emphasized throughout this volume that the Greater Sage-Grouse is a landscape species. Although regional and range-wide dynamics of sage-grouse populations are monitored (Reese and Bowyer 2007), we have yet to develop protocols to assess landscape change in sagebrush habitats (West 2003a,b). Recent analyses suggest that >25–30% sagebrush and <25% agriculture are threshold levels at a landscape scale important to maintaining sage-grouse populations (Aldridge et al. 2008; Wisdom et al., this volume, chapter 18). Other studies have emphasized the importance of the landscape surrounding sage-grouse leks for distances up to 54 km (Holloran and Anderson 2005; Walker et al. 2007a; Knick and Hanser, this volume, chapter 16). Landscape effects also were significant in winter habitat selection by sage-grouse (Doherty et al. 2008). Thus, monitoring approaches that detect changes in quantity, composition, and configuration in regional and range-wide landscapes would significantly improve our ability to relate environmental features at the primary scales driving population dynamics.

Well-planned and carefully implemented monitoring and assessment will allow an objective evaluation of conservation measures over varying temporal and spatial frames. It will also provide an unbiased assessment of impacts that can be used to guide appropriate mitigation efforts.

CONSERVATION IMPLICATIONS

Much is known about the biology of sage-grouse and its response to various management actions as well as natural and anthropogenic disturbance. Despite this knowledge, many threats to sage-grouse and numerous constraints to successful conservation for this species and its habitats remain. Rigorously and objectively addressing these threats and constraints should result in sound management practices and decisions that perpetuate sage-grouse populations.

A minimum of 88,816 male sage-grouse were counted on 5,042 leks in 2007 (Garton et al., this volume, chapter 15), and sagebrush is the dominant land cover on approximately 530,000 km² within sage-grouse range (Knick, this volume, chapter 1). Therefore, even though some populations are declining and a few have a relatively low likelihood of persistence, opportunities to conserve sage-grouse throughout much of the species’ current range still exist.
Land and wildlife managers, as well as policymakers, face many challenges and difficult decisions. We have attempted to assemble a volume that presents unbiased, current information spanning multiple facets of Greater Sage-Grouse and their habitats. The information, presented from an ecological perspective, is intended to aid sage-grouse conservation efforts, including those currently undertaken for the very similar Gunnison Sage-Grouse. We hope that this volume on sage-grouse populations and their habitats will be used to inform these decisions and guide policies in a manner that will allow future generations to enjoy this icon of the West.

ACKNOWLEDGMENTS

Earlier drafts of this manuscript were improved by reviews from T. P. Hemker, F. L. Knopf, J. D. Brittell, and B. Everitt. We also appreciate the thoughts and insight that members of the Western Sage and Columbian Sharp-tailed Grouse Technical Committee shared with us. Finally, we thank the numerous technicians, graduate students, and field biologists who have labored throughout western North America to collect data on sage-grouse populations and habitats. Many sage-grouse conservation efforts will be based on their diligent, but often unrecognized, work.
LITERATURE CITED

LITERATURE CITED

LITERATURE CITED

LITERATURE CITED

USDA Forest Service, Intermountain Research Station, Ogden, UT.
Boughton, R. V. 1937. Endoparasitic infestations in grouse, their pathogenicity and correlation with meteorological conditions. Agricultural Experiment Station Technical Bulletin 121. University of Minnesota, Minneapolis, MN.

Carhart, A. H. 1943. Disease studies in Moffat County, summer of 1943. Sage Grouse survey. Special Memo, Colorado Game and Fish Department, Denver, CO.

Christiansen, T. 2008. Hunting and sage-grouse: a technical review of harvest management on a species of concern in Wyoming. Wyoming Game and Fish Department, Cheyenne, WY.

Coates, P. S. 2007. Greater Sage-Grouse (Centrocercus urophasianus) nest predation and incubation...
behavior. Ph.D. dissertation, Idaho State University, Pocatello, ID.

Western Association of Fish and Wildlife Agencies, Cheyenne, WY.

mammals in the Intermountain West. High Desert Ecological Research Institute, Bend, OR.

Eberhardt, L. L., A. K. Majorowicz, and J. A. Wilcox. 1982. Apparent rates of increase for two feral

LITERATURE CITED

LITERATURE CITED

581
Frémont, J. C. 1845. Report of the exploring expedition to the Rocky Mountains in the year 1842, and to Oregon and Northern California in the years 1843–44. Gales and Seaton, Washington, DC.

LITERATURE CITED 583

Gregg, L. E. 1990. Harvest rates of Sharp-tailed Grouse on managed areas in Wisconsin. Research Report 152. Wisconsin Department of Natural Resources, Park Falls, WI.

Hepworth, W. G. 1962. Diagnosis of disease in mammals and birds. P-R Project FW-3-R-8, Job 1W. Wyoming Game and Fish Commission, Cheyenne, WY.

Horay, F. 1969. Graph theory. Addison-Wesley, Reading, MA.

Idaho Department of Fish and Game. 1997. Idaho sage grouse management plan. Idaho Department of Fish and Game, Boise, ID.

Kotliar, N. B., and J. A. Wiens. 1990. Multiple scales of patchiness and patch structure: a hierarchical
LITERATURE CITED

Lyon, A. G. 2000. The potential effects of natural gas development on Sage Grouse near Pinedale,
Wyoming, M.S. thesis, University of Wyoming, Laramie, WY.

LITERATURE CITED

McKean, W. T. 1976. Winter guide to central Rocky Mountain shrubs (with summer key). Colorado Department of Natural Resources, Division of Wildlife Resources, Denver, CO.

Mueggler, W. F. 1956. Is sagebrush seed residual in the soil of burns or is it wind-borne? USDA Forest Service Research Note RN-INT-35. USDA Forest Service, Intermountain Forest and Range Experiment Station, Ogden, UT.

Pellegrini, S. W. 1971. Home range, territoriality and movement patterns of wild horses in the Wassuk LITERATURE CITED

601

Ramey, R. R., H.-P. Liu, C. W. Epps, L. M. Carpenter, and J. D. Wehausen. 2005. Genetic relatedness of the Preble’s meadow jumping mouse (Zapus hudsonius preblei) to nearby subspecies of Z. hudsonius as inferred from variation in cranial morphology, mitochondrial DNA and microsatellite DNA:
LITERATURE CITED

Sallach, B. K. 1986. Vegetation changes in New Mexico documented by repeat photography. M.S. thesis, New Mexico State University, Las Cruces, NM.

LITERATURE CITED

609

LITERATURE CITED

LITERATURE CITED

United States Department of the Interior. 1992. Final oil and gas resource management plan/environmental impact statement amendment for the Billings, Powder River and South Dakota resource areas. USDI Bureau of Land Management, Miles City District, MT.

United States Department of the Interior. 2003a. Endangered and threatened wildlife and plants; Final rule to list the Columbia Basin distinct population segment of the pygmy rabbit (Brachylagus idahoensis) as endangered. 50 CFR 17:10388–10409.

United States Department of the Interior. 2003e. Proposed revisions to grazing regulations for the LITERATURE CITED

615
United States Department of the Interior. 2005a. Endangered and threatened wildlife and plants; 90-day finding on a petition to list the pygmy rabbit as threatened or endangered. 50 CFR 17.29253–29265.
United States Departments of Agriculture and the Interior. 1997c. The 10th and 11th report to Congress.

618

STUDIES IN AVIAN BIOLOGY

NO. 38

Knick and Connelly

Wallestad, R. O. 1975a. Life history and habitat requirements of Sage Grouse in central Montana. Montana Department of Fish, Wildlife and Parks, Helena, MT.

LITERATURE CITED

LITERATURE CITED

INDEX

Acuaria [Cheilospirura] centroceci, 116, 120
Acuaria [Cheilospirura] spinosa, 116, 120
Aedes vexans, 124
See also mosquito
agriculture, 454, 456, 460, 467
associated predators, 554
conversion, 30, 80, 156, 157, 209, 211, 247, 249, 251, 255, 267, 275, 403, 446, 447, 449, 472, 493, 515, 518, 519, 529, 554, 556
historical development, 207, 208
insecticide poisoning, 125, 211
by occupancy, 209, 462, 463, 562
by population, 524
population connectivity, 211
relative to lek counts, 414, 418, 441, 442
by SMZ, 208, 209
by state, 156, 157
alfalfa (Medicago spp.), 77
anthropogenic disturbance
associated with occupancy, 451–472
behavioral avoidance, 499, 500
energy development, 489–503
influence on populations 407–450
influence on sagebrush ecosystems 203–251, 253–271
military training activities, 246, 247, 528
noise, 554
ranchettes, 217, 219
See also human footprint; specific land use
aspen, quaking (Populus tremuloides), 82
aspergillosis, 123, 124
Aspergillus fumigatus, 118, 123
avian blackhead, 121
avian malaria, 121, 122
bacteria, 118
badger, American (Taxidea taxus), 65, 97
Baker Oregon population
lek monitoring and evaluation, 340
location and description, 297, 300
model statistics for trend and persistence, 310, 343
population reconstruction, 341
Bannack Montana population
lek monitoring and evaluation, 343, 344
location and description, 297, 300
model statistics for trend and persistence, 310, 344, 345
population reconstruction, 341
behavior. See specific types
biological soil crusts, 153, 164
bison, American (Bison bison), 231, 254
bitterbrush, antelope (Purshia tridentata), 70, 73, 75, 152, 160, 520
Bluebird, Eastern (Sialia sialis), 129
bluegrass (Poa spp.), 78
bluegrass, Sandberg (Poa secunda), 153
bluestem, little (Schizachyrium scoparium), 153
bluestem, sand (Andropogon hallii), 153
bobcat (Felis rufus), 65, 97
Bobwhite, Northern (Colinus virginianus), 54, 59, 63, 99, 110
breeding success
annual, 64
by state or province, 56, 57
brome, California (Bromus carinatus), 153
brome, Japanese (Bromus japonicus), 78
brood
- habitat use, 75–78
- movement, 211
- multiple paternity, 88

Canadian Sage-Grouse Recovery Strategy, 39
- canonical correspondence analysis
 - scale and environmental gradients, 484–486
 - shrub steppe passerine species and sage-grouse, 480–485
 - species niche breadth relative to sage-grouse, 484, 485
 - species-environment biplot of occurrence, 483
 - summary statistics for habitat variables, 482, 483

Capercaillie (Tetrao urogallus), 92, 99, 402

captive sage-grouse disease, 126

Carey Act, 15, 16, 208

cat, domestic (Felis domesticus), 65

cellular towers
- electromagnetic radiation, 467
- potential mortality, 468
- relative to occupancy 462, 463, 467, 468, 470, 472

Central Oregon population
- lek monitoring and evaluation, 351, 352
- location and description, 297, 300
- model statistics for trend and persistence, 310, 352, 354
- population reconstruction, 353

cestodes, 120

cheatgrass (Bromus tectorum), 80, 145, 158, 167, 480
- abundance in horse-occupied sites, 283
- carbon exchange, 163
- competition with native grasses, 179
- dominance on public lands, 161
- ecosystem disruption 163, 164
- first introduced, 160
- invasion of low-elevation sites, 447
- nitrogen cycles, 164
- predicted distribution in Intermountain West, 160
- relation to fire, 167–171, 181–184, 189–201
- response to elevated carbon, 179
- root structure and functioning, 163

- Chickadee, Black-capped (Poecile atricapillus), 129
- Chickadee, Carolina (Poecile carolinensis), 129
- Chicken, Domestic (Gallus gallus domesticus), 130

Cluck (Alectoris chukar), 130

cinquefoil, sulphur (Potentilla recta), 159

carbon dioxide levels, 175, 179

disease, 15

disease, 210

disease, 214

disease, 220

disease, 222

disease, 230

disease, 232

disease, 234

Clostridium perfringens type A mortality, 118, 123

Clutch size
- by nest order, 62
- range-wide, 62
- by state or province, 56, 57
- by year, 63

Coccidiosis, 114, 122, 123

Colorado Plateau floristic province
- fire statistics, 170, 193
- geographic extent, 151

Colorado Plateau SMZ
- agricultural area, 209, 210
- area influenced by infrastructure, 215
- area of sagebrush, 25
- connectivity, 392
- human footprint, 260, 261, 266
- human population density, 214
- landownership, 26, 27
- lek count trends and natural and anthropogenic features, 413–420
- lek monitoring and evaluation, 363, 366
- location, 55, 297
- model statistics for trend and persistence, 311, 363, 367
- oil and gas development, 240, 242
- population reconstruction, 365
- urbanization and infrastructure, 212–219

Columbia Basin floristic province
- fire statistics, 193
- geographic extent, 151

Columbia Basin SMZ
- agricultural area and configuration, 209–211
- area influenced by infrastructure, 215
- area of sagebrush, 25
- connectivity, 392, 393, 396, 398
- human footprint, 260, 261, 266, 270
- human population density, 214
- landownership, 26, 27
- lek count trends and natural and anthropogenic features, 413–420
- lek monitoring and evaluation, 361, 363
- location, 55, 297

- Knick and Connelly

626
model statistics for trend and persistence, 311, 362, 364
oil and gas development, 240, 242
population reconstruction, 359
potential habitat quantity, 524
urbanization and infrastructure, 212–219
communication towers
area of influence, 215–217
lek count trends and number of, 416, 420, 424, 427, 428
range-wide lek count trends, 448–450, 552, 556
See also cellular towers
connectivity, 383–405
analytical methods, 386–389
between SMZs, 390
disturbance dynamics, 398–400
Landscape Probability of Connectivity index, 387, 388
lek cluster components, 393–395, 402–404
lek network, 385, 391–396, 398, 402–404
migration corridor, 82
movement by sage-grouse, 400, 402
oil and gas development, 515
opportunities for restoring or maintaining, 560
conservation of sage-grouse, 402, 403, 448
range-wide, 390
scale, 401, 402
temporal change in lek network in Washington, 398
temporal changes, 394–396, 403–405
within each SMZ, 392, 396
Conservation Assessment of Greater Sage-Grouse
and Sagebrush Habitats, 37, 40
Conservation Reserve Program (CRP)
age of CRP and selection by sage-grouse, 524, 527
area in SGCA, 210
area in Washington, 519, 520
capability of CRP to benefit sage-grouse, 211, 212
CRP-landscape configuration and selection
by sage-grouse, 525–528
implementation, 519
maturation of vegetation and sage-grouse
nesting, 524
nest site vegetation characteristics, 525
population response to CRP in Washington, 526, 527, 528
conservation challenges, 556, 558
comprehensive approach, 404, 450
connectivity, 548
Conservation Reserve Program, 529
energy development, 507, 514
fire and cheatgrass-dominated landscapes, 404
harvest strategy, 110, 111
holistic management, 472
human footprint, 270
impacts of free-roaming equids, 289
landscape scale, 501
local working groups, 38
microparasitic epizootics, 125
partnerships, 35
planning and prioritization, 37–41, 515, 516, 548, 558–563
short fire rotation, 200, 201
stepping-stone habitats, 404
tree removal, 201
West Nile virus, 140, 141
core regions
analyses classification of biological value, 511–512
biological value of and energy potential for development, 512–516
characteristics of sage grouse leks, 509
connectivity, 388, 391, 515, 560
energy development potential, 510
identification of, 507, 508
importance in landscape conservation, 514–516
known breeding populations of sage-grouse, 508
mapping using kernel density functions, 509
risk of energy development, 511, 512
cottontail (Sylvilagus spp.), 120
coyote (Canis latrans), 65, 97–99
Crow, American (Corvus brachyrhynchos), 129, 245
crupina, common (Crupina vulgaris), 158
Culex tarsalis, 124
See also mosquito
daisy, oxeye (Chrysanthemum leucanthemum), 158
Dakotas population
lek monitoring and evaluation, 305–307
location and description, 297, 299
model statistics for trend and persistence, 307, 308, 310
population reconstruction, 306
dandelion, common (Taraxacum officinale), 76
deer (Odocoileus spp.), 130
deer, mule (Odocoileus hemionus), 283, 286
impact of oil and gas development, 493, 494
demography
summary statistics, 56–58, 551
See also breeding success; clutch size; nest success; survival
development
relative to lek count trends, 414, 418, 441, 443
See also anthropogenic disturbance
diptera, 115, 120

INDEX

627
discriminant function analysis
environmental variables between occupied and extirpated range, 461–472
methods for evaluating occupancy, 453–460
model performance ranking for occupancy, 458–460
disease
ecology, 119
need for sampling protocol, 126
nonparasitic, 125
by state or province, 116–118
vectors, 120, 124
See also aspergillosis; avian blackhead; coccidiosis; Escherichia coli; fowl typhoid; necrotic enteritis; pullorum; tularemia

dispersal
females, 59
gene flow, 92
landscape scale adaptation, 271
males, 59
modeled connectivity among leks, 387–394, 402–404
distribution
connectivity 392, 393
current for sage-grouse, 87
historical locations of sage-grouse, 457
populations and SMZs, 297
pre-settlement (historical), 34, 87
pre-settlement, defined, 453
regionally clumped pattern, 511
relative to free-roaming equids by state, 278, 279
disturbance
Clementsian model, 230
cumulative impacts, 249, 554
diffuse, 207
evolutionary grazing regime, 231
fire as dominant factor, 231
forb cover, 153
free-roaming equids, 277, 278
geographic variation, 254, 255
lag effects in population response, 500, 562
magnitude of effect, 206
plant community dynamics, 155
plant diversity, 153
point-source, 229
press form, 229
role in shaping vegetation communities, 229–231
state-and transition models, 231
synergistic effects, 271, 448, 491
See also anthropogenic disturbance; human footprint
dropseed, sand (Sporobolus cryptandrus), 153
drought, 155, 164, 173–175, 180
depletion of native grasses, 220
duration and severity, 173
historical conditions in major river basins, 180
late Holocene, 155
local patterns, 173
relative to lek count trends, 448

Eagle, Golden (Aquila chrysaetos), 97
Eagle-South Counties Colorado population
lek monitoring and evaluation, 316
location and description, 297, 299
ears, mule’s (Wyethia spp.), 282
East-central Idaho population
lek monitoring and evaluation, 347
location and description, 297, 300
population reconstruction, 342
ecological communities
alteration by invasive species, 163, 164
classification, 151–154
plant associations, 153
sagebrush alliances, 152
ecological site
alternative state, 533
decreased productivity, 220, 232
defined, 149
description, 532–535, 545, 546
development, 153
disturbance, 181, 539
habitat potential, 534
reference state, 533
effective population size
analysis by SMZ and population, 293–381
landscape pattern, 268
overview, 556.
eggs
incubation duration, 62
initiation of incubation, 62
initiation of laying, 62
See also clutch size
Eimeria angusta, 117, 122
Eimeria centroceri, 117, 122
Eimeria pattersoni, 117, 122
Eimeria spp., 114, 117, 122, 126
elevation
gradient by landownership, 25
lek count trends, 412, 413, 417, 421, 447, 448
relative to occupancy, 461
statistics by SMZ, 27
elk (Cervus elaphus), 283, 494
Endangered Species Act, 23
petitions to federally list sage-grouse, 35, 36
energy development, 489–503, 505–516
anticipated level, 506
cumulative impacts, 499, 500
current and potential in sage-grouse range, 500, 501
density of human features, 493
geothermal energy active and pending developments, 241, 243
impacts to other sagebrush species, 493, 494
inventory of resources, 234
resulting land-use changes detrimental to sage-grouse, 491–494
risks to core regions by state, 513
sage-grouse biological responses, 494–500
sage-grouse population indices and coalbed natural gas fields, 498
sage-grouse threshold of tolerance, 498, 499
synergistic effects, 491
See also anthropogenic disturbance; geothermal energy development; oil and gas development; wind energy development

Energy Policy and Conservation Act, 234
equids, free-roaming, 273–290
alteration of sagebrush ecosystems, 288, 289
area affected by state, 279
direct effects on sage-grouse, 281
distribution of herd areas managed by BLM, 275
domestic livestock and equid AUMs by state, 286, 287
ecological cascade effect, 283
effects on sagebrush communities, 277, 278, 281–285
evolutionary, cultural, and management history, 278, 280, 281
factors influencing habitat use, 288
local scale disturbance, 277, 278
potential impacts to sage-grouse habitat quality, 281–286
sage-grouse relationships, potential modeling approaches, 286–288
See also burros; horses, free roaming

Escherichia coli, 118, 123

Euro-American settlement
characteristics of areas claimed, 207
distribution of sage-grouse, 87
eastern Washington loss of shrub steppe, 207, 208
percent sagebrush converted to agriculture, 208
exotic plant species
grasses, 160
impact at low elevations, 167
invasion in Great Basin, 220
plant cover and lek count trends, 412, 424
range-wide lek count trends, 447
response to increased carbon dioxide, 179
seed dispersion by nonnative ungulates, 283
sequential invasions, 160
by SMZ, 414
See also cheatgrass; invasive plant species

extirpation
analysis methods, 453–459
anthropogenic variables, 467
associated environmental variables, 454–456, 461, 462
best-performing discriminate function models, 462–464
defined, 453
features, 551, 552
Gunnison Sage-Grouse, 464
isolated population risk, 468
peripheral population risk, 468
population strongholds, 469
regional risk, 458
See also population dynamics and persistence

Falcon, Prairie (Falco mexicanus), 97

federal agencies
characteristics of land managed, 24–28
management of mineral resources, 491, 501–503
public stewardship, 491
stipulations for oil and gas development, 497, 499
fences
density on public lands, 224–226
livestock grazing, 232
predators, 553
sage-grouse mortality, 66, 232, 269
threat consideration, 555
fescue, Idaho (Festuca idahoensis), 153, 166
fidelity
breeding sites, 60, 450, 500, 562
leks, 387
nests, 74
seasonal ranges, 60
summer range, 77
winter range, 80
fir, Douglas (Pseudotsuga menziesii), 162, 166
fire rotation, 196
fire ecology, 185–201
cheatgrass 167–171, 181–184, 189–201, 198
cheatgrass-dominated systems, 163
climate, 193
conifer expansion, 155
exclusion, 199
factors influencing, 165
fire frequency and climate, 166
floristic provinces, 176, 193
frequency, 552
historical range of variation, 186, 187, 190–192, 194, 196–201
historical, 155, 165, 168, 191, 192, 200, 551
intervals for ecological sites, 166
livestock introduction, 167
military training, 247

INDEX
fire ecology (continued)
 pinyon-juniper communities, 189
recent estimates, 193, 198–200
roads, 171, 200
sagebrush communities, 189
spatial heterogeneity analysis, 188
fire impacts
 BLM-administered lands, 177, 178
 non-fire fuels treatment, 228, 229
population declines of sage-grouse, 233
post-fire rehabilitation, 224, 227, 228
relative to lek count trends, 414, 418, 424–426,
 447, 448
reseeding after, 220
sage-grouse habitat, 232, 233
severity, 187
within the SGCA, 169–171
fire rotation calculation, 187–190, 193
adjacency correction, 189, 190
composite fire interval, 165, 166, 188, 189
corrected estimate for sagebrush near
Douglas-fir, 190, 193
equation, 187
macroscopic charcoal, 193
natural fire rotation, 165
pollen ratios, 193
sagebrush recovery time, 194–196
tree fire-scar methods, 190
fire, prescribed
 burn characteristics, 233
negative effects, 201, 224, 227, 247, 552
recolonization by sage-grouse, 247, 403
sagebrush recovery, 247
threat, 556, 557
flocking, 81
 autumn, 78
floristic provinces
 changes in fire statistics, 176
 Columbia Basin, 148, 151
Northern Great Basin, 148, 151, 170
 predicted distribution of cheatgrass, 161
recent fire statistics, 193
Silver Sagebrush, 148, 151, 172
Snake River Plain, 148, 151, 173
Southern Great Basin, 148, 151, 171
Wyoming Basin, 148, 151, 174
Flycatcher, Gray (Empidonax wrightii)
 population trend and conservation status, 478
fowl typhoid, 123
fox, red (Vulpes vulpes), 65, 97–99, 449
fragmentation
 agriculture, 205, 554
core regions, 509, 510
disturbance, 67, 448, 467, 468, 552, 554, 557
landscape pattern, 269, 389, 391

modeling analysis, 262–264, 268, 269
nests, 60, 62
oil and gas development, 241, 242
predators, 99
roads and motorized trails, 171, 219
sagebrush landscapes, 454
See also anthropogenic disturbance; human
footprint; lacunarity analysis
Francisella tularensis, 118, 123
fungi, 118, 123
genetics. See population genetics
geothermal energy development, 203, 240, 241,
 245, 246, 248, 251
Goniodes centroceri, 119
grama, blue (Bouteloua gracilis), 153, 492
graph theory, 305, 385
grassland
 cover and lek count trends, 412, 414, 418, 423
greasewood (Sarcobatus vermiculatus), 73, 78, 153
Great Basin sagebrush vegetation type
 characteristics and geographic distribution, 148
 vegetation structure, 153, 162
Great Plains SMZ
 agricultural area, 209, 210
 area influenced by infrastructure, 215
 area of sagebrush, 25
 connectivity, 392, 396
 energy potential, 510
 geothermal leases, 245
 human footprint, 261, 266, 445
 human population density, 212, 214
 landownership, 26, 27
 lek count trends and natural and anthropo-
genic features, 413–420, 423, 426, 432, 433,
 439–441
lek monitoring and evaluation, 313–315
 location, 55, 297
model statistics for trend and persistence, 310, 315, 316
 oil and gas development associated with risk of
sage-grouse extirpation, 469
 oil and gas development, 240, 242
 population reconstruction, 307
 risk of energy development, 507
 urbanization and infrastructure, 212–219
Greater Green River Basin
 oil and gas development, 237–239, 248
Greater Sage-Grouse Comprehensive Conserva-
tion Strategy, 37, 40
Grouse, Black (Tetrao tetrix), 89, 92, 99
Grouse, Columbian Sharp-tailed (Tympanuchus phasianellus colombianus), 35
Grouse, Dusky (Dendragapus obscurissimus), 93
Grouse, Plains Sharp-tailed (Tympanuchus phasianellus jamesii), 121
Grouse, Red (Lagopus lagopus scoticus), 92, 114, 120, 126, 132
Grouse, Ruffed (Bonasa umbellus), 54, 123
Grouse, Sharp-tailed (Tympanuchus phasianellus), 62, 63, 93, 110, 125
Grouse, Sooty (Dendragapus fuliginosus), 93
gull (Larus spp.), 65

habitat fragmentation. See fragmentation
habitat monitoring and evaluation
experimental design, 561, 562
general techniques, 522
line-point intercept, 479, 480
stubble height monitoring, 538
resource selection functions, 507
restoration guidelines, 545–548
Robel pole, 520
habitat needs, 540
characteristics of landscapes, macroscale, 80–82
life-history stages, microscale, 71–80
local scale, 276, 277
habitat restoration. See restoration of sagebrush ecosystems
habitat treatments, 232, 248, 540–544
BLM-managed lands, 223, 225, 226
habitat use
autumn, 78
brood-rearing, 75–78
Conservation Reserve Program, 517–529
irrigated lands, 77, 78
leks, 71, 72
mesic sites, 124
nesting, 72–75, 525
potential exposure to West Nile virus, 131
winter, 78–80
Haemaphysalis leporis-palustris, 115, 120, 123
Haemaphysalis leporis-palustris, 115, 120
Haemaphysalis spp., 121, 122
halogeton (Halogeton glomeratus), 158, 542
Harrier, Northern (Circus cyaneus), 97, 135
harvest effect, 106–110
additive 103, 107–110
compensatory 102, 103, 107, 108, 110
density-dependent mechanisms 107
female mortality, 108
isolated populations 108, 109
population response 109
threshold level 108, 111
harvest management
appropriate harvest rate, 107, 108, 110
concern, 553
estimates by state, 106
monitoring 110, 111
post-1990, 103–106
pre-1990, 103
regulations and considerations 106, 110
risk-sensitive strategy, 558
season length and bag/possession limit by state
103–105
sport hunting, 111
West Nile virus, 105
Hawk, Red-Tailed (Buteo jamaicensis), 130
hawkweed, meadow (Hieracium pratensis), 158
hawkweed, orange (Hieracium aurantiacum), 158
helminths, 115, 116, 120, 121
necrosis, 120
See also cestodes; macroparasites; nematodes; tapeworms
hemlock, poison (Conium maculatum), 157, 158
Herd Management Areas, 278, 279
criteria used to set population goals, 280
distribution, 275
horse removal strategies, 286
Heterakis gallinarum, 116, 120, 121
Histomonas meleagridis, 121, 123
home range size, 59, 551, 561
annual, 60, 276
seasonal, 60
homestead acts, 15–17, 207
horsebrush, spineless (Tetradymia canescans), 70, 73
horses, free-roaming, 273–290
degradation of mesic systems, 284
ecological differences relative to horse occupancy, 281–285
factors influencing impact of grazing, 283
grazing ecology, 286
historical numbers, 278
home-range size, 283
insights from studies conducted in Great Plains, 283
legislative and legal mandates, 280, 281
management, 280, 281, 286
removal strategies employed on herd management areas, 286
synergies with livestock grazing, 285–286, 288
See also equids, free-roaming
human footprint, 253–271
bottom-up effects, 270, 271
ecological and sagebrush landscape patterns, 262–267
input models, 256
lek count trends, 416, 420, 441, 443–445
levels and broad-scale effects, 554
model development, 256–259
physical and anthropogenic features, 30, 255, 450
relative to occupancy, 269, 271

INDEX

631
human footprint (continued)
- sagebrush land-cover types, 260, 262
 SMZs, 267
- spatial variation across sage-grouse range, 256, 260
- top-down effects, 270
 See also anthropogenic disturbance
human population density
- impacts of development and infrastructure on
 sagebrush habitats, 550, 552
 increase, 212, 255, 267
- increases in Great Basin between 1990
 and 2004, 267
- indigenous people, 212, 254
 predator population, 100
- relative to occupancy, 462, 463
 sage-grouse persistence, 100
- hunting. See harvest effect; harvest management
 Hymenolepis microps, 120

Intermountain region
- area occupied by sagebrush, 150
 dominant sagebrush subspecies, 149
 dominant understory grasses, 153
 sagebrush soil and temperature gradients, 152

Intermountain West
- area of woodland, 162
 cheatgrass 160–162, 167
 free-roaming horses, 278
 herbaceous vegetation, 537
 predicted distribution of cheatgrass, 161
 rural development, 515
 sagebrush communities prior to settlement, 167
 invasive plant species, 157–161
 altering community structure, 163, 164
 altering ecological function, 163, 164
 control of, 223
 recolonization after treatment, 223
 temporal water availability, 164
 See also cheatgrass; exotic plant species
 irrigation canals, 208, 209, 411
 Ixodes ricinus, 120

jackrabbit (Lepus spp.), 120
jackrabbit, black-tailed (Lepus californicus), 81
Jackson Hole Wyoming population
- lek monitoring and evaluation, 316, 317
- location and description, 297, 299
- model statistics for trend and persistence, 310, 319
- population reconstruction, 318
 Jay, Blue (Cyanocitta cristata), 129
 Jay, Steller’s (Cyanocitta stelleri), 129
 junegrass, prairie (Koeleria macrantha), 153
 juniper (Juniperus spp.), 154

juniper ecology
- control of, 224, 541, 542
- fire rotation, 189, 196
- historical encroachment, 167, 168
- response to fire, 167
- See also woodland expansion
 juniper, Rocky Mountain (Juniperus scopulorum), 162, 492
 juniper, Utah (Juniperus osteosperma), 162
 juniper, western (Juniperus occidentalis), 162, 167, 169

ked (Ornithomyia anchineuria), 115, 120
Klamath, Oregon–California population
- lek monitoring and evaluation, 352, 354
- location and description, 297, 300
- knapweed, diffuse (Centaurea diffusa), 158, 160
- knapweed, Russian (Centaurea repens), 158
- knapweed, spotted (Centaurea maculosa), 158
- knapweed, squarrose (Centaurea virgata), 158
- knotweed (Polygonum spp.), 76
- K-selected life history strategy, 107
- Küchler’s sagebrush vegetation types, 147–151,
 155–157

lacunarity analysis
- human footprint intensity by SMZ, 263–265
 interpretation, 259
 landscape metric, 257–259
 modeling artificial landscapes, 259
 moving-window analyses, 258
- scale, 258, 262
 See also human footprint
lag effects
- population response to disturbance, 500, 562
 Lagopocbus gibsoni, 119
 Lagopocbus perplexus, 119
land policies
- conservation 17, 20–23
- historical acquisition and disposition, 15
- historical sequence of public land development,
 15–24
- influence on patterns and processes in sage-
 brush habitats, 247
- multiple use 18, 19, 22, 23
- railroads 15
- recreation 18, 23
- transfer of public lands to private ownership, 207
land use
- agriculture, 207–212
- amplification of disturbance, 249
- cumulative effects, 248, 249
- energy development, 233–246

632
STUDIES IN AVIAN BIOLOGY NO. 38 Knick and Connelly
landownership
relative to elevation, 472
relative to extirpation, 468
relative to occupancy, 462, 463, 467, 552
landscape composition and configuration
adaptation of sage-grouse, 268, 269
analysis, 257-271, 480
Conservation Reserve Program, 525-528
contrast weighted edge density analysis, 480
energy development and disturbance, 493, 494
factors influencing vulnerability to cheatgrass
after fire, 200
fragmentation, 389, 391
human footprint, 267
influence of fire, 187
influence of military training, 247
juxtaposition of cover types, 82
land cover, 401
lek abandonment, 395, 399
nestedness, 263, 267
relative to occupancy, 525, 526
sagebrush diversity and patch size, 81
scale and degree of fragmentation, 262, 263
by SMZ, 268
See also fragmentation; lacunarity analysis;
land use
landscape conservation
challenges, 513-516
conifer encroachment, 80
fire frequency, 80
nestedness and population persistence, 268
paradigm shift from local conservation, 491, 501
strategies, 514
restoration after fire, 233
vital rates and landscape configuration, 528, 529
See also conservation; restoration
Lark, Horned (Eremophila alpestris)
population trend and conservation status, 130, 478
legacy effects
related to past management, 275, 286
legal status
Canada, 38
federal, 35, 36
state and provincial laws, 37
lek characteristics
attendance by sex, 61, 62
attrition in Washington, 523, 527
definition, 71
density, 72
evolution kin selection, 89
general description, 61
interlek distance, 72
lek complex, 61, 72, 523
location characteristics, 71, 72
location factors affecting, 61
location in cropland, 528
location nonmigratory populations, 72
location persistence, 61, 71
monitoring procedures, 296
network, as measure of connectivity, 385
network, connectivity and relative importance of
individual leks, 391, 393
number of males, 72
persistence, methods for analysis of, 389
persistence, related to lek connectivity and
population decline, 395, 397
size (area), 72
size, predicted trajectories, 555
lek count techniques. See survey techniques
lek count trends
analysis methods, 409-411
average counts across management zones from
1997 to 2007, 412
connectivity relative to persistence, 403
correlations with habitat features, 556
lek abandoning, 395, 397, 399-401
lek attendance relative to disturbance, 242, 498
patterns, 444
range-wide distribution and linkages, 392
related to environmental features and anthropo-
genic variables by management zone, 413-420
total number leks identified, 293
See also specific populations and SMZs
Leucocytozoon lovati, 116, 122
Leucocytozoon spp., 121
lice, 115
prevalence, 119
life-history characteristics, 103, 107
See also specific attributes
lion, mountain (Felis concolor), 280
livestock grazing
affect on fire history, 231, 232
decreased shrubland productivity, 232
ecosystem impacts of historical grazing, 247
effects of grazing management, 553
effects on dynamics of sagebrush systems,
230-232
estimated AUMs by state, 287
historical numbers of livestock, 220

INDEX

633
livestock grazing (continued)
legislative actions, 22
management, 232
modifications for restoration of sagebrush ecosystems, 537–539
nest trampling and nest abandonment, 281, 282
number of grazing permits and leases on public land, 221, 222
pattern and influence, 231
post-fire, 228
prescriptive, 224
rangeland health, 222
scale, 232
stocking rate, 230
timing and stocking levels to improve habitat, 538
See also land use
loafing
behavior, 56, 72
habitat, 77, 79, 447
local working groups, 37, 38, 40, 41, 477
loosestrife, purple (Lythrum salicaria), 159
lupine (Lupinus spp.), 282
lupine, tailcup (Lupinus caudatus), 76
Lyon-Mono population
 genetic uniqueness, 91–93
 West Nile virus, 131
macroparasites, 119–121
prevalence by state, 115, 116
weather, 121
See also diptera; helminths; lice; microfilaria; ticks
Magpie, Black-billed (Pica hudsonia), 97
Magpie, Yellow-Billed (Pica nuttalli), 129
mahogany, mountain (Cercocarpus spp.), 73
mallophaga. See lice
management
 core populations, 470
 energy development stipulations, 499
 exotic plants, 470
 fire rehabilitation, 224, 227
 free-roaming equids, 278, 279
 holistic mitigation for energy development, 471
 non-fire fuels treatment, 228, 229
 prescribed fire, 224, 227
 restoration and rehabilitation of sagebrush ecosystems, 534–540
 sagebrush obligate passerines, 486, 487
 umbrella species concept, 477
 woodland expansion, 471
 See also specific management-related topics
Manakin, Long-tailed (Chiroxiphia linearis), 89
Manakin, White-Bearded (Manacus manacus), 89
mating
 behavior off the lek, 88
 multiple paternity, 88
 polygynous, 87–89
Meadowlark, Western (Sturnella neglecta), 130, 484
 population trend and conservation status, 478
 medusahead (Taeniatherum caput-medusae), 159, 160, 161, 164, 557
 control, 542, 543
dominance on public lands, 161
Memorandums of Understanding (MOUs), 42–49
conservation and management implementation, 40
interagency, 38
Western Association of Fish and Wildlife Agencies, 35
metapopulation, 297
analysis, 304, 363–370
connectivity, 402
genetics, 90
microfilaria, 121
microparasites, 116–118, 121–125
affect on chicks, 122
fitness-reducing effects, 122
fungi, 118, 123
prevalence by state, 116–118
protozoa, 116, 117, 121–123
retroviruses, 118, 124, 125
viruses, 118, 124, 125
See also avian malaria; bacteria; fungi; protozoa;
retroviruses; virus types
Middle Park Colorado population
lekJ monitoring and evaluation, 317, 320
location and description, 317, 320
model statistics for trend and persistence, 310, 320, 321
population reconstruction, 318
migration
daily travel rate, 59
definition, 59
influence of weather, 60
patterns, 59
seasonal timing, 59, 78
military training
disturbance, 528
ecological influences, 247
land assessment statistics, 247
lands within the SGCA, 246, 247
mineral and energy resources
legislation 16, 17, 19–22
Mineral Leasing Act, 17, 22
See also federal agencies
monitoring and evaluation. See habitat moni-
toring and evaluation; pellet counts; survey
techniques
Mono Lake California-Nevada population
lek monitoring and evaluation, 324, 325
location and description, 297, 299
model statistics for trend and persistence, 310, 329
population reconstruction, 326
moose (Alces alces), 130
mortality
causes, 65–67, 96
seasonal patterns, 65, 97
West Nile virus, 132–135
Moses Coulee Washington population
lek monitoring and evaluation, 358
location and description, 297, 300
model statistics for trend and persistence, 311, 358–360
population reconstruction, 359
mosquito, 124
coalbed natural gas pond habitat, 132
effect of West Nile virus infection, 132
transmission of West Nile virus, 129–132
mouse, deer (Peromyscus maniculatus), 289
mouse, Preble’s meadow jumping (Zapus hudsonius preblei), 93
mouse, western harvest (Reithrodontomys megalotis), 289
movement
between breeding/nesting and summer range, 77
between nest and early brood-rearing areas, 75
corridors, 82
dispersal and migratory, 61
elevational, 77, 79
flocks, 81
pattern, 59
response to plant phenology, 77
seasonal variation, 59
See also dispersal; migration
Mycoplasma gallisepticum, 123
Mycoplasma meleagridis, 123
Mycoplasma spp., 118
Mycoplasma synoviae, 123

National Sage-Grouse Habitat Conservation Strategy, 39, 41
native vegetation
competition with cheatgrass, 179, 200
Conservation Reserve Program, 519, 528
replanting, 228, 528
response to grazing disturbance, 220
See also cheatgrass
necrotic enteritis, 123
needle and thread (Hesperostipa comata), 153
needlegrass, Columbia (Acnatherum nelsonii), 153
needlegrass, Thurber’s (Acnatherum thurberianum), 153
needlegrass, western (Acnatherum occidentalis), 153
nematodes, 116, 120, 121
nest initiation and success
abandonment, 63
age-specific rates, 58, 64
altered habitats, 58, 63
Conservation Reserve Program lands, 523–525
distance of nest from lek, 75
forb cover, 74
heterogeneity in female fitness, 67
initiation rate, 63
likelihood of renesting, 56, 57, 63
nesting likelihood by state or province, 56, 57
observer influence, 55, 63
potential influence of grazing, 229
rates, 58, 63
rates and forb cover, 74
by state or province, 56, 57
unaltered habitats, 63
vegetation characteristics, 74, 75
nest predators, 97
nest site characteristics
Conservation Reserve Program, 523, 524
distance between annual consecutive nests, 60
distance between consecutive-year nests, 74
distance from lek, 74
distance to nearest lek, 62
habitat fragmentation, 60, 62
herbaceous characteristics, 74
nest cover, 73
sagebrush canopy, 73, 74
sagebrush height, 73, 74
vegetation characteristics of in
Washington, 525
within season distance between first and
renest, 60
North American Sagebrush Ecosystem Conservation
Act, 39, 40
Northeast Interior Utah population
lek monitoring and evaluation, 330, 331
location and description, 297, 299
model statistics for trend and persistence, 310, 331, 332
population reconstruction, 326
Northern Great Basin floristic province
fire statistics, 170, 193
geographic extent, 151
Northern Great Basin population
lek monitoring and evaluation, 348, 349
location and description, 297, 300
model statistics for trend and persistence, 310, 349, 350
population reconstruction, 342

INDEX
Northern Great Basin SMZ
 agricultural area, 209, 210
 area influenced by infrastructure, 215
 area of sagebrush, 25
 connectivity, 392, 396
 geothermal leases, 245
 human footprint, 260, 261, 266
 human population density, 214
 landownership, 26, 27
 lek count trends and natural and anthropogenic features, 413–420, 421, 423, 436
 lek monitoring and evaluation, 310, 356–358
 model statistics for trend and persistence, 357
 oil and gas development, 240, 242
 population reconstruction, 353
 urbanization and infrastructure, 212–219
 northern Great Plains
 dominant sagebrush species, 150, 151
 dominant understory grasses, 153
 sagebrush-grass alliances, 153
 Northern Montana population
 lek monitoring and evaluation, 306, 307, 309
 location and description, 297, 299
 model statistics for trend and persistence, 309, 310
 population reconstruction, 306
 Northwest-Interior Nevada population
 lek monitoring and evaluation, 352, 355
 location and description, 297, 300

off-highway vehicle use, 216, 217
 effects on wildlife, 219
oil and gas development
 behavioral avoidance, 450, 499
 characteristics of sites disturbed by coalbed methane, 243
 correlation with lek count trends, 449
 cumulative impacts, 499, 500, 552
 ecological influences, 241–246
 effects on sage-grouse, 242, 243, 491, 492, 495, 498–500, 554
 population trends within oil and gas fields, 498
 threshold of tolerance, 498
 wells and lek count trends, 416, 420, 427–430
oil and gas management
 applications for leases by state, 243
 associated infrastructure, 492
 characteristics of Manyberries oil field, 496, 497
 characteristics of Pinedale Anticline Project area, 496, 497
 characteristics of Powder River Basin field, 496, 497
 current and pending oil and gas wells within the SGCA, 235–237
 federal applications, 490

federal stipulations, 234, 238
 historical development, 233, 234
 increases in Wyoming Basin, 270
 infrastructure, 237, 241
 inventoried geologic basins within the SGCA, 234
 mitigation, 471, 497, 500
 pace of development from 1900 to 2007, 491, 500, 501
 statistics for major producing fields, 237–239
 stipulations for sage-grouse, 242, 243
 within the SGCA, 235

Oriole, Bullock’s (Icterus bullockii), 130
 Ornithofilara tuvensis, 116, 121
Owl, Northern Spotted (Strix occidentalis), 93
 Owl, Short-Eared (Asio flammeus), 130

parasites. See disease; helminths; macroparasites; microparasites
Partridge, Gray (Perdix perdix), 59, 63, 121, 125, 130
 passerine species
 niche breadth association with sage-grouse, 481–486
 population trends and conservation status in sagebrush steppe, 478
 temporal use of sagebrush habitats, 477
Peach (Pavo cristatus), 89
Pelican, American White (Pelecanus erythrorhynchos), 129
 pellet counts, 478, 479, 481, 517
 protocol, 520–522
 relative to habitat use, 525–528
pepperweed, perennial (Lepidium latifolium), 519
 Pigeon, Rock (Columba livia), 119
 pine, ponderosa (Pinus ponderosa), 166, 189, 492
 pinyon (Pinus spp.), 154
 pinyon, single-leaf (Pinus monophylla), 162
 pinyon, two-needle (Pinus edulis), 162
 pinyon control, 224
 distribution and fire, 155
 elevation and encroachment, 162, 167
 encroachment, 162, 167, 168
 response to fire, 167
 See also woodland expansion
 pipelines
 construction, 234, 237
 influence in SMZs and SGCA, 240, 241
relative to lek count trends, 415, 419, 437, 438, 449
spread of exotic plant species, 250
See also anthropogenic disturbance
Plasmodium pediceltii, 122
Plasmodium spp., 121
population centers. See core regions
population dynamics and persistence, 293–381
analytical approach and inference, 370–372
breeding populations and SMZs, 297
breeding populations of sage-grouse, 297–300
carrying capacity, 302–374, 555
changes in connectivity and decline, 398
data limitation, 365
decline of sage-grouse in Washington, 518, 527
definition of lek for analysis purposes, 296
density-dependent growth models, 302
density-independent growth models, 302
development and background 295–305
finite rate of change, 301
fitting population growth models, 302–304
inactive leks, 366
index to historical abundance, 298–304
lek counts as index, 298, 301, 302, 369, 370
maximum likelihood estimates, 375–381
metapopulation analysis for management zones, 363–365, 367–369
monitoring effort within SMZs and populations, 298
population reconstruction, 298–304
population trend modeling background, 298
 sage-grouse overall decline, 366–368, 370–374
time periods of analysis, 296
viability of metapopulation of sage-grouse SMZs, 304, 305
See also specific populations and SMZs
population genetics
allellic diversity, 90–92
gene flow, 90
haplotype diversity, 90
isolation by distance, 91, 92
low diversity in Washington populations, 91, 92
Lyon-Mono population uniqueness, 91–93
species and subspecies, 89–92
population growth models
Gompertz state space model, 302, 303
Ricker-type model, 302, 303
population
age ratio, 66
annual rates of change in Washington, 527
definition, 54
fluctuations, 311, 313, 324, 337, 444
historical in Washington State, 522, 523
identification, 61
isolation, 365
Lyon-Mono, 91–93
overview of current knowledge, 551
predicted trajectories, 555
range-wide rate of decline, 403
Powder River Basin
characteristics of sites disturbed by coalbed methane development, 243
oil and gas development, 237–239
Powder River Montana population
lek monitoring and evaluation, 311, 312
location and description, 297, 299
model statistics for trend and persistence, 310, 312
population reconstruction, 306
power lines
area of influence, 216
behavioral avoidance by sage-grouse, 449
collision mortality, 66, 246
lek count trends, 415, 419, 440–442, 449
predation risk, 245
See also transmission lines
Prairie-Chicken, Attwater’s (*Tympanuchus cupido attwaterii*), 99
Prairie-Chicken, Greater (*Tympanuchus cupido pinnatus*), 63, 92, 110, 121
Prairie-Chicken, Lesser (*Tympanuchus pallidicinctus*), 63, 89, 121, 151, 448, 449
fragmentation, 515
precipitation
climate change, 174, 175
range-wide lek count trends, 448
related to lek count trends, 412, 413, 417, 448
restoration potential, 535, 536, 545
sagebrush communities, 154
sagebrush recovery, 230, 233
statistics by SMZ, 27
West Nile virus transmission, 131, 132
predation, 232, 246, 247
adult birds, 97, 98
chicks, 97
demographic effects, 98
evaluation as threat, 553, 555
landscape fragmentation, 100
nest, 97
on leks, 97
process and effects, 98
predator community, 97
predator-prey dynamics, 98
response to anthropogenic developments, 100
synanthropic predators, 255, 256, 270
predator management, 98, 99
effect on nest success, 99
European examples, 99
removal, 270

INDEX
predators, 65, 66, 97
predator-cover complex, 95, 96, 100
rangeland health
private lands
distribution, 21
environmental characteristics by SMZ, 27
extirpated range, 552
general conversion, 468, 472
oil and gas development, 244, 245, 292
water availability and elevation, 24, 25
wind energy development, 514, 515
pronghorn (Antilocapra americana), 130, 286, 288
protozoa, 116, 117, 121–123
Ptarmigan, Rock (Lagopus mutus), 92
Ptarmigan, White-tailed (Lagopus leucura), 63, 92
public land
cheatgrass distribution, 161
cheatgrass, 152, 520
condition, 221–223, 230, 232
conservation, 491
distribution, 21
economic development, 400, 402, 514
environmental characteristics by SMZ, 27
fences, 553
fire protection by state, 177, 178
free-roaming equid mandate, 280, 281
livestock grazing, 219–221
management actions, 223–229, 528
management paradigms, 221
productivity, 232
recruitment, 212, 216, 217
recovery, 212, 216, 217
rehabilitation, 534–548
state or federal oversight, 206
values, 248
pullorum, 123
rabbit, pygmy (Brachylagus idahoensis), 476
rabbitbrush (Chrysothamnus spp.), 70, 73, 152, 520
rabbitbrush (Ericameria spp.), 152
raccoon, common (Procyon lotor), 97
ragwort, tansy (Senecio jacobaea), 159
Raillietina centroceri, 115, 120
Raillietina cesticillus, 115, 120
railroads, 15, 21
area of influence, 213, 215, 217
rangeland health
livestock grazing, 222
on lands managed by BLM, 222, 224
rattlesnake, prairie (Crotalus viridis), 65
Raven, Common (Corvus corax), 65, 97, 99, 100, 245, 270
recreation, 212, 216, 217, 219

recruitment
juvenile, 65
relative to food availability, 77
relative to oil and gas development, 500
Red Rocks Montana population
lek monitoring and evaluation, 344–346
location and description, 297, 300
model statistics for trend and persistence, 310, 345, 346
population reconstruction, 341
renewable energy development
ecological influences, 246
geothermal, 240, 241
wind, 240, 241
See also geothermal energy development; wind
energy development
reproductive success
relative to state, 56, 57, 64
research needs
accurate inventory of roads, 471
causal versus correlative relationships with
occupancy, 471, 472
harvest management, 110
landscape nestedness in sagebrush
ecosystems, 269
mapping of exotic plant occurrence, 471
predator communities, 100
protocol to assess landscape change, 562
range-wide disease monitoring, 126
relationships with free-roaming equid grazing,
283, 284, 288, 289
sagebrush fire recovery rates, 194, 195
shrub steppe variation and sage-grouse
populations, 528
spatial data for livestock grazing, 471
standard approaches to assessing
demographics, 67
stressors and population-level responses, 450
synergistic effects of human footprint, 271
unbiased estimates of breeding males and
females, 373
West Nile virus, 124, 140
resource demand
national projections, 247, 248
restoration, 531–548
active restoration, 539, 540
appropriate sagebrush subspecies, 544
assessing land status, 535, 536
challenges, 535, 544
connectivity, 558, 560
Conservation Reserve Program lands, 519, 527–529
goals and guidelines for sage-grouse, 540, 544–548
intervention grid, 535, 536

STUDIES IN AVIAN BIOLOGY NO. 38 Knick and Connelly
invasive plants, 539, 540
landscape heterogeneity, 552
landscape triage, 535, 546
livestock grazing, 537–539
management, 561
native plant species, 539
options, 534–540, 561
passive restoration, 536–539
peripheral populations, 515
planning and prioritization, 535, 548, 560, 561
post-project monitoring, 545, 547
replacing annual grasses with native perennials, 543, 544
revegetation 542–544
vegetation manipulation approaches, 540–544
Rhabdometra nullicollis, 116, 120
riparian cover
relative to lek count trends, 424, 425
roads
area of influence, 215
behavioral avoidance by sage-grouse, 448
ecological impacts, 219
impact on lek count trends, 415, 419, 430–437
mortality, 66, 219, 492
relative to occupancy, 462, 463
spread of invasive plant species, 219
Robin, American (Turdus migratorius), 129, 130
roosting
day, 72
distance from lek, 72
brood females, 77
winter 79, 96
r-selected, 107
rural development, 212, 251, 255
ecological influences, 217, 219
human population density, 248, 515
sacaton, alkali (Sporobolus airoides), 153
sage, Meditteranean (Salvia aethiopis), 159
sagebrush alliances, 147, 152–154, 166
sagebrush communities
cheatgrass, 160, 164, 167, 182, 183, 201, 551
climatic and site characteristics, 154
community phases, 231
conceptual model of impacts from free-roaming equids, 277
distribution, 148, 149, 155–157
disturbance, 155, 231
dynamics, 206, 533, 545
factors affecting recovery after fire, 233
factors affecting recovery from disturbance, 230
factors influencing plant diversity, 153
herbaceous production, 153, 154
hydraulic redistribution, 171
impacts of free-roaming equids, 557
impacts of historical grazing, 220
invasive species, 158, 159, 163, 164
new alternate steady states, 232
patch size and occupancy, 461
primary disrupters, 157–171
protected areas, 29
related to fire, 165, 166, 189, 233
resource demand, 247, 248
restoration, 536
sagebrush cover, fluctuations, 197
sagebrush-dependent passerines, 478, 480–485
tree dominance, 162
water availability, 171
sagebrush dynamic models
Clementsian, 230
state-and-transition, 231, 533
sagebrush ecology, 69–83, 145–184, 532
affected by human footprint, 267
climate and fire frequency, 194
factors influencing abundance and frequency, 149
geographic extent, 150
growing conditions, 149, 150
human footprint, 267
impact of fire, 187, 194–196
Intermountain region, 148–150
northern Great Plains, 150–151
pre-American fire rotation and interval, 191, 192
recovery from fire, 194, 195, 233
reestablishment following fire, 163
seed dispersal, 194, 197, 233
seed viability, 233
succession pathways, 230
tolerance to fire, 163
sagebrush ecosystem alteration, 147
community phases, 533, 534
cumulative impact of disturbance, 249
disruption, 163, 164
ecological site transitions between vegetation states, 533, 539
ecological thresholds, 532
sagebrush ecosystem (continued)
effects of free-roaming equids, 281–285, 288, 289
elevation gradient and human footprint, 268
factors influencing composition and configuration, 254
factors related to increased human-footprint intensity, 267, 268
grazing-sensitive attributes, 285
imperiled, 476
landownership, 24–28
multiscale dispersed-clumped landscape, 268
multiscale dynamics and land use, 249, 250
oil and gas reserves, 491
restoration needs, 201
role of fire, 185–201
sagebrush cover relative to lek count trends, 421–423
sagebrush-obligate species, 276
sage-grouse as umbrella species, 481–487
stressors, 147
temporal and spatial considerations for management, 534
threats, 186
sagebrush grassland
estimates of pre-American fire rotation and interval in mountain grasslands, 192
plant functional types, 537, 538
sagebrush landscape
area of sagebrush as predictor of sage-grouse persistence, 462, 465
density of human features, 554
fire interludes and diversity, 197
historical accounts, 197
impact of Euro-American settlement, 254
land use and resource distribution, 248
modeled patterns of sagebrush land cover, 389, 390
pace and extent of oil and gas development, 491, 500, 501
patch dynamics, 269
patch metrics, 263, 266
potential impact of climate change, 557
regions within sage-grouse range dominated by sagebrush, 389
removal, 220, 223
role of large fires, 196, 197
sagebrush landscape dominated by mature sagebrush, 197
self-organizing mechanisms, 268
size of core areas in occupied versus extirpated range, 461
spatial variation, 249
threshold values and sage-grouse persistence, 465, 467
use of mesic sites by free-roaming horses, 284

sagebrush, alkali (Artemisia arbuscula ssp. longiloba), 71
sagebrush, basin big (Artemisia tridentata ssp. tridentata), 145
affected by human footprint, 267
growing conditions, 149
northern Great Plains, 150
sagebrush, big (Artemisia tridentata), 69–71, 73–75, 79, 81, 86, 145
sagebrush, black (Artemisia nova), 70, 71, 73, 79, 145, 532
geographic extent, 150
growing conditions, 149, 150
human footprint, 267
sagebrush, early (Artemisia longiloba)
geographic extent, 150
sagebrush, fringed (prairie sagewort [Artemisia frigida])
northern Great Plains, 150, 151
sagebrush, hot springs little (Artemisia arbuscula ssp. thermophila), 150
sagebrush, litle (Artemisia arbuscula ssp. arbuscula), 70, 79, 145, 149–150, 532
estimates of pre-American fire rotation and interval, 191
growing conditions, 149
human footprint, 267
sagebrush, mountain big (Artemisia tridentata ssp. vaseyana), 79, 145
affected by human footprint, 267
estimates of pre-American fire rotation and interval, 191, 192
growing conditions, 149
patterns of fire recovery rates, 194, 195
recovery after fire, 233
sagebrush, plains silver (Artemisia cana ssp. cana), 148
growing conditions northern Great Plains, 151
sagebrush, sand (Artemisia filifolia), 148
northern Great Plains, 151
sagebrush, scabland (rigid, stiff [Artemisia rigida]), 532
growing conditions, 149
sagebrush, silver (Artemisia cana), 69–71, 73, 79, 145, 532
sagebrush, threetip (Artemisia tripartita), 70, 74, 520
sagebrush, Wyoming big (Artemisia tridentata ssp. wyomingensis), 79, 145, 492
climate and fire frequency, 194
estimates of pre-American fire rotation and interval, 191
growing conditions, 149
northern Great Plains, 150
recovery rate from fire, 194, 195
Sage-Grouse Conservation Area (SGCA), 147
area and percent influenced by infrastructure, 213, 215–218
area and percent influenced by urban development, 214
area influenced by agriculture, 208–210
area of sagebrush land-cover within, 249
current distribution of sagebrush habitats, 147, 148
distribution of CRP lands, 210
extent and dominant land cover, 386
federal agency management, 24, 27, 28
linear density of fences on public lands, 226
oil and gas development, 234–237, 241
Sage-Grouse Management Zones (SMZs)
agricultural area, 209, 210
area statistics, 25
connectivity, 206, 392, 393
dispersal rates, 367
environmental characteristics, 27
geothermal leases, 245
human footprint, 260, 261, 416, 420, 441, 443–445
human population density, 212–214
landownership, 24, 26
metapopulation analysis, 363–365, 367–369
occupied versus extirpated range, 464–469
oil and gas development, 237, 240, 242
overview of stressors and population trends, 447
probability of metapopulation persistence, 368
related to fire history, 414, 418, 424–426
Sage-Grouse, Eastern (Centrocercus urophasianus urophasianus), 36, 86, 90, 91
Sage-Grouse, Greater (Centrocercus urophasianus).
See specific topics
fragmentation, 515
Sage-Grouse, Western (Centrocercus urophasianus phaios), 36, 86, 90, 91
Salmonella pullorum, 123
Salmonella typhimurium, 123
salsify, common (Tragopogon dubius), 76
saltbush, shadscale (Atriplex confertifolia), 73, 152
sandreed, Prairie (Calamovilfa longifolia), 153
Sanpete–Emery Counties Utah population
lek monitoring and evaluation, 332
location and description, 297, 299
model statistics for trend and persistence, 310, 332, 333
population reconstruction, 327
Sarcocystis rileyi, 117, 122
Sarcocystis spp., 122
satellite lek, 61, 72
Scrub-Jay, Western (Aphelocoma californica), 129
sheep, bighorn (Ovis canadensis), 280
Shrike, Loggerhead (Lanius ludovicianus)
population trend and conservation status, 478, 484
Silver Sagebrush floristic province
fire statistics, 172, 193
geographic extent, 151
skeletonweed, rush (Chondrilla juncea), 158, 164, 557
wildfire, 160
Snake River Plain floristic province
cheatgrass and fire rotation, 200
fire statistics, 173, 193
geographic extent, 151
number of fires size and area burned, 173
Snake River Plain SMZ
agricultural area, 208–210
area influenced by infrastructure, 215
connectivity, 392, 396
geothermal leases, 245
human footprint, 260, 261, 266
human population density, 214
landownership, 26, 27
lek count trends and natural and anthropogenic features, 209, 413–420, 439
lek monitoring and evaluation, 350, 351
location, 55, 297
model statistics for trend and persistence, 310, 351
oil and gas development, 240, 242
population reconstruction, 343
sagebrush conversion and loss of population connectivity, 211
urbanization and infrastructure, 212–219
snake, bull (Pituophis catenifer), 65
Snake–Salmon–Beaverhead Idaho population
lek monitoring and evaluation, 347, 348
location and description, 297, 300
model statistics for trend and persistence, 349
population reconstruction, 342
probability of declining below effective population size, 310, 348
snakeweed, broom, (Gutierrezia sarothrae), 157
snakeweed, threadleaf (Gutierrezia microcephala), 157
Snipe, Wilson’s (Gallinago delicata), 130
snowberry (Symphoricarpos spp.), 73, 152
soil
erosion, 174
salinity level in occupied versus extirpated range, 461
water capacity of occupied versus extirpated range, 461
Sora (Porzana carolina), 130

INDEX
South Mono Lake California population
lek monitoring and evaluation, 325, 329
location and description, 297, 299
model statistics for trend and persistence, 310, 325, 330
population reconstruction, 326
South-central Utah population
lek monitoring and evaluation, 332, 333
location and description, 297, 299
model statistics for trend and persistence, 310, 334
population reconstruction, 327
Southern Great Basin floristic province
groupic extent, 151
fire statistics, 171, 193
Southern Great Basin population
lek monitoring and evaluation, 336, 337
location and description, 297, 299
model statistics for trend and persistence, 310, 338
population reconstruction, 328
Southern Great Basin SMZ
agricultural area, 209, 210
area influenced by infrastructure, 215
connectivity, 392, 396
goethermal leases, 245
human footprint, 260, 261, 266
human population density, 214
landownership, 26, 27
lek count trends and natural and anthropogenic features, 413–420, 425, 442
lek monitoring and evaluation, 338, 339
location, 55, 297
model statistics for trend and persistence, 310, 339, 340
oil and gas development, 240, 242
population reconstruction, 328
urbanization and infrastructure, 212–219
sowthistle (Sonchus spp.), 159
Sparrow, Black-throated (Amphispiza bilineata)
population trend and conservation status, 478
Sparrow, Brewer’s (Spizella breweri), 130, 147, 529
impact of oil and gas development, 494
niche breadth association with sage-grouse, 483, 484
population trend and conservation status, 478
Sparrow, Grasshopper (Ammomanus savannarum), 481
niche breadth association with sage-grouse, 483, 484
population trend and conservation status, 478
Sparrow, Lark (Chondestes grammacus)
population trend and conservation status, 478
Sparrow, Sage (Amphispiza bellii), 130, 147
impact of oil and gas development, 494
niche breadth association with sage-grouse, 483, 484
population trend and conservation status, 478
Sparrow, Savannah (Passerculus sandwichensis), 481
niche breadth association with sage-grouse, 483, 484
population trend and conservation status, 478
Sparrow, Vesper (Poecetes gramineus), 130
population trend and conservation status, 478
Species at Risk Act, 37, 38
spurge, leafy (Euphorbia esula), 158
squirrel, ground (Spermophilus spp.), 65, 97
squirreltail (Elymus elymoides), 153
starthistle, yellow (Centaurea solstitialis), 158
stochastic population projections, parametric bootstraps, 303
stressors
cumulative effect of, 449, 450
scale of effect, 446
spatial variability of, 446
synergistic effect of, 446
See also anthropogenic disturbance; threats
Summit–Morgan Counties Utah population
lek monitoring and evaluation, 334, 335
location and description, 297, 299
model statistics for trend and persistence, 310, 335, 336
population reconstruction, 327
survey techniques
effort by population and SMZ, 305–363
hunter harvest, 110
lek count method inconsistencies, 296, 367, 368
lek counts, 295–298
lek survey analysis biases, 444, 445
line-point intercept habitat survey, 479, 480
methodological variation among agencies, 551
pellet count, 478, 479, 520, 521
point counts for shrub steppe passerine species, 478
telemetry, 519
survival
by age and sex class, 65
breeding-age birds, 65
chicks, 64, 65
juveniles 64, 65
overview of sage-grouse, 551
survival in Pinedale anticline oil and gas development, 500
weather, 98
West Nile virus, 134
winter, 108
tapeworms. See Raillietina centroceri; Raillietina cesticillus; Rhabdometra nullicolta
Taylor Grazing Act, 17, 18, 22, 23, 220
thistle, bull (Cirsium vulgare), 158
thistle, Canada (Cirsium arvense), 158
thistle, musk (Carduus nutans), 158
thistle, Russian (Salsola kali), 159
thistle, Scotch (Onopordum acanthium), 159
Thrasher, Sage (Oreoscoptes montanus), 147, 529
niche breadth association with sage-grouse, 483, 484
population trend and conservation status, 478
threats, 553–556
ticks. See Haemaphysalis chordeilis; Haemaphysalis leporispalustris
Titmouse, Tufted (Baeolophus bicolor), 129
toadflax, dalmation (Linaria dalmatica), 159
toadflax, yellow (Linaria vulgaris), 159
Tooele–Juab Counties Utah population
lek monitoring and evaluation, 336
location and description, 297, 299
model statistics for trend and persistence, 310, 337, 338
population reconstruction, 328
Towhee, Green-tailed (Pipilo chlorurus)
niche breadth association with sage-grouse, 483, 484
population trend and conservation status, 478
translocations
 genetic considerations, 91, 92
 predation, 100
transmission lines
 association with sage-grouse extirpation, 467
 electromagnetic radiation, 467
 fragmentation, 467
 in occupied versus extirpated range, 462, 463
See also power lines
Trichomonas gallinae, 122
Tririchomonas simoni, 117, 122
Trypanosoma avium, 117, 121, 122
tularemia, 120, 123
turtle, Kemp Ridley sea (Lepidochelys kempii), 92

U. S. Forest Service. See federal agencies
Uinta–Piceance Basin
 oil and gas development, 237–239
umbrella species
criteria, 477
effectiveness for sage-grouse, 484–487
sage-grouse analysis methods, 477–481
urbanization
 area of influence by SMZ, 214
 ecological influences, 219
human population density, 212–214
See also anthropogenic disturbance; human footprint

vegetation, herbaceous
 functional types in sagebrush grasslands, 537, 538
 virus, avian infectious bronchitis, 118, 124, 125
 virus, avian pox, 118, 125
 virus, louping ill, 120
 virus, West Nile
 amplifying host species, 130
distribution, 118, 133, 134
general, 124
infection rate Powder River Basin, 132
late-summer mortality, 134, 135, 139
life-stage simulation analysis, 136–139
local outbreaks, 135
management options, 141
outbreak prediction, 132
population-level impacts, 132–136
projected impact to populations, 553
reservoir species, 130–132
sage-grouse resistance, 136
sub-lethal effects, 136
transmission, 129–132
vectors, 129
tularemia, 131

walking, 72
Washington populations, genetic diversity, 91, 92
water
 artifical sources and West Nile virus, 132
treatments on BLM managed lands, 225, 226
late brood-rearing habitat, 78
weasel (Mustela spp.), 65, 97
weather
 female lek attendance, 61
habitat use and West Nile virus susceptibility, 131
habitat use, 77, 78
impact on survival, 65, 98
macroparasite abundance, 121
male breeding display, 61
migration, 59, 60, 78
Western Association of Fish and Wildlife Agencies, 35
Western Governors’ Association, 39
Western Great Basin population
 lek monitoring and evaluation, 354, 355
location and description, 297, 300
model statistics for trend and persistence, 310, 356
population reconstruction, 353
Western States Sage-Grouse Technical Committee, 35
whale, north Pacific right (Eubalaena japonica), 92

INDEX
whale, Perrin’s beaked (Mesoplodon pewini), 92
wheatgrass, bluebunch (Pseudoroegneria spicata), 153, 492
wheatgrass, crested (Agropyron cristatum), 82, 220, 480, 542
wheatgrass, desert (Agropyron desertorum), 220
wheatgrass, Siberian (Agropyron fragile), 220
wheatgrass, spp.
 replanting after sagebrush removal, 220
wheatgrass, western (Pascopyrum smithii), 151, 153, 492
wheatgrass-needlegrass shrub steppe, 149, 156
whiptail, western (Cnemidophorus tigris), 289
whitetop (Cardaria spp.), 158
Wild Free-Roaming Horses and Burros Act (1971), 278, 280
Wildlife Habitat Incentives Program, 208
wildrye, basin (Leymus cinereus), 73
willow (Salix spp.), 82
wind energy development
 influence on ecosystems, 246
 leases on BLM managed lands, 244
 on private lands, 514, 515
 risk to core regions in eastern range of sage-grouse, 512, 514
winterfat (Krascheninnikovia lanata), 153, 220
Wisdom Montana population
 lek monitoring and evaluation, 346, 347
woad, Dyer’s (Isatis tinctoria), 159
woodland expansion
 complex of causes, 200
 control measures, 224
 displacement of sagebrush, 470, 539, 541, 551
 fire exclusion, 183, 199
 fire interval, 167
 fire recovery rates, 162
 historical, 154, 155, 167–169
 postsettlement within SGCA, 162, 163, 167
 primary conifer species, 162
 relative to elevation, 167, 552
 removal techniques, 540–542
Wren, House (Troglodytes aedon), 129, 130
Wyoming Basin floristic province
 fire statistics, 174, 193
 geographic extent, 151
Wyoming Basin population
 lek monitoring and evaluation, 321
 location and description, 297, 299
 model statistics for trend and persistence, 310, 322
 population reconstruction, 318
Wyoming Basin SMZ
 area influenced by infrastructure, 215
 connectivity, 392, 396
 energy potential, 510
 geothermal leases, 245
 human footprint, 261, 266, 270
 human population density, 214
 influenced by agriculture, 209, 210
 landownership, 26, 27
 lek count trends and natural and anthropogenic features, 413–421, 429, 430
 lek monitoring and evaluation, 322, 323
 location, 55, 297
 model statistics for trend and persistence, 310, 323
 oil and gas development, 240, 242
 population reconstruction, 319
 risk of energy development, 507
 urbanization and infrastructure, 212–219
Yakima Washington population
 lek monitoring and evaluation, 360, 361
 location and description, 297, 300
 model statistics for trend and persistence, 311, 361, 362
 population reconstruction, 359
Yarrow, common (Achillea millefolium), 76
Yellowstone watershed population
 lek monitoring and evaluation, 312, 313
 location and description, 297, 299
 model statistics for trend and persistence, 310, 313, 314
 population reconstruction, 307
Yellowthroat, Common (Geothlypis trichas), 130

Indexer: Leslie A. Robb
Composition: Michael Bass Associates
Text: 9.25/11.75 Scala
Display: Scala Sans, Scala Sans Caps
Printer and Binder: Thomson-Shore
STUDIES IN AVIAN BIOLOGY

Ecology and Conservation of the Willow Flycatcher.

Noncooperative Breeding in the California Scrub-Jay.

Monitoring Bird Populations Using Mist Nets.

Fire and Avian Ecology in North America.

At-Sea Distribution and Abundance of Seabirds off Southern California: A 20-Year Comparison.

Beyond Mayfield: Measurements of Nest-Survival Data.

Foraging Dynamics of Seabirds in the Eastern Tropical Pacific Ocean.

Status of the Red Knot (Calidris canutus rufa) in the Western Hemisphere.
