# Report to the Oregon Processed Vegetable Commission <br> 2008-2009 

1. Title:
2. Project Leaders:
3. Cooperator:
4. Project Status:
5. Project Funding:

Green Bean Breeding and Evaluation
James R. Myers, Horticulture
Brian Yorgey, Food Science and Technology
Terminating 30 June, 2009

| $\$ 41459$ | breeding |
| :--- | :--- |
| $\$ 10,818$ | processing |
| $\$ 52,277$ | total |

\$52,277 total

Breeding funds were used for a major portion of the support of a vegetable breeding technician, student labor, supplies, and research farm expenses. Processing funds were used for processing samples of experimental beans, laboratory analysis, and for student labor.
6. Objective: Breed improved Bush Blue Lake green bean varieties with:
a. White and gray mold resistance
b. Improved plant architecture
c. High economic yield
d. Improved pod quality (including straightness, color, smoothness, texture, flavor and quality retention, and delayed seed size development)

## 7. Report of Progress:

Varietal Development: The program continued with screening and selection in crosses among elite lines and commercial cultivars of green bean for varietal development. Much of our current focus is on incorporating white mold resistance into a BBL background. Additional selections from OSU x OSU crosses were advanced and increased for replicated trials. Advanced lines were screened in replicated white mold field nurseries. Two interspecific backcross inbred populations with white mold resistance from scarlet runner bean were screened in a field nursery, and mapping of molecular markers continues for these populations. Breeding lines were evaluated for root resistance in a field on the Vegetable Research Farm. Seed increase, roguing, and sub-line maintenance of the most promising lines was pursued aggressively this year. Growing conditions were generally good throughout the season although we had a cold start to the year. A mid August rain event brought on the white mold, and although it was not a significant problem in our yield trials this year, it did give us good disease pressure in our white mold nurseries, but increased the difficulty in seed harvest. In the past, we have not used fungicides to control this disease in plots where it is not wanted, but disease pressure over the past two years has built to the point where this may be necessary to obtain sufficient quantities of high quality seed for generation advance.

| Background of green bean advanced breeding lines evaluated in trials at Corvallis in 2008 |  |
| :---: | :---: |
| Line No. | Genetic background |
| 6137-6189 | Minuette x Bush Blue Lake (BBL) crosses for improved architecture |
| 6286-6393 | Ascher DRK x BBL crosses to introgress WM resistance |
| 6438-6502 | B7354-6-2-2 x BBL crosses to introgress WM resistance. Origin of resistance appears to have been from $P$. coccineus from interspecific lines developed by D. Mok |
| $6512-6552$ | Crosses between 5996 and BBL lines. 5996 possesses persistent color derived from Hypak. |
| 6556-6595 | Crosses between 5996 and Minuette derived architectural lines. |
| 6599-6602 | SB4247 x BBL crosses where SB4247 is a Rogers Brothers line with BBL traits combined with upright architecture |
| 811/43-4 | Interspecific backcross-inbred lines derived |
| 903/20-2 | from a cross between 91G and PI 255956 white mold resistance $P$. coccineus |

Yield Trials: We retained our current nursery structure of preliminary trials and a single advanced trial consisting mostly of commercial varieties for trial along with the most promising OSU lines. The two preliminary trials were planted May 29 and June 12, and the commercial yield trial, partially funded by seed companies, was planted June 25. Entries from one preliminary trial and those paid for by sponsoring seed companies in the commercial trial were processed at the OSU Pilot Plant for subsequent product evaluation. Preliminary trials had 60 full sieve and 16 small sieve experimental lines, with five check cultivars.

Both preliminary trials had good growing conditions and showed reasonable yields (Tables $1 \& 2,5 \& 6$ ). Grading room notes are in tables $3 \& 4,7 \& 8$. The text table above shows the experimental line number and the parents involved in the cross. The B7354-6-2-2 parent is a very low vigor, non productive BBL line that showed high levels of white mold resistance in our trials. Surprisingly, it is a good combiner in pro-

Three year average for selected OSU full sieve lines and checks

|  | Adjusted T/A $^{\mathrm{Z}}$ |  |  |  |
| :--- | :---: | :---: | :---: | :---: |
| Line | 2006 | 2007 | 2008 | Over- <br> all AV |
| OR 91G | 12.1 | 8.7 | 9.5 | 10.1 |
| OR 54 | 10.7 | 11.0 | 11.5 | 11.0 |
| 5630 | 12.9 | 12.0 | 11.4 | 12.1 |
| 5669 | 10.4 | 10.6 | 9.7 | 10.2 |
| 6137 | 10.5 | 11.0 | 13.7 | 11.7 |
| 6189 | 9.4 | 10.0 | 9.4 | 9.6 |
| 6439 | 12.5 | 10.5 | 10.8 | 11.2 |
| 6440 | 11.8 | 10.9 | 12.0 | 11.5 |
| 6443 | 12.3 | 12.2 | 13.4 | 12.6 |
| 6463 | 8.8 | 10.7 | 11.9 | 10.5 |
| 6471 | 9.7 | 13.1 | 13.4 | 12.0 |
| 6479 | 12.5 | 12.1 | 11.2 | 11.9 |
| 6481 | 10.9 | 13.0 | 12.3 | 12.0 |
| 6493 | 9.2 | 12.3 | 12.5 | 11.3 |
| 6501 | 10.7 | 12.8 | 12.0 | 11.8 |
| LSD 0.05 | NS | 3.0 | NS | 2.0 |

${ }^{\mathrm{z}}$ Average of 2 trials per year; NS = not significant
ducing some of the highest yielding lines in the program. With increased vigor and biomass, these lines do not appear to possess significant levels of white mold resistance. OSU 6443 is perhaps the most outstanding performer in this group. It is similar in maturity to OR 54 but has had higher yield over the years it has been tested, and has very nice processing quality (see text table left). Lines from this group with similar performance are OSU 6501 and 6502. The 6512 - 6595 series involves crosses to OSU 5996, a breeding line with high quality persistent color pods, but lower yields and germination problems associated with the persistent color trait. Unfortunately, most of this material is lower yielding although there are a few lines (OSU 6530, 6531, and 6564) with yields similar to OR 91G. We will do substantial cullng of this group after 2009 as much of this material is being tested for the first year. From the SB4247 crosses, 6602 may have potential, but is again in its first year of testing. We also included eight
of the lines developed from interspecific crosses with runner bean to bring in exotic sources of white mold resistance. These lines constitute the best material for white mold resistance from this population. As a group, they were not particularly high yielding, did not have the best quality, and showed some instability. It is unlikely that they will be useful directly as a cultivar but should prove valuable in transferring high levels of resistance into a more acceptable background.

Three year average for selected OSU small sieve lines and checks

|  | $\mathrm{T}^{2} \mathrm{~A}^{\mathrm{Z}}$ |  |  |  |
| :--- | :---: | :---: | :---: | :---: |
| Line | 2006 | 2007 | 2008 | Over- <br> all AV |
| 6340 | 9.3 | 7.8 | 9.0 | 8.7 |
| 6442 | 8.8 | 10.3 | 9.2 | 9.4 |
| 6496 | 8.6 | 10.0 | 9.5 | 9.4 |
| Savannah | 5.5 | 8.8 | 8.4 | 7.5 |
| LSD 0.05 | 3.4 | NS | NS | 2.0 |

${ }^{\mathrm{z}}$ Average of 2 trials per year; NS = not significant

In the May 29 trial, 12 full sieve lines yielded significantly more than OR 91G, while in the June 12 trial, yield of OR 91G was only 7.1 T/A, while yield of experimental lines was higher resulting in all but four experimental lines yielding more than OR 91G (Table 5). Most experimental small sieve lines are in the 4 or 4-5 sieve category. Yields compared favorably to the check (Savannah) in the first trial with six having significantly higher yields (Table 6). In the second trial, Savannah yields were $10.3 \mathrm{~T} / \mathrm{A}$, and none of the experimental lines were significantly higher (Table 6). Over the past three years, three experimental lines continue to perform well. These are OSU 6340, 6442, and 6496 (text table above).
Indio Winter Nursery: Fifty nine checks and advanced lines, and 75 single pod descent (SPD) populations were sent to Indio, CA for evaluation (advanced lines) and generation advance (SPD lines). The nursery was planted on January 26 and harvested in mid-May. We were able to obtain information on performance under heat stress with a number of lines identified with partial heat tolerance (Table 9). Nearly all of the SDP lines are from crosses to the NY6020 source of white mold resistance. One pod per plant was collected from the SDP lines and returned to Oregon for planting in June. Over the past several years, we have had trials in both Hermiston, OR and Indio where we have been able to evaluate heat stress. With our current resources, we cannot do both trials in one season. Overall, the Indio trial is most preferable since we can obtain both data and obtain an offseason generation advance at this location. It is challenging, however, to get seed ready for the Indio trial following the fall harvest in Oregon.

Commercial Green Bean Trial: The commercial trial consisted of 21 entries from five seed companies, four checks, and one OSU experimental line (Tables 10 - 12, Figures 1 \& 2). Savannah, from Harris Moran, was included as a small sieve check. Highest yielding among the full sieve entries was Huntington. This entry also has many BBL traits, but pod color may be too light to blend with OR 91G. This was the observation in the grading room, but needs to be assessed in processed material. One four sieve bean (BSC8577) had significantly higher yields than Savannah, and at 8 T/A, Selecta seemed to have relatively high yields for a very fine type (two sieve) bean. Seven entries in this trial were from South Africa. These generally showed high biomass production, which may represent adaptation to a lower fertility regime. Best of this group was BB 594.

Fusarium Root Rot Nursery: Two sets of material comprising 59 experimental lines and 81 advanced lines were screened in a root rot nursery. Trial was planted on June 20 with
two replications and plots were evaluated during September and October when plants were physiologically mature. Our most resistant check is a viny small seeded black accession (RR6950) which had an average score of 2.5 (Tables $13 \& 14$ ). The susceptible check is OSU 5446. No experimental line had levels of resistance similar to the resistant check, and only three had significantly better resistance than OR 91G. Twenty-seven lines had significantly better resistance than OSU 5446. For advanced lines, none had resistance comparable to RR6950, but 68 had significantly better resistance compared to OSU 5446. Next year, we will have a mapping population from the cross RR6950 x OSU 5446 to evaluate, and expect to start generating lines with much higher levels of resistance.

Breeding for White and Gray Mold Resistance: Disease pressure was extremely high beginning the latter part of August and continuing through September and October. A white mold trial was grown at the Vegetable Research Farm (Table 15) to evaluate advanced breeding lines. Incidence in most material was $100 \%$, so we focused on severity, and an index calculated on incidence $x$ severity. Most resistant material was again the standard checks, particularly NY6020 and G122. Ranking closely to these were several

Correlations among white mold and yield variables for a white mold field screening trial, Corvallis, 2008.

|  | Yield | Lodging |
| :--- | :---: | :---: |
| White |  |  |
| Mold In- |  |  |
| dex | -0.049 | $0.229^{* * *}$ |
| Yield |  | -0.003 |

***statistically significant at $\mathrm{p}<0.0001$.
of the 91 G x PI 255956 backcross inbred materials ( 800 \& 900 numbers) Interestingly, several of the 5996 x Minuette derived line crosses showed moderate levels of resistance again this year (Table 15, entries 6554, and 6560) White mold index and lodging was highly correlated this year, but yield and white mold index and yield and lodging were not (text table, left). In a comparison of lines over two years (Table 16), the best experimental lines were 904/20-3, 6235 (resistance derived from NY6020), and several 6500 series lines. We have not yet had

904/20-3 in yield trials, (amount of seed has been limiting) but expect this to occur in 2009. Two lines that have been tested in yield trials that performed well in the white mold resistance trial were 853/6-9 and 861/13-14 (Table 16).
Molecular mapping to transfer resistance from Phaseolus coccineus to P. vulgaris: The best source of resistance to white mold resides in the related bean species, P. coccineus or scarlet runner bean. We have been developing backcross-inbred populations as a means of transferring resistance while regaining the snap bean type as rapidly as possible. One population (91G x PI255956) has been completed and four QTL for resistance were discovered. Approximately eight lines with significant levels of white mold resistance in a BBL background have been identified. The QTL needs to be confirmed through the evaluation of additional populations. To that end, the $91 \mathrm{G} \times \mathrm{PI} 433251 \mathrm{~B}$ and M0162 x PI 433251B populations were advanced to the $\mathrm{BC}_{2} \mathrm{~F}_{5}$ generation in the greenhouse in the spring of 2008 and to the $\mathrm{BC}_{2} \mathrm{~F}_{6}$ generation in the field during the summer of 2008. An unreplicated field trial was performed, due to seed limitations, during the summer of 2008 on the $\mathrm{BC}_{2} \mathrm{~F}_{5}$ generation. A straw test was performed on the remaining seed from the $\mathrm{BC}_{2} \mathrm{~F}_{5}$ generation also during the summer of 2008 in the greenhouse. A second straw test was planted on 24 November 2008 to evaluate the $\mathrm{BC}_{2} \mathrm{~F}_{6}$ generation. DNA was extracted from $\mathrm{BC}_{2} \mathrm{~F}_{4}$ plants in the greenhouse during the spring of 2008. Parent lines were
screened with 172 SSR primers, 76 of which were found to be polymorphic on $3 \%$ agarose gel. Primers that amplified but did not appear polymorphic will be rescreened on polyacylamide gel during the winter of 2008-2009. The primers that showed polymorphism large enough to be detected on agarose gels are currently being scored on the entire population, with approximately 30 primers completed. RAPD primers were also screened on parental lines to check for polymorphism; 169 of the 250 primers screened so far have shown polymorphism. None of the RAPD primers have been scored on the entire population to date. Primers for candidate genes have also been developed and preliminary screening on parental lines shows polymorphism in 7. These include genes for a WRKY transcription factor, chitinase, phosphatase-2-C, defensin, COS1 (a histindine kinase involved in hyphal development), lippoxygenase and phenylalanine ammonia lyase.

## 8. Summary:

We continued to emphasize breeding for white mold resistance in 2008. As such, we focused on preliminary yield and quality trials where we could evaluate larger numbers of lines. Two preliminary trials were conducted, and an advanced trial of commercial entries was evaluated. OSU 6400 and 6500 series lines look very good for yield and processing quality, and some have partial white mold resistance. White mold pressure was severe in all but the mid season trial and we were able to obtain useful data on most of our breeding material. To date, we have identified some lines that are fairly close to a BBL type with partial resistance to white mold, but additional refinement is required. Our best full sieve candidate for release is OSU 6443.

Table 1. Performance of preliminary full sieve green bean lines, May 29 planting, Corvallis, 2008. ${ }^{2}$

| Line | Days to Harvest | Est. <br> Sieve <br> Size | Stand | Percent Sieve Size ${ }^{\text {y }}$ |  |  |  |  |  | \%1-4 <br> Sieve | Av Tons/Acre | Av Adj Tons/Acre ${ }^{\times}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | 1 | 2 | 3 | 4 | 5 | 6 |  |  |  |
| 91G | 67 | full | 150 | 2.7 | 5.5 | 11.8 | 40.0 | 38.2 | 1.8 | 60.0 | 10.3 | 11.3 |
| OR 54 | 70 | full | 150 | 1.5 | 4.5 | 11.4 | 31.1 | 43.9 | 7.6 | 48.5 | 12.1 | 12.0 |
| 5630 | 68 | full | 150 | 3.6 | 3.6 | 10.0 | 33.6 | 42.7 | 6.4 | 50.9 | 9.6 | 9.7 |
| 5669 | 69 | full | 143 | 4.2 | 7.3 | 11.5 | 31.3 | 39.6 | 6.3 | 54.2 | 8.7 | 9.0 |
| 6137 | 69 | full | 150 | 1.6 | 4.7 | 20.3 | 31.3 | 28.9 | 13.3 | 57.8 | 10.6 | 11.5 |
| 6174 | 70 | 5 | 150 | 3.3 | 7.6 | 13.0 | 31.5 | 35.9 | 8.7 | 55.4 | 8.4 | 8.9 |
| 6189 | 68 | full | 146 | 2.7 | 9.6 | 16.4 | 27.4 | 31.5 | 12.3 | 56.2 | 7.1 | 7.6 |
| 6286 | 67 | 5 | 149 | 3.0 | 7.9 | 12.9 | 33.7 | 33.7 | 8.9 | 57.4 | 9.3 | 10.0 |
| 6348 | 64 | 5 | 150 | 8.7 | 17.4 | 17.4 | 40.6 | 14.5 | 1.4 | 84.1 | 6.7 | 9.0 |
| 6393 | 70 | 5 | 150 | 3.0 | 7.1 | 13.1 | 32.3 | 37.4 | 7.1 | 55.6 | 8.6 | 9.1 |
| 6438 | 69 | 5 | 150 | 1.8 | 6.2 | 11.5 | 38.9 | 36.3 | 5.3 | 58.4 | 10.2 | 11.0 |
| 6439 | 69 | 5 | 150 | 4.2 | 7.5 | 12.5 | 35.8 | 35.8 | 4.2 | 60.0 | 11.0 | 12.1 |
| 6440 | 70 | 5 | 150 | 4.2 | 6.8 | 11.9 | 33.1 | 37.3 | 6.8 | 55.9 | 11.0 | 11.6 |
| 6443 | 70 | full | 145 | 4.2 | 7.6 | 13.6 | 36.4 | 34.7 | 3.4 | 61.9 | 11.0 | 12.4 |
| 6456 | 70 | full | 150 | 3.8 | 3.8 | 7.5 | 33.1 | 47.4 | 4.5 | 48.1 | 11.7 | 11.5 |
| 6463 | 70 | 5 | 150 | 2.3 | 5.4 | 10.0 | 30.8 | 46.2 | 5.4 | 48.5 | 11.7 | 11.6 |
| 6471 | 69 | full | 150 | 5.9 | 6.9 | 15.8 | 44.6 | 25.7 | 1.0 | 73.3 | 9.2 | 11.3 |
| 6479 | 70 | 5 | 150 | 2.9 | 5.8 | 10.1 | 33.8 | 40.3 | 7.2 | 52.5 | 12.0 | 12.4 |
| 6481 | 69 | 5 | 150 | 4.9 | 8.8 | 21.6 | 46.1 | 17.6 | 1.0 | 81.4 | 9.5 | 12.4 |
| 6493 | 71 | full | 150 | 0.8 | 4.2 | 8.5 | 33.1 | 47.5 | 5.9 | 46.6 | 10.6 | 10.3 |
| 6494 | 70 | full | 145 | 3.6 | 5.0 | 10.7 | 38.6 | 37.9 | 4.3 | 57.9 | 12.3 | 13.2 |
| 6501 | 70 | 5 | 144 | 5.0 | 7.4 | 13.2 | 39.7 | 30.6 | 4.1 | 65.3 | 10.7 | 12.3 |
| 6502 | 71 | 5 | 150 | 3.7 | 3.7 | 8.1 | 38.5 | 40.7 | 5.2 | 54.1 | 12.1 | 12.6 |
| 6512 | 68 | full | 149 | 7.3 | 6.3 | 10.4 | 26.0 | 33.3 | 16.7 | 50.0 | 8.5 | 8.5 |
| 6515 | 68 | full | 144 | 4.2 | 5.6 | 12.5 | 36.1 | 33.3 | 8.3 | 58.3 | 6.4 | 7.0 |
| 6517 | 64 | full | 98 | 5.1 | 8.5 | 11.9 | 39.0 | 25.4 | 10.2 | 64.4 | 5.1 | 5.9 |
| 6525 | 69 | full | 136 | 6.5 | 10.4 | 10.4 | 24.7 | 31.2 | 16.9 | 51.9 | 7.7 | 7.8 |
| 6527 | 70 | full | 89 | 6.5 | 6.5 | 10.4 | 28.6 | 35.1 | 13.0 | 51.9 | 7.6 | 7.7 |
| 6530 | 71 | full | 115 | 4.0 | 4.0 | 10.5 | 34.7 | 38.7 | 8.1 | 53.2 | 11.3 | 11.6 |
| 6531 | 71 | 5 | 150 | 5.0 | 5.0 | 10.9 | 41.6 | 35.6 | 2.0 | 62.4 | 9.0 | 10.0 |
| 6534 | 71 | 5 | 129 | 3.7 | 4.9 | 9.9 | 39.5 | 37.0 | 4.9 | 58.0 | 7.1 | 7.7 |
| 6535 | 70 | full | 124 | 2.9 | 5.8 | 9.6 | 25.0 | 37.5 | 19.2 | 43.3 | 9.2 | 8.6 |
| 6538 | 69 | full | 127 | 4.2 | 6.3 | 6.3 | 24.0 | 36.5 | 22.9 | 40.6 | 9.1 | 8.3 |
| 6541 | 69 | 5 | 142 | 2.1 | 6.3 | 12.5 | 33.3 | 38.5 | 7.3 | 54.2 | 8.6 | 9.0 |
| 6544 | 71 | full | 138 | 2.8 | 4.6 | 11.0 | 26.6 | 43.1 | 11.9 | 45.0 | 9.7 | 9.3 |
| 6545 | 67 | full | 141 | 5.8 | 5.8 | 15.4 | 34.6 | 30.8 | 7.7 | 61.5 | 5.5 | 6.1 |
| 6546 | 67 | full | 131 | 6.7 | 5.6 | 11.2 | 32.6 | 37.1 | 6.7 | 56.2 | 8.3 | 8.8 |
| 6550 | 67 | 5 | 89 | 9.6 | 13.5 | 13.5 | 23.1 | 28.8 | 11.5 | 59.6 | 4.8 | 5.3 |
| 6551 | 70 | 5 | 135 | 2.3 | 6.8 | 15.9 | 44.3 | 27.3 | 3.4 | 69.3 | 7.7 | 9.2 |
| 6552 | 67 | 5 | 103 | 5.2 | 12.1 | 13.8 | 34.5 | 27.6 | 6.9 | 65.5 | 5.0 | 5.8 |
| 6556 | 69 | full | 134 | 3.0 | 7.5 | 11.9 | 28.4 | 32.8 | 16.4 | 50.7 | 6.3 | 6.3 |
| 6557 | 71 | 5 | 150 | 2.3 | 5.7 | 10.2 | 39.8 | 38.6 | 3.4 | 58.0 | 8.2 | 8.8 |
| 6560 | 71 | 5 | 136 | 2.6 | 3.8 | 14.1 | 44.9 | 29.5 | 5.1 | 65.4 | 7.7 | 8.8 |
| 6561 | 70 | full | 116 | 3.8 | 7.5 | 13.8 | 30.0 | 33.8 | 11.3 | 55.0 | 7.6 | 7.9 |
| 6564 | 68 | 5 | 145 | 6.2 | 9.3 | 15.5 | 36.1 | 28.9 | 4.1 | 67.0 | 8.5 | 10.0 |
| 6566 | 71 | full | 76 | 4.9 | 3.9 | 4.9 | 32.4 | 33.3 | 20.6 | 46.1 | 7.9 | 7.6 |

Table 1. Performance of preliminary full sieve green bean lines, May 29 planting, Corvallis, 2008 (cont.) ${ }^{z}$

| Line | Days to Harvest | Est. Sieve Size | Stand | Percent Sieve Size ${ }^{\text {y }}$ |  |  |  |  |  | \%1-4 Sieve | Av Tons/Acre | Av Adj Tons/Acre ${ }^{x}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | 1 | 2 | 3 | 4 | 5 | 6 |  |  |  |
| 6567 | 69 | 5 | 92 | 3.1 | 7.7 | 12.3 | 38.5 | 30.8 | 7.7 | 61.5 | 6.0 | 6.7 |
| 6569 | 71 | 5 | 116 | 3.5 | 5.9 | 11.8 | 50.6 | 27.1 | 1.2 | 71.8 | 8.0 | 9.8 |
| 6573 | 69 | full | 150 | 3.4 | 4.5 | 12.4 | 43.8 | 33.7 | 2.2 | 64.0 | 8.4 | 9.6 |
| 6575 | 71 | full | 150 | 1.0 | 4.2 | 7.3 | 24.0 | 41.7 | 21.9 | 36.5 | 8.9 | 7.7 |
| 6576 | 71 | full | 148 | 2.5 | 6.2 | 9.9 | 27.2 | 35.8 | 18.5 | 45.7 | 7.5 | 7.2 |
| 6581 | 71 | full | 150 | 2.6 | 9.0 | 16.7 | 42.3 | 24.4 | 5.1 | 70.5 | 7.1 | 8.6 |
| 6594 | 71 | 5 | 96 | 11.7 | 10.0 | 18.3 | 33.3 | 23.3 | 3.3 | 73.3 | 5.5 | 6.7 |
| 6595 | 70 | full | 132 | 2.9 | 5.8 | 11.5 | 38.5 | 35.6 | 5.8 | 58.7 | 9.7 | 10.6 |
| 6599 | 68 | full | 143 | 5.9 | 6.9 | 9.9 | 20.8 | 29.7 | 26.7 | 43.6 | 9.2 | 8.7 |
| 6600 | 69 | full | 150 | 2.9 | 8.6 | 7.1 | 15.7 | 28.6 | 37.1 | 34.3 | 6.5 | 5.5 |
| 6602 | 71 | full | 150 | 2.5 | 4.1 | 9.1 | 34.7 | 42.1 | 7.4 | 50.4 | 11.0 | 11.0 |
| 811/43-4 | 71 | full | 150 | 2.0 | 4.1 | 7.1 | 25.5 | 48.0 | 13.3 | 38.8 | 9.4 | 8.4 |
| 826/48-3 | 69 | full | 150 | 4.5 | 9.1 | 18.2 | 26.1 | 29.5 | 12.5 | 58.0 | 7.8 | 8.5 |
| 828/48-5 | 69 | full | 150 | 8.1 | 6.8 | 12.2 | 24.3 | 39.2 | 9.5 | 51.4 | 7.0 | 7.1 |
| 836/3-15 | 68 | full | 150 | 2.4 | 6.1 | 12.2 | 30.5 | 41.5 | 7.3 | 51.2 | 7.4 | 7.5 |
| 853/6-9 | 71 | full | 148 | 4.5 | 4.5 | 7.6 | 19.7 | 34.8 | 28.8 | 36.4 | 6.3 | 5.4 |
| $\begin{gathered} 861 / 13- \\ 14 \end{gathered}$ | 69 | full | 150 | 2.9 | 4.4 | 7.4 | 16.2 | 38.2 | 30.9 | 30.9 | 5.8 | 4.7 |
| 903/20-2 | 71 | full | 133 | 6.1 | 7.6 | 12.1 | 22.7 | 34.8 | 16.7 | 48.5 | 6.1 | 6.0 |
| LSD 0.05 |  |  | 21 |  |  |  |  |  |  |  | 2.3 | 2.4 |

${ }^{\mathrm{z}}$ Mean of 2 replications; subplots of 5 ' were harvested from 20 ' plots in rows 30 " apart.
${ }^{y}$ Percent calculated as \% of total of 1-6 sieve beans.
${ }^{\mathrm{x}}$ Tons/Acre adjusted to 50\% 1-4 sieve.

Table 2. Performance of preliminary small sieve green bean lines, May 29 planting, Corvallis, 2008. ${ }^{\text { }}$

| Line | Days to Har-vest | Est. Sieve Size | Stand | Percent Sieve Size ${ }^{\text {y }}$ |  |  |  |  |  | \%1-4 Sieve | Av Tons/Acre |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | 1 | 2 | 3 | 4 | 5 | 6 |  |  |
| 6241 | 67 | 4-5 | 150 | 4.7 | 10.9 | 17.2 | 34.4 | 29.7 | 3.1 | 67.2 | 6.0 |
| 6329 | 64 | 4 | 138 | 14.1 | 25.0 | 21.9 | 31.3 | 6.3 | 1.6 | 92.2 | 5.7 |
| 6340 | 69 | 4-5 | 146 | 3.0 | 7.0 | 14.0 | 37.0 | 33.0 | 6.0 | 61.0 | 9.2 |
| 6442 | 68 | 4-5 | 150 | 5.7 | 11.4 | 17.1 | 38.1 | 25.7 | 1.9 | 72.4 | 9.4 |
| 6464 | 68 | 4-5 | 86 | 6.9 | 9.2 | 14.9 | 32.2 | 33.3 | 3.4 | 63.2 | 7.9 |
| 6496 | 69 | 4-5 | 143 | 5.2 | 7.8 | 20.0 | 42.6 | 23.5 | 0.9 | 75.7 | 10.8 |
| 6528 | 71 | 4-5 | 132 | 1.1 | 5.7 | 13.8 | 49.4 | 28.7 | 1.1 | 70.1 | 8.1 |
| 6533 | 67 | 4-5 | 128 | 5.5 | 12.3 | 19.2 | 37.0 | 24.7 | 1.4 | 74.0 | 6.7 |
| 6537 | 67 | 4-5 | 106 | 4.2 | 8.3 | 18.1 | 38.9 | 23.6 | 6.9 | 69.4 | 6.8 |
| 6549 | 70 | 4-5 | 106 | 6.6 | 11.8 | 21.1 | 42.1 | 17.1 | 1.3 | 81.6 | 6.7 |
| 6553 | 71 | 4-5 | 142 | 4.1 | 7.1 | 15.3 | 42.9 | 27.6 | 3.1 | 69.4 | 8.9 |
| 6555 | 69 | 4-5 | 71 | 5.2 | 8.6 | 20.7 | 41.4 | 22.4 | 1.7 | 75.9 | 5.6 |
| 6574 | 71 | 4-5 | 144 | 3.4 | 10.3 | 20.7 | 48.3 | 17.2 | 0.0 | 82.8 | 5.6 |
| 846/6-3 | 68 | 4 | 142 | 7.0 | 14.1 | 22.5 | 32.4 | 18.3 | 5.6 | 76.1 | 6.3 |
| Savannah | 71 | 4 | 150 | 17.9 | 19.2 | 34.6 | 26.9 | 1.3 | 0.0 | 98.7 | 6.4 |
| LSD 0.05 |  |  | 26 |  |  |  |  |  |  |  | 1.5 |

${ }^{7}$ Mean of 2 replications; subplots of 5' were harvested from 20' plots in rows 30" apart.
${ }^{y}$ Percent calculated as $\%$ of total of 1-6 sieve beans.

Table 3. Notes on preliminary full sieve green bean lines, May 29 planting, Corvallis, 2008. ${ }^{\text {² }}$

| Line | Pod Length (cm) | Pod Straight- ness $^{y}$ | Pod Cross Section $^{\times}$ | Pod Smooth - nessw | Pod Colorv | Flavor Sweet -ness | Flavor Beaniness | Flavor Astringency | Notes ${ }^{\text {u }}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 91G | 16.0 | 5 | round | 5 | 5 | 5 | 7 | 7 | Split set with seedy 6 sv |
| OR 54 | 15.5 | 6 | round | 5 | 5 | 7 | 7 | 7 | Attractive and high yielding in this trial |
| 5630 | 16.0 | 5 | round | 7 | 5 | 7 | 7 | 7 | Nicer appearance than 91G. |
| 5669 | 15.0 | 7 | round | 7 | 6 | 7 | 5 | 7 | Pods tend to be short in this trial with some blanking. |
| 6137 | 17.0 | 5 | round/ oval mix | 5 | 7 | 3 | 7 | 3 | Bad oval mix. Not sent for processing |
| 6174 | 14.5 | 6 | round | 7 | 5 | 7 | 5 | 7 | Grading out full sieve when 4-5 sv expected. No obvious mixes. |
| 6189 | 16.5 | 7 | round | 7 | 6 | 7 | 5 | 7 | Very attractive bean; long straight smooth dark green pods. Shows battering in the grader. |
| 6286 | 14.5 | 5 | round | 5 | 5 | 3 | 5 | 5 | Somewhat junky; variable pod length, some blanking \& pollywogs |
| 6348 | 14.0 | 7 | round | 7 | 4 | 8 | 3 | 3 | Strong floral flavor |
| 6393 | 15.5 | 3 | round | 4 | 5 | 5 | 7 | 5 | Contains oval stringy mix. Pods have zigzag shape. |
| 6438 | 15.5 | 6 | round | 5 | 5 | 7 | 7 | 7 | Contains a long podded stringy OT. |
| 6439 | 15.5 | 5 | round | 5 | 5 | 7 | 5 | 7 | Slight floral flavor. Oval mix. |
| 6440 | 15.5 | 8 | round | 6 | 5 | 7 | 5 | 7 | Contains a 4 sv light colored stringy oval mix. |
| 6443 | 15.0 | 7 | round | 7 | 6 | 7 | 5 | 7 | Straight, smooth pods |
| 6456 | 15.5 | 7 | round | 6 | 5 | 5 | 5 | 7 | Some very long pods in this line. |
| 6463 | 15.0 | 7 | round | 7 | 6 | 5 | 8 | 7 | Bitter edge to flavor. Fairly attractive but somewhat short pods. |
| 6479 | 14.5 | 8 | round | 8 | 5 | 7 | 7 | 7 | This line impressive in its uniformity. May have oval OT but otherwise very uniform. |
| 6481 | 14.5 | 7 | heart | 5 | 5 | 7 | 5 | 7 | Slight floral flavor. Oval tendency and flat mix. May be a bit young but does not grade properly because of mix. |
| 6493 | 15.0 | 5 | round | 7 | 5 | 7 | 7 | 7 | Oval mix. |
| 6494 | 15.0 | 7 | round | 5 | 5 | 5 | 5 | 7 |  |
| 6501 | 15.0 | 7 | round | 7 | 5 | 5 | 5 | 7 | May have oval tendency. |
| 6502 | 15.0 | 5 | round | 5 | 5 | 5 | 5 | 7 | Segregating ovals. |

Table 3. Notes on preliminary full sieve green bean lines, May 29 planting, Corvallis, 2008 (cont). ${ }^{\text {z }}$

| Line | $\begin{aligned} & \text { Pod } \\ & \text { Length } \\ & (\mathrm{cm}) \end{aligned}$ | Pod Straightness ${ }^{\text {y }}$ | Pod Cross Section ${ }^{\times}$ | Pod Smooth - ness ${ }^{\text {w }}$ | $\begin{aligned} & \text { Pod } \\ & \text { Color }^{\vee} \end{aligned}$ | Flavor Sweet -ness | Flavor Beaniness | Flavor Astringency | Notes ${ }^{\text {u }}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 6512 | 20.0 | 7 | round | 4 | 6 | 5 | 5 | 7 | Extraordinarily long, straight pods Mix of extreme green with normal green. Very little seed dev in any sieve size. |
| 6515 | 16.5 | 6 | round to cb | 8 | 8 | 5 | 9 | 7 | Bitter edge to flavor. Pc type; pods fairly straight in lower sieves but 6 sv very curved. |
| 6517 | 15.0 | 6 | cb | 7 | 7 | 5 | 5 | 7 | Nice color and appearance. |
| 6525 | 15.0 | 5 | round | 5 | 5 | 8 | 5 | 7 |  |
| 6527 | 14.5 | 7 | mix of round \& oval | 4 | 8 | 7 | 5 | 7 | Almost all the 4, 5 \& 6 sv are oval, 3 sv is a mix of round and oval. Not sent for processing. Very dark green pods. |
| 6528 | 14.0 | 5 | round | 7 | 6 | 7 | 5 | 7 | Long slender pods but curved, especially in 6 sv ; slight floral note to flavor. Segregating pc. |
| 6530 | 15.5 | 6 | round | 5 | 6 | 7 | 5 | 7 | Pc type; good yield. |
| 6531 | 15.0 | 7 | oval | 7 | 5 | 7 | 5 | 7 | Strong floral note. Oval curved pods. |
| 6534 | 14.5 | 4 | round | 7 | 6 | 7 | 3 | 7 | Tendency to heart shape |
| 6535 | 15.0 | 7 | round | 7 | 8 | 7 | 7 | 7 | Very attractive pc type. Little seed dev in any sieve size. |
| 6538 | 17.0 | 5 | mix of round \& oval | 5 | 5 | 7 | 7 | 7 | Very large pods and would probably go to 30\% 1-4 sv or lower. May contain an oval mix; some pods rather junky. |
| 6541 | 16.0 | 8 | round | 6 | 5 | 7 | 5 | 7 |  |
| 6544 | 14.5 | 4 | round to cb | 5 | 5 | 7 | 9 | 5 | Contains a more slender, darker green mix; strong floral note; curve tendency especially In 6 sv. |
| 6545 | 15.5 | 5 | round | 5 | 5 | 5 | 7 | 5 | Mix of iw and ig and different pod types - long slender \& short with round seeds. Doesn't seem to have any exceptional qualities to justify cleaning up. |
| 6546 | 14.5 | 7 | round | 8 | 5 | 7 | 7 | 5 | Segregating for strings. Very smooth attractive appearance; color might be slightly lighter than 91G. |

Table 3. Notes on preliminary full sieve green bean lines, May 29 planting, Corvallis, 2008 (cont). ${ }^{\text {z }}$

| Line | Pod Length (cm) | Pod Straightness ${ }^{\text {y }}$ | Pod Cross Section $^{\times}$ | Pod Smooth - ness ${ }^{\text {w }}$ | $\begin{aligned} & \text { Pod } \\ & \text { Colorv } \end{aligned}$ | Flavor Sweet -ness | Flavor Beaniness | Flavor Astringency | Notes ${ }^{\text {u }}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 6550 | 14.0 | 6 | mix of round \& oval | 4 | 7 | 7 | 5 | 7 | Short, rather rough pods with blanks \& pollywogs but nice color. Would need to rogue ovals. |
| 6551 | 16.0 | 4 | round | 7 | 4 | 7 | 5 | 5 | Tough pods; color too light; pods have persistent curve. |
| 6552 | 13.5 | 5 | round | 7 | 5 | 5 | 5 | 7 | Pods somewhat short. |
| 6556 | 15.0 | 8 | round | 7 | 5 | 5 | 7 | 5 | Segregating for ovals |
| 6557 | 12.0 | 7 | round | 7 | 7 | 7 | 7 | 5 | Strong floral note. Short fat Minuette type. |
| 6560 | 14.5 | 7 | $\begin{aligned} & \text { round } \\ & \text { to cb } \end{aligned}$ | 3 | 7 | 7 | 7 | 7 | Strong floral note. Extreme green with a lighter color mix. |
| 6561 | 16.0 | 7 | round | 7 | 8 | 5 | 5 | 7 | Mild pleasant flavor. Oval mix and light color pod mix. Not seedy in any sieve size. A very attractive bean. |
| 6564 | 15.0 | 7 | round | 6 | 6 | 7 | 7 | 5 | Mix of pod color \& shiny vs dull. |
| 6566 | 14.0 | 4 | heart | 5 | 5 | 7 | 3 | 5 | Oval mix; very large sv mix; may also have color mix. Small sv pods junky. Shiny pods; strong floral note. |
| 6567 | 14.5 | 5 | oval | 5 | 4 | 5 | 5 | 7 | Junky mix of many types, mostly oval with different pod lengths. Not sent for processing |
| 6569 | 14.0 | 9 | heart | 7 | 4 | 7 | 3 | 5 | Oval mix, color mix, segregating strings. |
| 6573 | 14.0 | 5 | oval | 5 | 5 | 7 | 7 | 7 | Very oval, very tough. DISCARD |
| 6575 | 14.0 | 7 | round | 3 | 7 | 7 | 5 | 7 | Strong floral note. Extreme green; pods very bumpy; junky in 4 sv . |
| 6576 | 14.0 | 7 | round | 3 | 8 | 7 | 3 | 5 | Floral note; bumpy pods; extreme green type. |
| 6581 | 15.5 | 4 | round | 5 | 4 | 5 | 7 | 5 | Floral note. Blanking \& pod tips hooked. |
| 6594 | 13.0 | 7 | round | 5 | 5 | 3 | 7 | 7 | Extreme green color mix; oval mix. |
| 6595 | 16.5 | 5 | round | 7 | 5 | 7 | 7 | 7 | Mix of off types - strings, ovals and dark green pod color. Hooked pods. Overall probably a discard. |
| 6599 | 15.0 | 7 | oval | 5 | 5 | 3 | 5 | 5 | Strong reverse curve; very oval, heart shape at best. |
| 6600 | 15.5 | 6 | round | 5 | 6 | 5 | 7 | 7 | Not over mature for its sieve size. May have a maturity mix |

Table 3. Notes on preliminary full sieve green bean lines, May 29 planting, Corvallis, 2008 (cont). ${ }^{\text {² }}$

| Line | Pod Length (cm) | Pod Straight- ness $^{y}$ | Pod Cross Section $^{\times}$ |  | $\begin{aligned} & \text { Pod } \\ & \text { Color }^{\vee} \end{aligned}$ | Flavor Sweet -ness | Flavor Beaniness | Flavor Astringency | Notes ${ }^{\text {u }}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 6602 | 15.5 | 6 | round | 7 | 6 | 7 | 7 | 7 | Good yield; concentrated set of 4 \& 5 sv, slight floral note. |
| 811/43-4 | 14.5 | 5 | round | 5 | 5 | 8 | 7 | 7 | Plot contains purple flowered plants with flat beans; pods with many blanks, junky especially in smaller sv sizes. Surprisingly good flavor. |
| 826/48-3 | 15.0 | 6 | mix of round \& oval | 5 | 5 | 7 | 7 | 5 | Contains a flat mix. Not a bad bean if cleaned up. |
| 828/48-5 | 16.0 | 5 | ovalround | 5 | 4 | 7 | 3 | 5 | Perfumy flavor. Flat mix and oval tendencies but could be cleaned up. |
| 836/3-15 | 15.5 | 6 | mix of round \& oval | 5 | 5 | 4 | 7 | 5 | Segregating for ovals and multiple pod types. Not bad in appearance apart from pod shape. |
| 853/6-9 | 14.0 | 4 | round | 5 | 5 | 3 | 3 | 3 | Many blanks especially in tips, 3 \& 4 sv very short \& junky. |
| 861/13-14 | 16.0 | 3 | oval to flat | 3 | 3 | 5 | 5 | 7 | Mostly oval with some tending to flats. Little seed development in any sieve size. |
| 903/20-2 | 20.0 | 6 | round | 7 | 5 | 5 | 5 | 7 | Segregating ovals; very long pods; tough skin. |

${ }^{7}$ Trial as a whole had an early season split set.
${ }^{y}$ Scores based on a 1-9 scale with 9 straightest
${ }^{\times}$Cross section: cb = crease-back
${ }^{w}$ Scores based on a 1-9 scale with 9 smoothest
${ }^{v}$ Scores based on a 1-9 scale with 9 darkest
${ }^{u}$ OT = off-type; sv = sieve; pc = persistent color; ig = immature green seed; iw = immature white seed.

Table 4. Notes on preliminary small sieve green bean lines, May 29 planting, Corvallis, 2008. ${ }^{\text {² }}$

| Line | Pod Length (cm) | Pod Straightness ${ }^{\text {y }}$ | Pod Cross Section ${ }^{\times}$ | Pod Smooth - ness ${ }^{\text {w }}$ | $\begin{aligned} & \text { Pod } \\ & \text { Color } \end{aligned}$ | Flavor Sweetness | Flavor Beaniness | Flavor Astringency | Notes ${ }^{\text {u }}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 6241 | 12.5 | 7 | round | 7 | 5 | 7 | 7 | 7 | Short pods but nice appearance. |
| 6329 | 13.5 | 5 | round | 5 | 5 | 7 | 7 | 5 |  |
| 6340 | 14.5 | 7 | round | 7 | 5 | 7 | 7 | 7 | Oval mix. Harvested a day past prime. |
| 6442 | 15.0 | 8 | round | 7 | 6 | 5 | 7 | 7 | Very attractive - long straight smooth pods. |
| 6464 | 14.5 | 7 | round | 6 | 5 | 7 | 7 | 5 | Attractive pods. May have full sieve mix. |
| 6496 | 15.0 | 7 | round | 7 | 5 | 7 | 8 | 7 |  |
| 6533 | 14.0 | 7 | round | 7 | 3 | 7 | 5 | 7 | Nice appearance except color too light. |
| 6537 | 15.0 | 7 | round | 7 | 7 | 7 | 3 | 5 | Pc type; perfumey flavor; very straight in smaller sieve sizes. Nice bean |
| 6549 | 16.0 | 5 | round | 7 | 7 | 8 | 5 | 7 | Long slender attractive bean. |
| 6553 | 14.5 | 7 | $\begin{gathered} \text { round to } \\ \text { cb } \end{gathered}$ | 7 | 6 | 5 | 5 | 7 | Floral note; pc |
| 6555 | 16.5 | 5 | round | 6 | 7 | 7 | 8 | 5 | Bitter with a floral accent. Segregating for ovals. Long slender attractive pods. |
| 6574 | 14.5 | 7 | round | 8 | 9 | 5 | 5 | 7 | Floral note; uniform; one of the darkest beans in the trial. |
| 846/6-3 | 14.0 | 5 | oval | 5 | 5 | 6 | 5 | 5 | Mostly oval, fairly short, junky pods; perfumy flavor. |
| Savannah | 13.0 | 6 | round | 8 | 7 | 7 | 3 | 7 | Floral flavor. |

${ }^{2}$ Trial as a whole had an early season split set.
${ }^{y}$ Scores based on a 1-9 scale with 9 straightest
${ }^{\mathrm{x}}$ Cross section: cb = crease-back
${ }^{w}$ Scores based on a 1-9 scale with 9 smoothest
${ }^{v}$ Scores based on a 1-9 scale with 9 darkest
${ }^{4} \mathrm{Pc}=$ persistent color.

Table 5. Performance of preliminary full sieve green bean lines, June 12 planting, Corvallis, 2008. ${ }^{\text {² }}$

|  |  |  | Percent Sieve Size ${ }^{\text {y }}$ |  |  |  |  |  |  | \%1-4 <br> Sieve | Av Tons/Acre | Av Adj Tons/Acre ${ }^{\mathrm{x}}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Line | Days to Harvest | $\begin{aligned} & \text { Sieve } \\ & \text { Size } \end{aligned}$ | Stand | 1 | 2 | 3 | 4 | 5 | 6 |  |  |  |
| 91G | 63 | full | 140 | 14.3 | 10.4 | 10.4 | 23.4 | 31.2 | 10.4 | 58.4 | 7.1 | 7.7 |
| OR 54 | 64 | full | 140 | 10.0 | 14.0 | 18.0 | 34.0 | 20.0 | 4.0 | 76.0 | 8.6 | 10.9 |
| 5630 | 64 | full | 140 | 5.9 | 8.5 | 11.9 | 44.1 | 27.1 | 2.5 | 70.3 | 10.9 | 13.1 |
| 5669 | 64 | full | 140 | 12.2 | 11.2 | 12.2 | 32.7 | 26.5 | 5.1 | 68.4 | 8.8 | 10.4 |
| 6137 | 64 | full | 139 | 3.3 | 6.6 | 17.8 | 39.5 | 26.3 | 6.6 | 67.1 | 13.6 | 15.9 |
| 6174 | 67 | 5 | 140 | 6.4 | 9.1 | 13.6 | 38.2 | 30.9 | 1.8 | 67.3 | 10.1 | 11.8 |
| 6189 | 64 | full | 140 | 7.4 | 9.3 | 13.0 | 30.6 | 29.6 | 10.2 | 60.2 | 10.2 | 11.2 |
| 6286 | 62 | 5 | 140 | 8.7 | 12.5 | 14.4 | 26.0 | 31.7 | 6.7 | 61.5 | 9.3 | 10.4 |
| 6348 | 61 | 5 | 140 | 9.7 | 15.1 | 15.1 | 28.0 | 30.1 | 2.2 | 67.7 | 8.4 | 9.9 |
| 6393 | 64 | 5 | 140 | 6.9 | 10.8 | 18.6 | 42.2 | 19.6 | 2.0 | 78.4 | 9.0 | 11.6 |
| 6438 | 63 | 5 | 140 | 15.3 | 15.3 | 18.4 | 27.6 | 20.4 | 3.1 | 76.5 | 8.4 | 10.6 |
| 6439 | 64 | 5 | 140 | 18.6 | 15.1 | 15.1 | 25.6 | 17.4 | 8.1 | 74.4 | 7.6 | 9.4 |
| 6440 | 64 | 5 | 140 | 10.5 | 15.2 | 21.0 | 33.3 | 19.0 | 1.0 | 80.0 | 9.5 | 12.3 |
| 6443 | 64 | full | 140 | 11.8 | 11.0 | 16.9 | 27.9 | 26.5 | 5.9 | 67.6 | 12.2 | 14.4 |
| 6456 | 64 | full | 140 | 7.2 | 7.2 | 9.6 | 32.0 | 37.6 | 6.4 | 56.0 | 11.0 | 11.6 |
| 6463 | 64 | 5 | 140 | 14.3 | 12.6 | 12.6 | 26.9 | 28.6 | 5.0 | 66.4 | 10.5 | 12.2 |
| 6471 | 67 | full | 140 | 3.9 | 7.2 | 14.5 | 38.2 | 32.2 | 3.9 | 63.8 | 13.5 | 15.4 |
| 6479 | 64 | 5 | 140 | 18.8 | 14.1 | 14.1 | 32.9 | 16.5 | 3.5 | 80.0 | 7.7 | 10.0 |
| 6481 | 64 | 5 | 140 | 11.9 | 15.8 | 25.7 | 34.7 | 10.9 | 1.0 | 88.1 | 9.2 | 12.1 |
| 6493 | 68 | full | 140 | 5.1 | 8.8 | 16.9 | 36.0 | 27.2 | 5.9 | 66.9 | 12.4 | 14.6 |
| 6501 | 63 | 5 | 140 | 13.0 | 20.7 | 28.3 | 31.5 | 5.4 | 1.1 | 93.5 | 8.1 | 11.7 |
| 6502 | 67 | 5 | 140 | 6.0 | 9.4 | 17.4 | 38.3 | 28.9 | 0.0 | 71.1 | 14.3 | 17.3 |
| 6510 | 67 | 5 | 129 | 9.3 | 13.0 | 18.5 | 38.0 | 20.4 | 0.9 | 78.7 | 9.6 | 12.3 |
| 6512 | 64 | full | 140 | 7.2 | 8.1 | 9.0 | 30.6 | 32.4 | 12.6 | 55.0 | 10.4 | 11.0 |
| 6515 | 67 | full | 135 | 4.0 | 6.5 | 15.3 | 37.9 | 31.5 | 4.8 | 63.7 | 10.9 | 12.4 |
| 6517 | 63 | full | 127 | 4.7 | 8.1 | 17.4 | 31.4 | 32.6 | 5.8 | 61.6 | 9.6 | 10.3 |
| 6525 | 67 | full | 99 | 3.4 | 7.6 | 12.7 | 39.0 | 33.9 | 3.4 | 62.7 | 10.5 | 11.9 |
| 6530 | 67 | full | 134 | 4.1 | 6.8 | 9.5 | 24.3 | 43.2 | 12.2 | 44.6 | 13.1 | 12.4 |
| 6531 | 64 | 5 | 130 | 8.8 | 10.6 | 24.8 | 46.0 | 8.8 | 0.9 | 90.3 | 9.6 | 13.4 |
| 6534 | 64 | 5 | 140 | 5.3 | 8.4 | 21.1 | 48.4 | 15.8 | 1.1 | 83.2 | 8.6 | 11.5 |
| 6535 | 64 | full | 137 | 7.0 | 10.4 | 13.9 | 29.6 | 32.2 | 7.0 | 60.9 | 10.5 | 11.7 |
| 6538 | 64 | full | 140 | 10.5 | 13.7 | 14.7 | 26.3 | 26.3 | 8.4 | 65.3 | 8.4 | 9.7 |
| 6541 | 64 | 5 | 139 | 15.4 | 9.4 | 15.4 | 33.3 | 23.9 | 2.6 | 73.5 | 9.9 | 12.3 |
| 6542 | 68 | full | 110 | 6.3 | 10.6 | 19.7 | 35.2 | 24.6 | 3.5 | 71.8 | 12.9 | 15.7 |
| 6544 | 67 | full | 123 | 4.4 | 7.1 | 15.0 | 34.5 | 33.6 | 5.3 | 61.1 | 10.0 | 11.1 |
| 6546 | 62 | full | 128 | 4.8 | 8.7 | 13.5 | 34.6 | 33.7 | 4.8 | 61.5 | 9.7 | 10.8 |
| 6550 | 63 | 5 | 88 | 11.7 | 10.8 | 15.3 | 31.5 | 27.0 | 3.6 | 69.4 | 9.9 | 11.8 |
| 6551 | 64 | 5 | 136 | 24.1 | 12.7 | 13.9 | 36.7 | 12.7 | 0.0 | 87.3 | 7.1 | 9.8 |
| 6552 | 63 | 5 | 105 | 9.3 | 10.5 | 14.0 | 39.5 | 25.6 | 1.2 | 73.3 | 7.7 | 9.5 |
| 6556 | 64 | full | 121 | 18.5 | 18.5 | 20.4 | 22.2 | 18.5 | 1.9 | 79.6 | 5.4 | 7.0 |
| 6557 | 67 | 5 | 140 | 3.3 | 4.1 | 11.5 | 38.5 | 37.7 | 4.9 | 57.4 | 10.7 | 11.5 |
| 6560 | 67 | 5 | 134 | 9.1 | 12.1 | 17.2 | 41.4 | 18.2 | 2.0 | 79.8 | 9.1 | 11.9 |
| 6561 | 67 | full | 121 | 5.8 | 7.7 | 10.6 | 26.0 | 34.6 | 15.4 | 50.0 | 9.3 | 9.3 |
| 6564 | 63 | 5 | 131 | 13.4 | 11.6 | 16.1 | 32.1 | 23.2 | 3.6 | 73.2 | 9.9 | 12.2 |
| 6567 | 64 | 5 | 91 | 5.5 | 9.2 | 20.2 | 44.0 | 20.2 | 0.9 | 78.9 | 9.9 | 12.8 |

Table 5. Performance of preliminary full sieve green bean lines, June 12 planting, Corvallis, 2008 (cont.) ${ }^{2}$

| Line | Days to Harvest | Est. <br> Sieve <br> Size | Stand | Percent Sieve Size ${ }^{\text {y }}$ |  |  |  |  |  | \%1-4 <br> Sieve | $\begin{gathered} \text { Av } \\ \text { Tons/Acre } \\ \hline \end{gathered}$ | Av Adj Tons/Acre ${ }^{\mathrm{x}}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | 1 | 2 | 3 | 4 | 5 | 6 |  |  |  |
| 6569 | 67 | 5 | 85 | 3.8 | 7.5 | 14.2 | 49.1 | 23.6 | 1.9 | 74.5 | 9.3 | 11.6 |
| 6575 | 67 | full | 140 | 5.3 | 7.9 | 12.3 | 27.2 | 43.0 | 4.4 | 52.6 | 10.3 | 10.6 |
| 6576 | 68 | full | 140 | 3.5 | 6.3 | 10.4 | 22.9 | 46.5 | 10.4 | 43.1 | 12.9 | 12.0 |
| 6581 | 68 | full | 140 | 6.9 | 5.5 | 11.0 | 35.9 | 34.5 | 6.2 | 59.3 | 12.9 | 14.0 |
| 6587 | 67 | full | 110 | 7.6 | 10.2 | 16.1 | 37.3 | 25.4 | 3.4 | 71.2 | 10.4 | 12.5 |
| 6594 | 67 | 5 | 125 | 8.4 | 10.9 | 16.8 | 42.0 | 21.8 | 0.0 | 78.2 | 11.0 | 14.0 |
| 6595 | 64 | full | 140 | 9.7 | 10.7 | 16.5 | 41.7 | 17.5 | 3.9 | 78.6 | 9.1 | 11.8 |
| 6600 | 64 | full | 140 | 17.9 | 14.1 | 14.1 | 33.3 | 12.8 | 7.7 | 79.5 | 7.6 | 9.8 |
| 6602 | 67 | full | 140 | 4.5 | 9.0 | 13.5 | 36.1 | 34.6 | 2.3 | 63.2 | 12.4 | 14.0 |
| 826/48-3 | 67 | full | 140 | 7.7 | 10.8 | 17.7 | 33.1 | 23.1 | 7.7 | 69.2 | 11.6 | 13.8 |
| 828/48-5 | 63 | full | 140 | 12.3 | 13.8 | 13.8 | 24.6 | 27.7 | 7.7 | 64.6 | 6.1 | 7.0 |
| 836/3-15 | 64 | full | 140 | 9.5 | 12.2 | 13.5 | 31.1 | 29.7 | 4.1 | 66.2 | 6.8 | 7.9 |
| 853/6-9 | 68 | full | 140 | 17.4 | 17.4 | 21.7 | 24.6 | 15.9 | 2.9 | 81.2 | 6.4 | 8.4 |
| 861/13-14 | 64 | full | 140 | 8.0 | 8.0 | 10.7 | 24.0 | 34.7 | 14.7 | 50.7 | 6.6 | 6.7 |
| 897/18-1 | 68 | full | 128 | 10.2 | 13.3 | 21.4 | 36.7 | 16.3 | 2.0 | 81.6 | 8.9 | 11.7 |
| 903/20-2 | 67 | full | 135 | 12.8 | 11.7 | 14.9 | 20.2 | 29.8 | 10.6 | 59.6 | 8.5 | 9.4 |
| 904/20-3 | 67 | full | 126 | 14.6 | 14.6 | 18.8 | 27.1 | 14.6 | 10.4 | 75.0 | 4.4 | 5.4 |
| LSD 0.05 |  |  | 27 |  |  |  |  |  |  |  | 3.6 | 4.3 |

${ }^{2}$ Mean of 2 replications; subplots of 5 ' were harvested from 20' plots in rows 30" apart.
${ }^{\mathrm{y}}$ Percent calculated as $\%$ of total of 1-6 sieve beans.
${ }^{\times}$Tons/Acre adjusted to 50\% 1-4 sieve.

Table 6. Performance of preliminary small sieve green bean lines, June 12 planting, Corvallis, 2008. ${ }^{\text { }}$

| Line | Days to Harvest | Est. Sieve Size | Stand | Percent Sieve Size ${ }^{\text {y }}$ |  |  |  |  | 6 | \%1-4 <br> Sieve | Av Tons/Acre |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | 1 | 2 | 3 | 4 | 5 |  |  |  |
| 6241 | 63 | 4-5 | 140 | 5.1 | 8.9 | 19.0 | 34.2 | 25.3 | 7.6 | 67.1 | 7.2 |
| 6329 | 62 | 4 | 139 | 12.2 | 12.2 | 16.2 | 37.8 | 18.9 | 2.7 | 78.4 | 6.4 |
| 6340 | 64 | 4-5 | 140 | 12.2 | 14.3 | 20.4 | 33.7 | 16.3 | 3.1 | 80.6 | 8.7 |
| 6442 | 64 | 4-5 | 140 | 15.2 | 14.3 | 15.2 | 28.6 | 23.8 | 2.9 | 73.3 | 9.0 |
| 6464 | 63 | 4-5 | 105 | 15.2 | 19.0 | 20.3 | 31.6 | 13.9 | 0.0 | 86.1 | 7.3 |
| 6496 | 64 | 4-5 | 124 | 15.6 | 20.0 | 24.4 | 28.9 | 10.0 | 1.1 | 88.9 | 8.2 |
| 6528 | 64 | 4-5 | 140 | 6.5 | 12.2 | 28.5 | 45.5 | 7.3 | 0.0 | 92.7 | 10.8 |
| 6533 | 63 | 4-5 | 140 | 7.3 | 9.2 | 15.6 | 43.1 | 23.9 | 0.9 | 75.2 | 9.9 |
| 6537 | 63 | 4-5 | 135 | 7.8 | 13.3 | 24.4 | 40.0 | 13.3 | 1.1 | 85.6 | 8.3 |
| 6539 | 64 | 4-5 | 81 | 8.8 | 14.0 | 21.1 | 35.1 | 17.5 | 3.5 | 78.9 | 7.8 |
| 6549 | 67 | 4-5 | 120 | 6.0 | 9.8 | 24.1 | 52.6 | 7.5 | 0.0 | 92.5 | 11.7 |
| 6553 | 64 | 4-5 | 140 | 4.3 | 9.4 | 27.4 | 50.4 | 7.7 | 0.9 | 91.5 | 9.9 |
| 6554 | 68 | 4-5 | 140 | 4.4 | 7.9 | 16.7 | 48.2 | 21.1 | 1.8 | 77.2 | 10.1 |
| 6555 | 64 | 4-5 | 119 | 8.2 | 12.4 | 20.6 | 42.3 | 16.5 | 0.0 | 83.5 | 9.0 |
| 6574 | 67 | 4-5 | 132 | 14.5 | 21.7 | 22.9 | 30.1 | 8.4 | 2.4 | 89.2 | 7.4 |
| 846/6-3 | 64 | 4 | 140 | 19.3 | 15.8 | 17.5 | 24.6 | 19.3 | 3.5 | 77.2 | 5.6 |
| Savannah | 67 | 4 | 140 | 4.4 | 13.3 | 46.0 | 35.4 | 0.9 | 0.0 | 99.1 | 10.3 |
| LSD 0.05 |  |  | 29 |  |  |  |  |  |  |  | 3.2 |

[^0]Table 7. Notes on preliminary full sieve green bean lines, June 12 planting, Corvallis, 2008. ${ }^{\text {² }}$

| Line | Pod Length (cm) | Pod Straight- ness $^{y}$ | Pod Cross Section ${ }^{\times}$ | Pod Smooth - ness $^{\text {w }}$ | Pod Colorv | Flavor Sweet -ness | Flavor Beaniness | Flavor Astringency | Notes ${ }^{\text {u }}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 91G | 17.0 | 5 | round | 5 | 5 | 7 | 7 | 7 | Quite a difference between the two reps for yield and maturity |
| OR 54 | 16.0 | 6 | round | 5 | 5 | 5 | 7 | 7 | Getting seedy without sizing up. |
| 5630 | 15.0 | 7 | round | 5 | 5 | 8 | 7 | 7 | Segregating for ovals \& strings; prime in one more day. |
| 5669 | 14.0 | 5 | round | 5 | 5 | 7 | 7 | 7 | Getting seedy without sizing up. |
| 6137 | 17.0 | 6 | round | 4 | 7 | 3 | 7 | 5 | Slight floral note; segregating ovals; shiny dark green large pods. |
| 6174 | 15.0 | 5 | round | 5 | 6 | 7 | 7 | 7 | Light colored, oval, stringy mix. |
| 6189 | 15.0 | 5 | round | 5 | 6 | 7 | 5 | 7 | Slight floral note. |
| 6286 | 15.0 | 6 | round | 6 | 5 | 7 | 7 | 7 | Oval mix in smaller sieve sizes and stringy mix in 5 \& 6 sv. |
| 6348 | 13.5 | 5 | round | 5 | 5 | 5 | 7 | 5 | Has larger sieve size oval/flat mix; not a bad looking bean for its earliness. |
| 6393 | 15.5 | 4 | round | 7 | 5 | 5 | 8 | 7 | Oval mix; segregating for strings. |
| 6438 | 16.0 | 5 | round | 5 | 5 | 7 | 7 | 7 | Oval mix. |
| 6439 | 16.0 | 5 | round | 5 | 5 | 7 | 5 | 7 | Heart shaped in lower sieves. |
| 6440 | 14.5 | 7 | round | 6 | 5 | 6 | 5 | 7 | Getting seedy without sizing up. |
| 6443 | 15.0 | 6 | round | 6 | 5 | 5 | 7 | 7 | Nice looking bean with consistently high yields. |
| 6456 | 15.5 | 7 | round | 7 | 5 | 7 | 7 | 7 | Attractive bean. |
| 6463 | 15.0 | 5 | round | 5 | 5 | 7 | 7 | 7 |  |
| 6471 | 15.0 | 5 | round | 5 | 5 | 8 | 7 | 7 |  |
| 6479 | 15.0 | 6 | heart | 7 | 5 | 7 | 5 | 7 | May have oval tendencies. |
| 6481 | 15.0 | 6 | heart | 5 | 5 | 7 | 5 | 7 | Mix of round (not many), heart and oval. |
| 6493 | 16.5 | 6 | round | 6 | 5 | 5 | 5 | 7 |  |
| 6501 | 14.5 | 4 | oval/round | 5 | 5 | 7 | 7 | 7 | Picked too young but not worth picking again; $\sim 50 \%$ ovals. |
| 6502 | 16.0 | 5 | round | 5 | 5 | 8 | 5 | 7 | Very seedy 6 sv ; getting seedy without sizing up |
| 6510 | 16.0 | 6 | round | 6 | 7 | 8 | 7 | 7 | Very attractive dark green bean with very dark green seeds. Very seedy 6 sv; getting seedy without sizing up. |
| 6512 | 15.5 | 5 | round | 3 | 7 | 7 | 5 | 7 | Does not seem to pick easily; many pods with pedicles and some with racemes still attached; might be a problem with clusters. Pc type with extreme green mix, particularly in higher sieve sizes. |

Table 7. Notes on preliminary full sieve green bean lines, June 12 planting, Corvallis, 2008 (cont). ${ }^{\text {² }}$

| Line | Pod Length (cm) | Pod Straightness ${ }^{y}$ | Pod Cross Section ${ }^{\mathrm{x}}$ | Pod Smooth- ness $^{w}$ | Pod Colorv | Flavor Sweet -ness | Flavor Beaniness | Flavor Astringency | Notes ${ }^{\text {u }}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 6515 | 16.5 | 7 | round to cb | 7 | 7 | 7 | 7 | 7 | Strong floral note; pc type; very nice appearance. |
| 6517 | 15.0 | 7 | round to cb | 7 | 7 | 6 | 7 | 6 | Very attractive pc type; stringy mix; some cb pods are falling into the next sieve size smaller bin. |
| 6525 | 15.0 | 5 | round to cb | 5 | 5 | 7 | 7 | 7 |  |
| 6530 | 15.0 | 7 | round | 6 | 5 | 7 | 7 | 7 | Segregating strings? |
| 6531 | 15.0 | 8 | oval | 7 | 4 | 7 | 7 | 7 | Very smooth and straight but most pods too light and oval; does not grade properly. |
| 6534 | 16.0 | 5 | round | 5 | 4 | 7 | 7 | 7 | Too light; heart tendency. Harvested young. |
| 6535 | 17.0 | 6 | round to cb | 5 | 7 | 7 | 7 | 7 | Pc type. Does not form strings but has a bit of fiber in dorsal suture. |
| 6538 | 15.5 | 7 | round | 7 | 5 | 6 | 8 | 7 | Oval mix; segregating strings. |
| 6541 | 14.5 | 7 | round | 5 | 4 | 7 | 7 | 7 | Light color; 3 sv looks junky; very seedy 6 sv; getting seedy without sizing up. |
| 6542 | 14.0 | 7 | round | 5 | 6 | 7 | 7 | 7 | Round but with oval/heart mix. |
| 6544 | 14.5 | 7 | round | 6 | 5 | 7 | 7 | 7 | Floral note. |
| 6546 | 15.0 | 5 | round | 7 | 5 | 7 | 5 | 7 | Very long with some pods up to 19 cm ; may be too light in color. |
| 6550 | 14.5 | 7 | heart | 4 | 7 | 5 | 5 | 7 | Heart shaped with oval tendencies; segregating strings. Pc type with good pod color but rough. |
| 6551 | 15.5 | 5 | round | 7 | 4 | 5 | 5 | 7 | Long slender pods; very seedy 5 sv; getting seedy without sizing up. |
| 6552 | 15.5 | 7 | round | 7 | 5 | 7 | 7 | 7 | Long and slender; 91G color but pc type |
| 6556 | 15.5 | 5 | round | 5 | 4 | 8 | 5 | 7 | Tendency to reverse curve; getting seedy without sizing up. |
| 6557 | 15.0 | 6 | round | 5 | 5 | 7 | 3 | 7 |  |
| 6560 | 14.0 | 6 | round | 5 | 6 | 7 | 5 | 7 | Floral note; getting seedy without sizing up. |
| 6561 | 16.0 | 5 | round to cb | 5 | 7 | 5 | 7 | 5 | Strong reverse curve; pc type; segregating ovals. |
| 6564 | 15.5 | 6 | round | 5 | 5 | 7 | 9 | 7 | Heart mix, dark green pod mix. |
| 6567 | 13.0 | 8 | round | 7 | 4 | 7 | 7 | 7 | Pc type but very light pods; oval mix. |
| 6569 | 15.5 | 5 | round | 5 | 5 | 8 | 5 | 7 | Segregating strings \& ovals; tough skin. |

Table 7. Notes on preliminary full sieve green bean lines, June 12 planting, Corvallis, 2008 (cont). ${ }^{\text {² }}$

| Line |  |  | Pod Cross Section ${ }^{\text {x }}$ |  | Pod Colorv | Flavor Sweet -ness | Flavor Beaniness | Flavor Astringency | Notes ${ }^{\text {u }}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 6575 | 15.5 | 6 | round | 5 | 5 | 5 | 5 | 5 | Strong floral note. |
| 6576 | 14.0 | 5 | round | 5 | 6 | 7 | 7 | 7 | Slight floral note. |
| 6581 | 15.0 | 4 | $\begin{gathered} \text { round to } \\ \text { cb } \end{gathered}$ | 5 | 4 | 7 | 3 | 5 | Not grading correctly because of cb beans (large beans falling into smaller sieve size). |
| 6587 | 17.0 | 7 | round | 7 | 7 | 7 | 7 | 8 | Some fiber in suture but not a full fledged string. Long, slender, dark green and smooth. |
| 6594 | 16.0 | 7 | heart | 5 | 5 | 7 | 7 | 7 | Strong floral note; tendency to ovals. |
| 6595 | 15.0 | 7 | heart to round | 5 | 5 | 7 | 7 | 7 | Tendency to ovals; color mix; long and straight. |
| 6600 | 16.0 | 6 | round | 5 | 5 | 7 | 5 | 7 | Getting seedy without sizing up. |
| 6602 | 15.5 | 7 | round | 6 | 5 | 8 | 7 | 7 | Nice BBL type; good yield. |
| 826/48-3 | 14.5 | 4 | oval | 5 | 5 | 7 | 7 | 7 | Oval with flat mix. |
| 828/48-5 | 14.0 | 5 | round | 3 | 5 | 7 | 3 | 7 | Flat mix; segregating strings; average looking BBL type. |
| 836/3-15 | 15.0 | 4 | round | 5 | 6 | 5 | 5 | 7 | Blond pod OT. |
| 853/6-9 | 15.5 | 5 | heart | 5 | 5 | 7 | 5 | 7 | Line is characterized by chlorotic downward cupped leaves. Many sterile plants, but a few with near normal fertility; many junky pods in $3 \& 4$ sv; getting seedy without sizing up. |
| 861/13-14 | 16.0 | 4 | round | 4 | 4 | 5 | 5 | 7 | Segregating for ovals. |
| 897/18-1 | 13.0 | 5 | $\begin{aligned} & \text { round to } \\ & \text { cb } \end{aligned}$ | 5 | 5 | 3 | 7 | 5 | Short pods; getting seedy without sizing up. |
| 903/20-2 | 17.0 | 5 | round | 5 | 5 | 7 | 5 | 7 | Strong floral note; very long slender pods. |
| 904/20-3 | 15.0 | 5 | round | 5 | 5 | 5 | 5 | 7 | BBL type. |

${ }^{\text {Z Heat in mid trial caused some entries to become seedy }}$
without sizing up.
${ }^{\text {y }}$ Scores based on a 1-9 scale with 9 straightest
${ }^{\times}$Cross section: cb $=$crease-back
${ }^{w}$ Scores based on a 1-9 scale with 9 smoothest
v Scores based on a 1-9 scale with 9 darkest
${ }^{\text {u }}$ OT = off-type; $\mathrm{Cb}=$ crease back; sv = sieve; pc = persistent color; BBL = Bush Blue Lake.

Table 8. Notes on preliminary small sieve green bean lines, June 12 planting, Corvallis, 2008. ${ }^{\text {² }}$

| Line | Pod Length (cm) | Pod Straightness ${ }^{y}$ | Pod Cross Section ${ }^{\times}$ | Pod Smoothness ${ }^{\text {w }}$ | Pod Colorv | Flavor Sweetness | Flavor Beaniness | Flavor Astringency | Notes ${ }^{\text {u }}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 6241 | 13.5 | 5 | oval to round | 7 | 5 | 8 | 5 | 7 | Oval tendency or mix and light color mix. |
| 6329 | 14.0 | 6 | heart to round | 7 | 5 | 5 | 5 | 5 | Probably picked a day before prime. Nice looking bean for its earliness; reverse curve. |
| 6340 | 14.5 | 6 | heart to round | 5 | 5 | 7 | 5 | 7 | $4 \& 5 \mathrm{sv}$ are getting seedy without sizing up. |
| 6442 | 15.5 | 5 | heart | 5 | 5 | 7 | 5 | 7 | Segregating for strings and tendency to ovals; should discard. |
| 6464 | 13.5 | 6 | round | 7 | 5 | 5 | 5 | 5 | $4 \& 5$ sv are getting seedy without sizing up. |
| 6496 | 14.0 | 6 | heart | 6 | 5 | 7 | 5 | 7 | $4 \& 5$ sv are getting seedy without sizing up. |
| 6528 | 14.5 | 6 | round | 7 | 5 | 8 | 7 | 7 | Segregating pc type; appears to be a 4 sv bean in this trial. |
| 6533 | 14.5 | 7 | round | 7 | 4 | 5 | 5 | 7 | Color too light. |
| 6537 | 14.5 | 7 | round | 7 | 7 | 7 | 5 | 7 | Floral note; pc type; dull pods; segr. for ovals. |
| 6539 | 11.5 | 4 | oval | 4 | 7 | 5 | 5 | 7 | Shiny dark green pods; badly oval and short; discard. |
| 6549 | 15.5 | 8 | $\begin{aligned} & \text { round to } \\ & \text { cb } \end{aligned}$ | 7 | 6 | 7 | 5 | 7 | Very attractive long slender pc type; appears to be a 4 sv bean in this trial |
| 6553 | 15.0 | 5 | round | 5 | 5 | 7 | 5 | 7 | Tough skin; 4 sv bean in this trial. |
| 6554 | 15.0 | 7 | round | 6 | 7 | 7 | 5 | 7 | Slight floral note. |
| 6555 | 14.5 | 8 | $\begin{gathered} \text { round to } \\ \text { cb } \end{gathered}$ | 8 | 7 | 7 | 7 | 7 | Very attractive pods; pc type; very uniform. |
| 6574 | 14.0 | 7 | round | 5 | 8 | 5 | 7 | 7 | Segr. ovals; getting seedy without sizing up |
| 846/6-3 | 14.0 | 5 | round | 5 | 4 | 5 | 5 | 7 | Oval mix. |
| Savannah | 13.0 | 8 | round | 9 | 6 | 7 | 5 | 7 | Slight floral note; segregating oval OT. |

${ }^{2}$ Heat in mid trial caused some entries to become seedy without sizing up.
${ }^{y}$ Scores based on a 1-9 scale with 9 straightest
${ }^{\times}$Cross section: cb = crease-back
${ }^{\text {w }}$ Scores based on a 1-9 scale with 9 smoothest
${ }^{v}$ Scores based on a 1-9 scale with 9 darkest
"OT = off-type; pc = persistent color; sv = sieve

Table 9. OSU snap bean notes, Indio, California, 2008 ${ }^{\text {z }}$

| Entry | Heat Tolerance ${ }^{\text {y }}$ | Yield ${ }^{\text {x }}$ | Notes ${ }^{\text {w }}$ |
| :---: | :---: | :---: | :---: |
| 91G | 3 | 4 | Split set |
| OR 54 | 4 | 6 | Pollywogs |
| 5163 | 5 | 5 |  |
| 5256 | 4 | 4 | Late; pollywogs |
| 5620 | 4 | 5 | Blanks \& pollywogs |
| 5630 | 5 | 6 | Early; blanks |
| 5635 | 5 | 7 | Split set |
| 5651 | 6 | 7 |  |
| 5669 | 4 | 6 | Split set |
| 5835 | 3 | 5 |  |
| 5996 | 5 | 6 |  |
| 6137 | 5 | 5 |  |
| 6174 | 5 | 7 |  |
| 6185 | 5 | 5 |  |
| 6189 | 3 | 4 |  |
| 6229 | 6 | 5 | Late |
| 6235 | 6 | 4 |  |
| 6241 | 5 | 5 |  |
| 6257 | 4 | 5 | Fiber; strings |
| 6259 | 2 | 3 |  |
| 760 | 2 | 2 | Extreme split set |
| 762 | 6 | 5 |  |
| 787 | 4 | 6 | Split set |
| 800 | 5 | 5 |  |
| 805 | 5 | 5 |  |
| 814 | 4 | 6 | Pollywogs; split set |
| 817 | 3 | 4 | Split set |
| 822 | 2 | 3 | Very late; split set; pollywogs |
| 825 | 2 | 4 | Late; split set |
| 828 | 3 | 4 | Late; split set; blanks |
| 835 | 3 | 4 | Split set |
| 836 | 4 | 5 |  |
| 837 | 4 | 6 |  |
| 838 | 3 | 5 | Late |
| 840 | 4 | 4 |  |
| 841 | 4 | 6 | Split set |
| 845 | 3 | 4 | Extreme split set |
| 846 | 3 | 4 | Blanks; split set |
| 849 | 4 | 4 |  |
| 850 | 3 | 3 |  |
| 851 | 2 | ? | Extreme split set |
| 853 | 2 | 3 | Blanks; extreme split set |
| 860 | 3 | 4 | Split set |
| 861 | 3 | 4 | Pollywogs; split set |
| 884 | 6 | 6 | Early; looks good |
| 894 | 2 | 3 | Split set |

Table 9. OSU snap bean notes, Indio, California, 2008 (cont.) ${ }^{2}$

| Entry | Heat Tolerance ${ }^{\text {y }}$ | Yield ${ }^{\text {x }}$ | Notes ${ }^{\text {w }}$ |
| :---: | :---: | :---: | :---: |
| 897 | 3 | 3 | Medium late; split set |
| 903 | 3 | 3 | Medium late; split set |
| 904 | 2 | 2 | Late; split set; pollywogs |
| 906 | 3 | 4 | Split set |
| 908 | 5 | 6 | Early |
| 912 | 2 | 3 | Pollywogs; split set |
| 913 | 4 | 5 |  |
| 917 | 5 | 5 | Early |
| 919 | 4 | 4 | Split set |
| B8209/5 | 4 | 5 |  |
| B8210/5 | 4 | 5 | Short fat pods |
| B8211/5 | 4 | 6 | Segregating for pod fiber |
| B8212/5 | 3 | 4 | Pollywogs |
| B8213/5 | 5 | 6 | Split set |
| B8214/5 | 3 | 4 | Segregating for pc? |
| B8215/5 | 4 | 6 | Late |
| B8216/5 | 4 | 4 | Late; looks good |
| B8217/5 | 4 | 6 | Long pods; split set |
| B8218/5 | 4 | 6 |  |
| B8219/5 | 3 | 6 | Pollywogs \& blanks |
| B8220/5 | 4 | 6 |  |
| B8221/5 | 5 | 5 |  |
| B8222/5 | 5 | 5 | Late |
| B8223/5 | 3 | 5 | Late |
| B8224/5 | 4 | 5 | Pollywogs; pod fiber |
| B8225/5 | 3 | 4 | Pollywogs \& blanks |
| B8226/5 | 4 | 4 | Good plant architecture |
| B8227/5 | 4 | 5 |  |
| B8228/5 | 4 | 6 |  |
| B8229/5 | 4 | 4 |  |
| B8230/5 | 3 | 5 | Split set |
| B8231/5 | 5 | 7 | Pollywogs \& blanks |
| B8232/5 | 6 | 6 | Segregating for pc |
| B8233/5 | 6 | 6 | Late; pollywogs \& blanks |
| B8234/5 | 5 | 6 | Late; pollywogs \& blanks |
| B8235/5 | 4 | 5 | Late |
| B8236/5 | 5 | 5 | Late |
| B8237/5 | 5 | 6 |  |
| B8238/5 | 5 | 6 |  |
| B8239/5 | 5 | 7 | Late |
| B8240/5 | 4 | 4 | Late; pollywogs \& blanks |
| B8241/5 | 5 | 6 | Late |
| B8242/5 | 6 | 5 |  |
| B8243/5 | 6 | 6 |  |
| B8244/5 | 5 | 6 | Pollywogs |

Table 9. OSU snap bean notes, Indio, California, 2008 (cont.) ${ }^{\text { }}$

| Entry | Heat Tolerance $^{\text {y }}$ | Yield $^{\text {x }}$ |  |
| :--- | :---: | :---: | :--- |
| B8245/5 | 6 | 6 |  |
| B8246/5 | 4 | 5 |  |
| B8247/5 | 3 | 4 | Late |
| B8248/5 | 4 | 4 |  |
| B8249/5 | 5 | 5 |  |
| B8250/5 | 7 | 5 |  |
| B8254/2 | 4 | 4 |  |
| B8255/2 | 5 | 5 | Late |
| B8256/2 | 5 | 5 | Late |
| B8258/2 | 5 | 6 |  |
| B8259/2 | 5 | 6 |  |
| B8260/2 | 7 | 7 | Segregating for pod fiber |
| B8261/2 | 7 | 7 |  |
| B8262/2 | 6 | 6 |  |
| B8263/2 | 5 | 6 |  |
| B8264/2 | 5 | 6 |  |
| B8265/2 | 4 | 4 | Good plant architecture |
| B8266/2 | 5 | 4 | Good plant architecture |
| B8267/2 | 6 | 5 |  |
| B8268/2 | 8 | 7 | Pod fiber |
| B8269/2 | 8 | 5 |  |
| B8270/2 | 7 | 6 | Late; split set; fiber |
| B8271/2 | 8 | 7 | Segregating for pod fiber |
| B8272/2 | 8 | 7 | Segregating for pod fiber |
| B8273/2 | 8 | 7 | Segregating for pod fiber |
| B8274/2 | 7 | 6 | Segregating for pod fiber |
| B8276/2 | 7 | 7 |  |
| B8277/2 | 7 | 7 |  |
| B8278/2 | 8 | 7 | Early |
| B8279/2 | 7 | 7 | Early |
| B8280/2 | 7 | 6 |  |
| B8281/2 | 6 | 8 | Early |
| B8282/2 | 7 | 8 | Early |
| B8283/2 | 7 | 8 | Early |
| B8284/2 | 6 | 7 | Early; very compact |
| B8285/2 | 6 | 8 | Early |
| B8826/2 | 7 | 7 |  |
| B8287/2 | 6 | 6 | Blanks |
| B8288/2 | 6 | 6 | Blanks |
| P | 7 |  |  |

${ }^{2}$ Planted 26 January. Notes taken 9 May.
${ }^{\text {y }}$ Scores based on 1-9 scale with $9=$ tolerant.
${ }^{\times}$Scores based on 1-9 scale with $9=$ high.
${ }^{\mathrm{w}} \mathrm{Pc}=$ persistent chlorophyll.

Table 10. Performance of commercial green bean varieties, June 25 planting, Corvallis, 2008.

| Variety | Source | AV Stand | Intended Use | $\begin{gathered} \text { Day } \\ \mathrm{s} \\ \hline \end{gathered}$ | Percent Sieve Size ${ }^{\text {² }}$ |  |  |  |  |  |  | Tons/Acre Sieve Size |  |  |  |  |  | Graded Total ${ }^{y}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  | 1 | 2 | 3 | 4 | 5 | 6 | 1-4 | 1 | 2 | 3 | 4 | 5 | 6 |  |
| 91G | OSU | 150 | full sieve | 61 | 11.8 | 13.4 | 21.9 | 40.1 | 12.8 | 0.0 | 87.2 | 0.96 | 1.09 | 1.78 | 3.26 | 1.04 | 0.00 | 8.13 |
|  |  |  |  | 64 | 7.5 | 7.0 | 11.2 | 36.0 | 36.9 | 1.4 | 61.7 | 0.70 | 0.65 | 1.04 | 3.35 | 3.44 | 0.13 | 9.31* |
|  |  |  |  | 65 | 7.7 | 5.3 | 9.6 | 31.1 | 45.0 | 1.4 | 53.6 | 0.70 | 0.48 | 0.87 | 2.83 | 4.09 | 0.13 | 9.09 |
| OR 54 | OSU | 146 | full sieve | 65 | 6.1 | 7.4 | 12.7 | 34.4 | 34.0 | 5.3 | 60.7 | 0.65 | 0.78 | 1.35 | 3.65 | 3.61 | 0.57 | 10.61 |
|  |  |  |  | 66 | 5.2 | 7.1 | 12.4 | 39.0 | 32.9 | 3.3 | 63.8 | 0.48 | 0.65 | 1.13 | 3.57 | 3.00 | 0.30 | 9.14* |
|  |  |  |  | 69 | 4.2 | 3.8 | 6.6 | 20.2 | 52.3 | 12.9 | 34.8 | 0.52 | 0.48 | 0.83 | 2.52 | 6.53 | 1.61 | 12.48 |
| 5630 | OSU | 150 | full sieve | 62 | 10.4 | 12.4 | 22.8 | 45.5 | 8.4 | 0.5 | 91.1 | 0.91 | 1.09 | 2.00 | 4.00 | 0.74 | 0.04 | 8.79 |
|  |  |  |  | 65 | 7.8 | 8.3 | 14.7 | 45.0 | 23.9 | 0.5 | 75.7 | 0.74 | 0.78 | 1.39 | 4.26 | 2.26 | 0.04 | 9.48* |
|  |  |  |  | 69 | 5.2 | 4.1 | 6.7 | 33.0 | 47.9 | 3.0 | 49.1 | 0.61 | 0.48 | 0.78 | 3.83 | 5.57 | 0.35 | 11.61 |
| 6443 | OSU | 150 | full sieve | 65 | 5.6 | 7.8 | 15.1 | 42.7 | 28.4 | 0.4 | 71.1 | 0.57 | 0.78 | 1.52 | 4.31 | 2.87 | 0.04 | 10.09 |
|  |  |  |  | 66 | 6.0 | 6.5 | 13.4 | 36.1 | 35.2 | 2.8 | 62.0 | 0.57 | 0.61 | 1.26 | 3.39 | 3.31 | 0.26 | 9.40* |
|  |  |  |  | 69 | 5.3 | 4.1 | 6.0 | 24.1 | 48.5 | 12.0 | 39.5 | 0.61 | 0.48 | 0.70 | 2.78 | 5.61 | 1.39 | 11.57 |
| Huntington | Syngenta | 150 | full sieve | 64 | 7.8 | 11.0 | 20.6 | 43.6 | 17.0 | 0.0 | 83.0 | 0.74 | 1.04 | 1.96 | 4.13 | 1.61 | 0.00 | 9.48 |
|  |  |  |  | 66 | 6.0 | 7.3 | 11.6 | 37.8 | 36.5 | 0.9 | 62.7 | 0.61 | 0.74 | 1.17 | 3.83 | 3.70 | 0.09 | 10.14* |
|  |  |  |  | 69 | 6.2 | 5.4 | 5.4 | 20.0 | 58.5 | 4.6 | 36.9 | 0.70 | 0.61 | 0.61 | 2.26 | 6.61 | 0.52 | 11.31 |
| PLS 5050-3 | Pureline | 150 | full sieve | 58 | 14.3 | 22.7 | 31.1 | 28.6 | 3.4 | 0.0 | 96.6 | 0.74 | 1.17 | 1.61 | 1.48 | 0.17 | 0.00 | 5.18 |
|  |  |  |  | 62 | 4.3 | 5.3 | 12.8 | 46.0 | 28.9 | 2.7 | 68.4 | 0.35 | 0.44 | 1.04 | 3.74 | 2.35 | 0.22 | 8.13* |
|  |  |  |  | 64 | 5.1 | 3.7 | 7.5 | 40.2 | 39.3 | 4.2 | 56.5 | 0.48 | 0.35 | 0.70 | 3.74 | 3.65 | 0.39 | 9.31 |
| $\begin{aligned} & \text { PLS 5059- } \\ & \text { 7B-07 } \end{aligned}$ | Pureline | 147 | full sieve | 58 | 24.4 | 26.8 | 25.6 | 20.7 | 2.4 | 0.0 | 97.6 | 0.87 | 0.96 | 0.91 | 0.74 | 0.09 | 0.00 | 3.57 |
|  |  |  |  | 62 | 7.6 | 8.3 | 18.1 | 43.1 | 20.8 | 2.1 | 77.1 | 0.48 | 0.52 | 1.13 | 2.70 | 1.31 | 0.13 | 6.26 |
|  |  |  |  | 64 | 4.7 | 5.8 | 15.2 | 42.1 | 31.0 | 1.2 | 67.8 | 0.35 | 0.44 | 1.13 | 3.13 | 2.31 | 0.09 | 7.44* |
| Spartacus | Seminis | 150 | full sieve | 62 | 5.6 | 6.2 | 11.2 | 36.0 | 37.9 | 3.1 | 59.0 | 0.39 | 0.44 | 0.78 | 2.52 | 2.65 | 0.22 | 7.00 |
|  |  |  |  | 64 | 4.5 | 3.4 | 5.6 | 26.8 | 51.4 | 8.4 | 40.2 | 0.35 | 0.26 | 0.44 | 2.09 | 4.00 | 0.65 | 7.79* |
|  |  |  |  | 65 | 2.8 | 2.8 | 5.6 | 25.7 | 52.0 | 11.2 | 36.9 | 0.22 | 0.22 | 0.44 | 2.00 | 4.05 | 0.87 | 7.79 |
| Titan | Seminis | 150 | 5 sieve | 64 | 3.8 | 7.6 | 16.3 | 52.7 | 18.5 | 1.1 | 80.4 | 0.30 | 0.61 | 1.31 | 4.22 | 1.48 | 0.09 | 8.00 |
|  |  |  |  | 66 | 2.2 | 4.5 | 9.0 | 42.7 | 40.4 | 1.1 | 58.4 | 0.17 | 0.35 | 0.70 | 3.31 | 3.13 | 0.09 | 7.74* |
|  |  |  |  | 69 | 4.2 | 3.3 | 5.2 | 22.5 | 58.2 | 6.6 | 35.2 | 0.39 | 0.30 | 0.48 | 2.09 | 5.39 | 0.61 | 9.27 |
| Ulysses | Seminis | 150 | 5 sieve | 58 | 10.1 | 15.5 | 24.8 | 38.8 | 10.9 | 0.0 | 89.1 | 0.57 | 0.87 | 1.39 | 2.18 | 0.61 | 0.00 | 5.61 |
|  |  |  |  | 61 | 6.3 | 5.7 | 11.9 | 43.4 | 31.4 | 1.3 | 67.3 | 0.44 | 0.39 | 0.83 | 3.00 | 2.18 | 0.09 | 6.92* |
|  |  |  |  | 63 | 4.3 | 3.8 | 6.5 | 33.2 | 48.4 | 3.8 | 47.8 | 0.35 | 0.30 | 0.52 | 2.65 | 3.87 | 0.30 | 8.00 |

Table 10. Performance of commercial green bean varieties, June 25 planting, Corvallis, 2008 (cont.).

| Variety | Source | AV Stand | Intended Use | $\begin{gathered} \text { Day } \\ \mathrm{s} \\ \hline \end{gathered}$ | Percent Sieve Size ${ }^{\text {² }}$ |  |  |  |  |  |  | Tons/Acre Sieve Size |  |  |  |  |  | Graded Total ${ }^{y}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  | 1 | 2 | 3 | 4 | 5 | 6 | 1-4 | 1 | 2 | 3 | 4 | 5 | 6 |  |
| Weapon | Seminis | 150 | 5 sieve | 62 | 7.4 | 11.1 | 24.1 | 47.5 | 9.9 | 0.0 | 90.1 | 0.52 | 0.78 | 1.70 | 3.35 | 0.70 | 0.00 | 7.05 |
|  |  |  |  | 64 | 6.6 | 8.4 | 16.9 | 47.0 | 19.9 | 1.2 | 78.9 | 0.48 | 0.61 | 1.22 | 3.39 | 1.44 | 0.09 | 7.22* |
|  |  |  |  | 65 | 6.8 | 6.8 | 13.7 | 42.9 | 28.6 | 1.2 | 70.2 | 0.48 | 0.48 | 0.96 | 3.00 | 2.00 | 0.09 | 7.00 |
| SB 4359 | Sygenta | 150 | 4-5 sieve | 58 | 9.7 | 13.8 | 26.9 | 42.1 | 7.6 | 0.0 | 92.4 | 0.61 | 0.87 | 1.70 | 2.65 | 0.48 | 0.00 | 6.31 |
|  |  |  |  | 61 | 4.8 | 5.9 | 15.5 | 50.3 | 22.5 | 1.1 | 76.5 | 0.39 | 0.48 | 1.26 | 4.09 | 1.83 | 0.09 | 8.13* |
|  |  |  |  | 63 | 3.8 | 5.5 | 12.6 | 49.7 | 27.3 | 1.1 | 71.6 | 0.30 | 0.44 | 1.00 | 3.96 | 2.18 | 0.09 | 7.96 |
| SB 4372 | Syngenta | 150 | 4 sieve | 64 | 9.0 | 15.7 | 36.7 | 38.0 | 0.6 | 0.0 | 99.4 | 0.65 | 1.13 | 2.65 | 2.74 | 0.04 | 0.00 | 7.22 |
|  |  |  |  | 65 | 7.8 | 13.5 | 31.8 | 45.3 | 1.6 | 0.0 | 98.4 | 0.65 | 1.13 | 2.65 | 3.78 | 0.13 | 0.00 | 8.35* |
|  |  |  |  | 69 | 4.5 | 5.3 | 11.9 | 59.4 | 18.9 | 0.0 | 81.1 | 0.48 | 0.57 | 1.26 | 6.31 | 2.00 | 0.00 | 10.61 |
| $\begin{aligned} & \text { PLS 4940- } \\ & 07 \end{aligned}$ | Pureline | 131 | 4 sieve | 62 | 5.8 | 7.9 | 25.4 | 57.7 | 3.2 | 0.0 | 96.8 | 0.48 | 0.65 | 2.09 | 4.74 | 0.26 | 0.00 | 8.22* |
|  |  |  |  | 63 | 6.5 | 8.6 | 20.5 | 58.9 | 5.4 | 0.0 | 94.6 | 0.52 | 0.70 | 1.65 | 4.74 | 0.44 | 0.00 | 8.05 |
|  |  |  |  | 65 | 4.9 | 4.9 | 14.6 | 56.1 | 19.5 | 0.0 | 80.5 | 0.44 | 0.44 | 1.31 | 5.00 | 1.74 | 0.00 | 8.92 |
| BSC 8577 | Brotherton | 150 | 4 sieve | 64 | 5.7 | 14.4 | 49.3 | 30.1 | 0.4 | 0.0 | 99.6 | 0.57 | 1.44 | 4.92 | 3.00 | 0.04 | 0.00 | 9.96 |
|  |  |  |  | 65 | 4.8 | 9.9 | 30.6 | 53.2 | 1.6 | 0.0 | 98.4 | 0.52 | 1.09 | 3.35 | 5.83 | 0.17 | 0.00 | 10.96* |
|  |  |  |  | 69 | 3.2 | 6.1 | 20.4 | 64.9 | 5.4 | 0.0 | 94.6 | 0.39 | 0.74 | 2.48 | 7.87 | 0.65 | 0.00 | 12.14 |
| BSC 8617 | Brotherton | 150 | 4 sieve | 58 | 23.8 | 30.5 | 30.5 | 15.2 | 0.0 | 0.0 | 100.0 | 1.09 | 1.39 | 1.39 | 0.70 | 0.00 | 0.00 | 4.57 |
|  |  |  |  | 62 | 7.7 | 15.4 | 41.0 | 34.6 | 1.3 | 0.0 | 98.7 | 0.52 | 1.04 | 2.78 | 2.35 | 0.09 | 0.00 | 6.79* |
|  |  |  |  | 64 | 6.1 | 10.0 | 40.0 | 42.8 | 1.1 | 0.0 | 98.9 | 0.48 | 0.78 | 3.13 | 3.35 | 0.09 | 0.00 | 7.83 |
| BB 588 | Pannar | 150 | 4 sieve | 64 | 5.8 | 13.7 | 39.5 | 40.5 | 0.5 | 0.0 | 99.5 | 0.48 | 1.13 | 3.26 | 3.35 | 0.04 | 0.00 | 8.27 |
|  |  |  |  | 66 | 5.4 | 8.8 | 24.9 | 60.0 | 1.0 | 0.0 | 99.0 | 0.48 | 0.78 | 2.22 | 5.35 | 0.09 | 0.00 | 8.92* |
|  |  |  |  | 69 | 3.8 | 5.1 | 12.8 | 70.5 | 7.7 | 0.0 | 92.3 | 0.39 | 0.52 | 1.31 | 7.18 | 0.78 | 0.00 | 10.18 |
| BB 589 | Pannar | 150 | 4 sieve | 64 | 5.3 | 12.1 | 37.9 | 44.2 | 0.5 | 0.0 | 99.5 | 0.44 | 1.00 | 3.13 | 3.65 | 0.04 | 0.00 | 8.27 |
|  |  |  |  | 66 | 4.4 | 7.4 | 27.1 | 60.1 | 1.0 | 0.0 | 99.0 | 0.39 | 0.65 | 2.39 | 5.31 | 0.09 | 0.00 | 8.83* |
|  |  |  |  | 69 | 3.5 | 5.3 | 14.6 | 71.2 | 5.3 | 0.0 | 94.7 | 0.35 | 0.52 | 1.44 | 7.00 | 0.52 | 0.00 | 9.83 |
| BB 590 | Pannar | 150 | 4 sieve | 64 | 4.8 | 14.4 | 42.3 | 38.0 | 0.5 | 0.0 | 99.5 | 0.44 | 1.31 | 3.83 | 3.44 | 0.04 | 0.00 | 9.05 |
|  |  |  |  | 66 | 4.1 | 8.6 | 26.2 | 58.8 | 2.3 | 0.0 | 97.7 | 0.39 | 0.83 | 2.52 | 5.66 | 0.22 | 0.00 | 9.61* |
|  |  |  |  | 69 | 3.5 | 6.7 | 17.7 | 67.3 | 4.7 | 0.0 | 95.3 | 0.39 | 0.74 | 1.96 | 7.44 | 0.52 | 0.00 | 11.05 |
| BB 591 | Pannar | 150 | 4 sieve | 64 | 6.1 | 12.2 | 42.8 | 38.3 | 0.6 | 0.0 | 99.4 | 0.48 | 0.96 | 3.35 | 3.00 | 0.04 | 0.00 | 7.83 |
|  |  |  |  | 66 | 4.9 | 8.8 | 24.0 | 59.3 | 2.9 | 0.0 | 97.1 | 0.44 | 0.78 | 2.13 | 5.26 | 0.26 | 0.00 | 8.87* |
|  |  |  |  | 69 | 4.3 | 6.5 | 13.4 | 65.5 | 10.3 | 0.0 | 89.7 | 0.44 | 0.65 | 1.35 | 6.61 | 1.04 | 0.00 | 10.09 |

Table 10. Performance of commercial green bean varieties, June 25 planting, Corvallis, 2008 (cont.).

| Variety | Source | AV <br> Stand | Intended Use | $\begin{gathered} \text { Day } \\ \mathrm{s} \\ \hline \end{gathered}$ | Percent Sieve Size ${ }^{\text {² }}$ |  |  |  |  |  |  | Tons/Acre Sieve Size |  |  |  |  |  | Graded Total ${ }^{y}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  | 1 | 2 | 3 | 4 | 5 | 6 | 1-4 | 1 | 2 | 3 | 4 | 5 | 6 |  |
| BB 592 | Pannar | 150 | 4 sieve | 64 | 6.6 | 14.2 | 48.1 | 30.6 | 0.5 | 0.0 | 99.5 | 0.52 | 1.13 | 3.83 | 2.44 | 0.04 | 0.00 | 7.96 |
|  |  |  |  | 66 | 5.3 | 8.7 | 28.0 | 57.0 | 1.0 | 0.0 | 99.0 | 0.48 | 0.78 | 2.52 | 5.13 | 0.09 | 0.00 | 9.00* |
|  |  |  |  | 69 | 3.6 | 6.2 | 17.9 | 69.2 | 3.1 | 0.0 | 96.9 | 0.30 | 0.52 | 1.52 | 5.87 | 0.26 | 0.00 | 8.48 |
| BB 593 | Pannar | 149 | 4 sieve | 64 | 9.9 | 24.3 | 65.8 | 0.0 | 0.0 | 0.0 | 100.0 | 0.48 | 1.17 | 3.18 | 0.00 | 0.00 | 0.00 | 4.83 |
|  |  |  |  | 66 | 6.6 | 9.4 | 29.8 | 53.0 | 1.1 | 0.0 | 98.9 | 0.52 | 0.74 | 2.35 | 4.18 | 0.09 | 0.00 | 7.87* |
|  |  |  |  | 69 | 3.5 | 6.0 | 21.1 | 64.8 | 4.5 | 0.0 | 95.5 | 0.30 | 0.52 | 1.83 | 5.61 | 0.39 | 0.00 | 8.66 |
| BB 594 | Pannar | 150 | 4 sieve | 66 | 4.1 | 7.1 | 30.6 | 58.2 | 0.0 | 0.0 | 100.0 | 0.35 | 0.61 | 2.61 | 4.96 | 0.00 | 0.00 | 8.53 |
|  |  |  |  | 69 | 4.2 | 6.0 | 15.8 | 72.6 | 1.4 | 0.0 | 98.6 | 0.39 | 0.57 | 1.48 | 6.79 | 0.13 | 0.00 | 9.35* |
|  |  |  |  | 71 | 2.6 | 4.3 | 11.7 | 73.6 | 7.8 | 0.0 | 92.2 | 0.26 | 0.44 | 1.17 | 7.40 | 0.78 | 0.00 | 10.05 |
| Bullion | Seminis | 150 | 4 sieve | 64 | 5.4 | 12.2 | 29.7 | 50.7 | 2.0 | 0.0 | 98.0 | 0.35 | 0.78 | 1.91 | 3.26 | 0.13 | 0.00 | 6.44 |
|  |  |  |  | 65 | 5.4 | 6.0 | 21.6 | 62.3 | 4.8 | 0.0 | 95.2 | 0.39 | 0.44 | 1.57 | 4.52 | 0.35 | 0.00 | 7.26* |
|  |  |  |  | 69 | 4.8 | 4.2 | 7.9 | 54.5 | 28.5 | 0.0 | 71.5 | 0.35 | 0.30 | 0.57 | 3.92 | 2.04 | 0.00 | 7.18 |
| Savannah | Harris Moran | 150 | 4 sieve | 66 | 8.3 | 19.4 | 45.6 | 26.7 | 0.0 | 0.0 | 100.0 | 0.65 | 1.52 | 3.57 | 2.09 | 0.00 | 0.00 | 7.83 |
|  |  |  |  | 69 | 7.4 | 12.9 | 31.2 | 48.0 | 0.5 | 0.0 | 99.5 | 0.65 | 1.13 | 2.74 | 4.22 | 0.04 | 0.00 | 8.79* |
|  |  |  |  | 71 | 5.4 | 10.4 | 27.1 | 55.2 | 1.8 | 0.0 | 98.2 | 0.52 | 1.00 | 2.61 | 5.31 | 0.17 | 0.00 | 9.61 |
| Selecta | Seminis | 150 | 2 sieve | 62 | 49.7 | 50.3 | 0.0 | 0.0 | 0.0 | 0.0 | 100.0 | 3.78 | 3.83 | 0.00 | 0.00 | 0.00 | 0.00 | 7.61* |
|  |  |  |  | 64 | 48.1 | 51.9 | 0.0 | 0.0 | 0.0 | 0.0 | 100.0 | 3.31 | 3.57 | 0.00 | 0.00 | 0.00 | 0.00 | 6.87 |
|  |  |  |  | 69 | 33.3 | 66.7 | 0.0 | 0.0 | 0.0 | 0.0 | 100.0 | 2.65 | 5.31 | 0.00 | 0.00 | 0.00 | 0.00 | 7.96 |

${ }^{\text {Z Percent calculated as } \% \text { of total of 1-6 sieve beans. }}$
${ }^{y}$ Total tons/acre of the graded beans, including sieve sizes 1-6. Values will be lower than those reported in Table 11 because some beans are lost in the grading process. Analysis of variance (Table 11) was calculated using the harvest marked with *.

Table 11. Statistical comparison of yields of commercial green bean lines, Corvallis, $\mathbf{2 0 0 8}^{\text {² }}$.

| Line | Intended <br> Use | T/A Unadjusted | T/A Adjusted |
| :--- | :---: | :---: | :---: |
| 91G | full sieve | 9.7 | 10.9 |
| OR 54 | full sieve | 10.8 | 12.0 |
| 5630 | full sieve | 9.8 | 12.4 |
| 6443 | full sieve | 9.9 | 11.1 |
| Huntington | full sieve | 10.8 | 12.2 |
| PLS 5050-3 | full sieve | 8.6 | 10.2 |
| PLS 5059-7B-07 | full sieve | 7.8 | 9.2 |
| Spartacus | full sieve | 8.2 | 7.4 |
| Titan | 5 sieve | 8.1 | 8.8 |
| Ulysses | 5 sieve | 7.4 | 8.7 |
| Weapon | 5 sieve | 7.6 | 9.8 |
| SB 4359 | $4-5$ sieve | 8.5 | 8.5 |
| SB 4372 | 4 sieve | 8.8 | 8.8 |
| PLS 4940-07 | 4 sieve | 8.5 | 8.5 |
| BSC 8577 | 4 sieve | 11.4 | 11.4 |
| BSC 8617 | 4 sieve | 7.1 | 7.1 |
| BB 588 | 4 sieve | 9.4 | 9.4 |
| BB 589 | 4 sieve | 9.1 | 9.1 |
| BB 590 | 4 sieve | 10.2 | 10.2 |
| BB 591 | 4 sieve | 9.3 | 9.3 |
| BB 592 | 4 sieve | 9.3 | 9.3 |
| BB 593 | 4 sieve | 8.2 | 8.2 |
| BB 594 | 4 sieve | 9.9 | 9.9 |
| Bullion | 4 sieve | 7.7 | 7.7 |
| Savannah | 4 sieve | 9.0 | 9.0 |
| Selecta | 2 sieve | 8.0 | 8.0 |
| LSD 0.05 |  | 1.7 | 1.8 |

${ }^{2}$ Based on one selected harvest for each variety (marked with * on Table 10), which was usually the harvest closest to optimal based on that variety's intended use ( $50 \% 1-4$ sieve for full sieve). Yields are field yields of 1-6 sieve beans.
${ }^{y}$ Full sieve and 5 sieve beans were adjusted to 50\% 1-4 sieve; all others were unadjusted.

Table 12. Notes on June 25 commercial bean trial, Corvallis, Oregon, 2008.

|  |  |  |  |  | Flavor ${ }^{\text {w }}$ |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Line | Pod Length (cm) | Pod Straightness ${ }^{2}$ | Pod Cross Section | Pod Smoothness ${ }^{\text {y }}$ | Pod Color ${ }^{x}$ | Sweetness | Astringency | Beaniness | $\begin{gathered} \text { Perfumi- } \\ \text { ness } \\ \hline \end{gathered}$ | Notes ${ }^{\text { }}$ |
| 91G | 15.5 | 5 | round | 5 | 5 | 7 | 7 | 7 | 1 |  |
| OR 54 | 16.0 | 5 | round | 5 | 5 | 5 | 7 | 5 | 1 | Getting seedy without sizing up |
| 5630 | 15.0 | 5 | round | 5 | 5 | 7 | 7 | 5 | 1 | Contains stringy OT; getting seedy without sizing up |
| 6443 | 16.0 | 6 | $\begin{gathered} \text { round - } \\ \text { cb } \\ \hline \end{gathered}$ | 5 | 5 | 7 | 7 | 7 | 1 | OR 54 type with possibly better quality. |
| Huntington | 14.0 | 5 | round - $\mathrm{cb}$ | 6 | 4 | 8 | 7 | 7 | 1 |  |
| PLS 5050-3 | 15.5 | 5 | round - $\mathrm{cb}$ | 7 | 4 | 5 | 5 | 7 | 3 | Color too light to blend with 91G; this bean grades more as a 5 sv than as a full sv. |
| $\begin{aligned} & \text { PLS 5059- } \\ & \text { 7B-07 } \end{aligned}$ | 13.5 | 7 | round - $\mathrm{cb}$ | 7 | 4 | 7 | 7 | 5 | 3 | Color too light to blend with 91G; short pods for a full sieve; getting seedy without sizing up. |
| Spartacus | 15.0 | 6 | round cb | 8 | 5 | 8 | 7 | 3 | 3 | Pc type with medium length, straight, dark green pods. |
| Titan | 14.5 | 6 | round - $\mathrm{cb}$ | 7 | 5 | 5 | 7 | 7 | 1 | Pc type; very little seed development in any sv size. |
| Ulysses | 14.0 | 7 | round cb | 8 | 5 | 5 | 3 | 5 | 3 | Attractive pc type with very little battering in the grader. |
| Weapon | 13.5 | 6 | $\begin{gathered} \text { round - } \\ \text { cb } \\ \hline \end{gathered}$ | 7 | 4 | 7 | 7 | 3 | 3 | Color too light to blend with 91G; very straight, uniform bean; pubescent pods that catch senescing leaves and flowers; may account for higher incidence of white mold observed in this line. |

Table 12. Notes on June 25 commercial bean trial, Corvallis, Oregon, 2008 (cont.).

|  |  |  |  |  | Flavor ${ }^{\text {w }}$ |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Line | Pod Length (cm) | Pod Straightness ${ }^{2}$ | Pod <br> Cross Section | Pod Smoothness ${ }^{y}$ | Pod Color ${ }^{x}$ | Sweetness | Astringency | Beaniness | Perfuminess | Notes ${ }^{\text { }}$ |
| SB 4359 | 15.0 | 8 | round | 8 | 7 | 5 | 7 | 7 | 1 | Very nice smooth shiny dark green pods; BBL flavor; color too dark to blend with 91G. |
| SB 4372 | 15.5 | 7 | round | 7 | 7 | 5 | 5 | 7 | 5 | Long slender dark green pod; slight fiber in suture. |
| PLS 4940-07 | 15.5 | 6 | round | 5 | 5 | 7 | 7 | 7 | 5 | Long and slender with shiny pods; segregating ovals. |
| BSC 8577 | 13.0 | 6 | round to creaseback | 7 | 4 | 7 | 7 | 7 | 3 | Short podded; light color. |
| BSC 8617 | 13.5 | 7 | round | 5 | 4 | 8 | 7 | 7 | 3 | Color too light to blend with 91G. |
| BB 588 | 14.5 | 7 | round | 7 | 5 | 7 | 5 | 7 | 7 | Shiny smooth pods |
| BB 589 | 14.5 | 6 | round | 7 | 4 | 7 | 7 | 3 | 7 | Shiny smooth pods; contains ovals |
| BB 590 | 14.5 | 6 | heart | 7 | 4 | 3 | 5 | 5 | 5 | Oval tendency. |
| BB 591 | 14.5 | 7 | heart | 7 | 4 | 5 | 5 | 7 | 7 | Oval tendency. |
| BB 592 | 14.0 | 8 | heart | 7 | 5 | 7 | 7 | 5 | 3 | Oval tendency. |
| BB 593 | 14.0 | 6 | round | 7 | 4 | 7 | 7 | 5 | 7 | Strong oval tendency. |
| BB 594 | 14.5 | 7 | heart | 7 | 5 | 7 | 7 | 5 | 1 | Smooth straight pods with good color; nicest bean of this series. |
| Bullion | 14.0 | 8 | heart | 8 | 6 | 5 | 8 | 5 | 3 | Dark green shiny pc type pods; smooth, straight. |
| Savannah | 14.0 | 7 | round | 7 | 6 | 5 | 7 | 7 | 3 |  |
| Selecta | 12.0 | 8 | round | 6 | 5 | 7 | 7 | 9 | 1 | Tough skin; some pods becoming bumpy. |

${ }^{2}$ Scores based on a 1-9 scale with 9 straightest; ${ }^{\text {y }}$ Scores based on a 1-9 scale with 9 smoothest; ${ }^{*}$ Scores based on 1-9 scale with 9 darkest; wScores based on a 1-9 scale with 9 strongest; ${ }^{\text {N }}$ Notes taken on prime harvest date; white mold infection developed in this trial over time, which reduced yields as trial progressed with later maturing varieties being most affected; $\mathrm{sv}=$ sieve; $\mathrm{BBL}=$ bush blue lake; $\mathrm{pc}=$ persistent color; $\mathrm{OT}=$ off-type.

Table 13. Fusarium root rot infection, experimental lines, Corvallis, 2008²

| Entry | Rep 1 | $\begin{aligned} & \hline \text { Score }^{y} \\ & \text { Rep } 2 \\ & \hline \end{aligned}$ | Rep 3 | Average | Maturity | Lodging ${ }^{\text {x }}$ | Notes |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| RR6950 | 2.5 | 2.0 | 3.0 | 2.5 | medium |  | Vining |
| RR4270 | 4.0 | 4.5 | 5.0 | 4.5 | very late | 2.2 |  |
| B7735-68 | 4.5 | 6.0 | 4.0 | 4.8 | early | 1.7 |  |
| NY5517 | 4.0 | 6.5 | 4.5 | 5.0 | early | 2.5 |  |
| B7030-24 | 5.5 | 4.0 | 6.0 | 5.2 | medium | 2.3 |  |
| B7732-27 | 5.0 | 4.0 | 7.0 | 5.3 | medium | 2.2 |  |
| B7732-1 | 5.0 | 6.0 | 5.5 | 5.5 | medium | 1.7 |  |
| B7733-29 | 5.5 | 5.0 | 6.0 | 5.5 | late | 2.7 |  |
| B7733-36 | 5.0 | 5.0 | 6.5 | 5.5 | late | 1.3 | Poor stand |
| B7732-41-9 | 5.0 | 6.0 | 6.0 | 5.7 | late | 2.0 |  |
| B7733-11 | 5.0 | 5.0 | 7.0 | 5.7 | medium | 2.0 | Poor stand |
| B7735-19 | 5.0 | 5.0 | 7.0 | 5.7 | medium | 1.7 |  |
| B7738-45 | 5.0 | 6.5 | 5.5 | 5.7 | late | 2.2 |  |
| B7738-40 | 6.5 | 5.0 | 6.0 | 5.8 | medium | 1.3 |  |
| B7239-5-4 | 6.0 | 5.5 | 6.5 | 6.0 | medium | 2.0 |  |
| B7732-41-6 | 6.5 | 5.0 | 6.5 | 6.0 | medium | 2.5 |  |
| B7733-35 | 5.0 | 6.0 | 7.0 | 6.0 | medium | 2.2 |  |
| B7732-24 | 7.0 | 5.0 | 6.5 | 6.2 | medium | 2.7 |  |
| B7733-6 | 6.5 | 5.5 | 6.5 | 6.2 | late | 1.8 | Stand somewhat reduced |
| B7735-39 | 7.0 | 5.0 | 6.5 | 6.2 | medium | 2.0 |  |
| B7735-65 | 6.0 | 6.5 | 6.0 | 6.2 | medium | 2.5 |  |
| B7735-9 | 7.0 | 5.0 | 6.5 | 6.2 | medium | 2.3 |  |
| B7735-2 | 6.5 | 6.0 | 6.5 | 6.3 | medium | 1.5 |  |
| B7735-20 | 6.0 | 6.0 | 7.0 | 6.3 | medium | 2.3 |  |
| B7735-69 | 7.0 | 7.0 | 5.0 | 6.3 | medium | 2.0 |  |
| B7735-73 | 7.0 | 6.5 | 5.5 | 6.3 | medium | 2.0 |  |
| 91G | 6.0 | 7.0 | 6.5 | 6.5 | medium | 2.3 |  |
| B7732-3-1 | 6.5 | 6.5 | 6.5 | 6.5 | late | 2.0 |  |
| B7735-61 | 6.0 | 6.5 | 7.0 | 6.5 | medium | 2.0 |  |
| B7738-38 | 6.5 | 7.0 | 6.0 | 6.5 | late | 1.7 |  |
| B7735-32 | 7.0 | 6.0 | 7.0 | 6.7 | medium | 2.2 |  |
| B7735-35 | 7.0 | 6.0 | 7.0 | 6.7 | medium | 2.5 |  |
| B7735-74 | 7.0 | 7.0 | 6.0 | 6.7 | medium | 2.0 |  |
| B7739-16 | 7.0 | 6.5 | 6.5 | 6.7 | medium | 1.7 |  |
| B7735-51 | 5.0 | 6.5 | 8.5 | 6.7 | medium | 1.7 |  |
| B7126-33-1-2 | 7.5 | 6.5 | 6.5 | 6.8 | late | 1.7 |  |
| B7735-11 | 7.5 | 6.5 | 6.5 | 6.8 | medium | 2.0 |  |
| B7735-30 | 7.0 | 6.5 | 7.0 | 6.8 | medium | 1.3 |  |
| B7735-48 | 7.0 | 7.0 | 6.5 | 6.8 | late | 1.5 | Stand somewhat reduced |
| B7735-59 | 7.5 | 6.5 | 6.5 | 6.8 | medium | 2.0 |  |
| B7738-4 | 6.5 | 7.0 | 7.0 | 6.8 | late | 2.2 |  |
| B7739-32 | 6.5 | 7.0 | 7.0 | 6.8 | late | 2.2 |  |
| FR266 | 6.5 | 6.5 | 7.5 | 6.8 | late | 2.2 |  |
| B7732-41-3 | 8.0 | 7.0 | 6.0 | 7.0 | medium | 1.8 |  |
| B7735-23 | 8.0 | 7.0 | 6.0 | 7.0 | medium | 2.5 |  |

Table 13. Fusarium root rot infection, experimental lines, Corvallis, 2008 (cont.) ${ }^{\text {z }}$

| Entry | Score ${ }^{\text {y }}$ |  |  | Average | Maturity | Lodging ${ }^{\text {x }}$ | Notes |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Rep 1 | Rep 2 | Rep 3 |  |  |  |  |
| B7735-70 | 7.0 | 7.0 | 7.0 | 7.0 | medium | 2.3 |  |
| B7738-29 | 7.5 | 6.5 | 7.0 | 7.0 | medium | 2.3 |  |
| B7732-41-10 | 6.5 | 8.0 | 7.0 | 7.2 | medium | 2.7 |  |
| 5630 | 8.0 | 7.0 | 7.0 | 7.3 | medium | 1.7 |  |
| B7733-30 | 8.0 | 7.0 | 7.0 | 7.3 | medium | 2.7 |  |
| B7735-18 | 8.0 | 6.5 | 7.5 | 7.3 | medium | 2.7 |  |
| B7735-43 | 8.0 | 7.0 | 7.0 | 7.3 | medium | 2.5 |  |
| B7735-53 | 8.0 | 7.0 | 7.0 | 7.3 | medium | 1.7 |  |
| B7738-42 | 7.5 | 7.5 | 7.0 | 7.3 | late | 2.2 |  |
| B7732-41-11 | 8.0 | 7.5 | 7.0 | 7.5 | medium | 2.0 |  |
| 5446-1 | 7.0 | 8.0 | 8.5 | 7.8 | early | 3.0 |  |
| LSD 0.05 |  |  |  | 1.2 |  | 0.7 |  |

${ }^{\text {Z }}$ Planted June 20; mean of 3 replications. Notes were taken at $50 \%$ buckskin maturity for each entry.
${ }^{\text {y }}$ Scores based on 1-9 scale with 1 = none or very light surface infection and $9=$ roots mostly dead and plants stunted.
${ }^{\mathrm{x}}$ Scores based on 1-3 scale with $1=$ upright and $3=$ prostrate.

Table 14. Fusarium root rot infection, advanced lines, Corvallis, 2008 ${ }^{\text {² }}$

| Entry | Score ${ }^{\text {y }}$ |  | Average | Maturity | Lodging ${ }^{\text {x }}$ | Notes |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Rep 1 | Rep 2 |  |  |  |  |
| RR6950 | 2.0 | 3.0 | 2.5 | medium | vining |  |
| RR4270 | 4.0 | 5.0 | 4.5 | very late | 2.2 |  |
| 6631 | 5.0 | 6.5 | 5.8 | early | 2.5 |  |
| 6647 | 6.0 | 6.0 | 6.0 | medium | 1.5 | Stand somewhat reduced |
| 6597 | 6.5 | 6.0 | 6.3 | early | 1.8 |  |
| 6613 | 6.0 | 6.5 | 6.3 | medium | 2.0 |  |
| 6621 | 6.0 | 6.5 | 6.3 | late | 2.5 |  |
| 6670 | 6.5 | 6.0 | 6.3 | medium | 1.5 | Stand somewhat reduced |
| 6598 | 6.5 | 6.5 | 6.5 | medium | 1.5 |  |
| 6600 | 6.5 | 6.5 | 6.5 | medium | 1.8 |  |
| 6602 | 7.0 | 6.0 | 6.5 | medium | 1.5 |  |
| 6607 | 6.5 | 6.5 | 6.5 | medium | 2.0 |  |
| 6612 | 6.5 | 6.5 | 6.5 | late | 2.5 |  |
| 6614 | 6.5 | 6.5 | 6.5 | medium | 1.8 |  |
| 6641 | 6.5 | 6.5 | 6.5 | very late | 1.5 |  |
| 6642 | 6.5 | 6.5 | 6.5 | very late | 2.3 |  |
| 6643 | 6.5 | 6.5 | 6.5 | very late | 1.8 |  |
| 6645 | 6.0 | 7.0 | 6.5 | medium | 1.0 |  |
| 6653 | 5.5 | 7.5 | 6.5 | late | 2.0 |  |
| 6654 | 6.5 | 6.5 | 6.5 | medium | 2.5 |  |
| 6667 | 6.5 | 6.5 | 6.5 | medium | 2.0 |  |
| 6673 | 6.0 | 7.0 | 6.5 | medium | 2.8 |  |
| 91G | 7.0 | 6.0 | 6.5 | medium | 2.3 |  |
| 6596 | 6.5 | 7.0 | 6.8 | medium | 2.0 |  |
| 6601 | 7.0 | 6.5 | 6.8 | medium | 1.3 |  |
| 6603 | 6.5 | 7.0 | 6.8 | medium | 2.8 |  |
| 6608 | 6.5 | 7.0 | 6.8 | medium | 2.3 |  |
| 6609 | 6.5 | 7.0 | 6.8 | medium | 2.3 |  |
| 6615 | 7.0 | 6.5 | 6.8 | medium | 2.3 |  |
| 6616 | 7.0 | 6.5 | 6.8 | medium | 2.0 |  |
| 6617 | 7.0 | 6.5 | 6.8 | medium | 2.8 |  |
| 6629 | 7.0 | 6.5 | 6.8 | medium | 1.8 |  |
| 6633 | 7.0 | 6.5 | 6.8 | late | 1.3 |  |
| 6640 | 7.0 | 6.5 | 6.8 | late | 2.5 |  |
| 6650 | 6.5 | 7.0 | 6.8 | late | 1.5 |  |
| 6656 | 6.5 | 7.0 | 6.8 | late | 1.3 |  |
| 6657 | 6.5 | 7.0 | 6.8 | late | 1.3 |  |
| 6669 | 7.0 | 6.5 | 6.8 | late | 1.0 |  |
| 6674 | 6.5 | 7.0 | 6.8 | late | 2.0 |  |
| 6677 | 6.5 | 7.0 | 6.8 | late | 1.8 |  |
| 6604 | 7.0 | 7.0 | 7.0 | medium | 1.8 |  |
| 6605 | 7.0 | 7.0 | 7.0 | medium | 2.3 |  |
| 6610 | 7.0 | 7.0 | 7.0 | medium | 2.5 |  |
| 6611 | 6.5 | 7.5 | 7.0 | medium | 2.5 |  |
| 6619 | 7.0 | 7.0 | 7.0 | medium | 2.3 |  |
| 6622 | 7.0 | 7.0 | 7.0 | late | 2.3 |  |

Table 14. Fusarium root rot infection, advanced lines, Corvallis, 2008 (cont.) ${ }^{2}$

| Entry | Score ${ }^{\text {y }}$ |  | Average | Maturity | Lodging ${ }^{\text {x }}$ | Notes |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Rep 1 | Rep 2 |  |  |  |  |
| 6623 | 7.5 | 6.5 | 7.0 | late | 2.3 |  |
| 6625 | 7.0 | 7.0 | 7.0 | late | 2.0 |  |
| 6626 | 7.0 | 7.0 | 7.0 | medium | 2.3 |  |
| 6635 | 7.0 | 7.0 | 7.0 | late | 1.0 |  |
| 6637 | 7.0 | 7.0 | 7.0 | late | 2.0 |  |
| 6638 | 7.5 | 6.5 | 7.0 | late | 2.3 |  |
| 6658 | 7.5 | 6.5 | 7.0 | late | 1.8 |  |
| 6659 | 7.0 | 7.0 | 7.0 | early | 2.5 |  |
| 6660 | 7.0 | 7.0 | 7.0 | medium | 2.5 |  |
| 6661 | 7.0 | 7.0 | 7.0 | late | 1.3 | Stand somewhat reduced |
| 6665 | 7.0 | 7.0 | 7.0 | medium | 2.0 |  |
| 6671 | 7.0 | 7.0 | 7.0 | medium | 2.0 |  |
| 6675 | 7.0 | 7.0 | 7.0 | late | 2.3 |  |
| 6599 | 7.0 | 7.5 | 7.3 | early | 2.5 |  |
| 6624 | 6.5 | 8.0 | 7.3 | late | 2.5 |  |
| 6636 | 7.0 | 7.5 | 7.3 | late | 1.0 |  |
| 6646 | 7.0 | 7.5 | 7.3 | medium | 1.5 |  |
| 6649 | 7.5 | 7.0 | 7.3 | early | 1.5 |  |
| 6652 | 6.5 | 8.0 | 7.3 | early | 2.0 |  |
| 6663 | 7.5 | 7.0 | 7.3 | medium | 2.5 |  |
| 6666 | 7.5 | 7.0 | 7.3 | late | 2.0 |  |
| 5630 | 7.0 | 7.5 | 7.3 | medium | 1.7 |  |
| 6618 | 7.0 | 8.0 | 7.5 | early | 3.0 |  |
| 6620 | 7.5 | 7.5 | 7.5 | medium | 2.0 |  |
| 6634 | 7.5 | 7.5 | 7.5 | late | 1.0 |  |
| 6648 | 7.0 | 8.0 | 7.5 | early | 1.8 |  |
| 6662 | 7.0 | 8.0 | 7.5 | medium | 1.5 |  |
| 6668 | 8.0 | 7.0 | 7.5 | late | 1.8 |  |
| 6606 | 7.0 | 9.0 | 8.0 | early | 1.8 |  |
| 6664 | 8.0 | 8.0 | 8.0 | early | 2.5 |  |
| 5446 | 8.0 | 8.5 | 8.3 | early | 3.0 |  |
| 6630 | 8.5 | 8.5 | 8.5 | early | 3.0 |  |
| LSD 0.05 |  |  | 0.9 |  | 0.7 |  |

${ }^{\text {z }}$ Planted June 20; mean of 2 replications. Notes were taken at $50 \%$ buckskin maturity for each entry. ${ }^{\text {y }}$ Scores based on 1-9 scale with $1=$ none or very light surface infection and $9=$ roots mostly dead and plants stunted.
${ }^{\times}$Scores based on 1-3 scale with $1=$ upright and $3=$ prostrate.

Table 15. Results from a white mold screening trial, Corvallis, $200 \mathbf{8}^{\text {² }}$

| Entry | Stand ${ }^{\text {y }}$ | White Mold Index ${ }^{\text {x }}$ | White Mold Check Comparisons ${ }^{\mathrm{x}}$ M016 |  |  | White Mold Incidence ${ }^{\text {w }}$ | White Mold Severity | Maturity | Lodging ${ }^{\text {a }}$ | Estimated Yield Potential ${ }^{\text {t }}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | G 122 | 2 | 91G |  |  |  |  |  |
| NY1-6020-5 | 100 | 4.9 |  |  | ** | 7.4 | 0.6 | medium late | 1.9 | 1.8 |
| PI 290990-4-1 | 100 | 4.9 |  |  | ** | 9.8 | 0.5 | early | 1.9 | 1.5 |
| G122 | 100 | 5.3 |  |  | ** | 8.5 | 0.6 | medium | 1.4 | 2.3 |
| L192 | 100 | 5.5 |  |  | ** | 9.5 | 0.6 | late | 1.8 | 1.6 |
| PI 207130-2-4 | 100 | 5.5 |  |  | ** | 9.5 | 0.6 | late | 1.8 | 2.1 |
| NY1-6020-4 | 100 | 7.0 |  |  | ** | 9.0 | 0.8 | medium | 2.5 | 1.9 |
| NYBS6637 | 100 | 9.0 |  |  | ** | 10.0 | 0.9 | late | 1.1 | 2.0 |
| 904 wmgx25-20-3 | 100 | 11.0 |  |  | ** | 10.0 | 1.1 | late | 1.3 | 1.8 |
| MO162 | 100 | 11.3 |  |  | ** | 10.0 | 1.1 | early | 2.4 | 1.4 |
| ExRico 23 | 100 | 12.0 |  |  | ** | 10.0 | 1.2 | medium late | type II | 2.0 |
| 897 wmgx25-18-1 | 100 | 13.8 |  |  | ** | 10.0 | 1.4 | late | 1.6 | 2.4 |
| 6235 | 100 | 15.0 |  |  | ** | 10.0 | 1.5 | medium | 2.5 | 2.0 |
| 6554 | 100 | 16.0 |  |  | ** | 9.8 | 1.6 | medium | 1.9 | 1.8 |
| 6560 | 100 | 18.8 |  |  | ** | 10.0 | 1.9 | medium late | 2.0 | 2.4 |
| 903 wmgx25-20-2 | 100 | 18.8 |  |  | ** | 10.0 | 1.9 | medium early | 1.5 | 2.0 |
| 6557 | 100 | 20.0 | $\wedge$ |  | ** | 10.0 | 2.0 | medium late | 1.9 | 1.9 |
| 856 wmgx25-7-2 | 100 | 20.0 | $\wedge$ |  | ** | 10.0 | 2.0 | medium | 2.1 | 1.9 |
| 861 wmgx25-13-14 | 100 | 20.0 | $\wedge$ |  | ** | 10.0 | 2.0 | medium late | 2.3 | 2.3 |
| 6393 | 100 | 21.1 | $\wedge$ |  | ** | 9.9 | 2.1 | medium | 2.1 | 2.1 |
| 6574 | 100 | 21.3 | $\wedge$ |  | ** | 10.0 | 2.1 | medium late | 2.3 | 1.9 |
| 6241 | 98 | 22.5 | $\wedge$ |  | ** | 10.0 | 2.3 | medium early | 2.8 | 1.9 |
| 6587 | 100 | 22.5 | $\wedge$ |  | ** | 10.0 | 2.3 | late | 1.5 | 2.4 |
| 762 wmgx25-2-6 | 100 | 22.5 | $\wedge$ |  | ** | 10.0 | 2.3 | medium early | 2.8 | 2.3 |
| 853 wmgx25-6-9 | 100 | 22.5 | $\wedge$ |  | ** | 10.0 | 2.3 | late | 1.6 | 1.8 |
| 6573 | 100 | 23.8 | $\wedge$ |  | ** | 10.0 | 2.4 | medium | 1.8 | 2.3 |
| 836 wmgx25-3-15 | 100 | 23.8 | $\wedge$ |  | ** | 10.0 | 2.4 | medium late | 2.3 | 1.8 |
| 6174 | 95 | 25.0 | $\wedge$ |  | ** | 10.0 | 2.5 | medium | 2.1 | 2.6 |
| 6576 | 100 | 25.0 | $\wedge$ |  | ** | 10.0 | 2.5 | medium late | 1.4 | 2.1 |
| 811 wmgx25-43-4 | 100 | 25.0 | $\wedge$ |  | ** | 10.0 | 2.5 | medium | 2.0 | 1.8 |

Table 15. Results from a white mold screening trial, Corvallis, 2008 (cont.) ${ }^{2}$

| Entry | Stand ${ }^{\text {y }}$ | White Mold Index ${ }^{\text {x }}$ | $\frac{\text { White Mold Check }}{\frac{\text { Comparisons }}{}{ }^{\text {M016 }}}$ |  |  | White - Mold Incidence ${ }^{\text {w }}$ | White Mold Severity ${ }^{\text {V }}$ | Maturity | Lodging | Estimated Yield Potential ${ }^{\text {t }}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | G 122 | 2 | 91G |  |  |  |  |  |
| 826 wmgx25-48-3 | 100 | 25.0 | $\wedge$ |  | ** | 10.0 | 2.5 | medium early | 3.0 | 2.3 |
| 6555 | 99 | 26.3 | $\wedge$ | $\wedge$ | ** | 10.0 | 2.6 | medium | 2.0 | 1.9 |
| 6594 | 100 | 26.3 | $\wedge$ | $\wedge$ | ** | 10.0 | 2.6 | medium late | 2.1 | 2.4 |
| 6515 | 100 | 27.5 | $\wedge$ | $\wedge$ | ** | 10.0 | 2.8 | medium late | 1.6 | 2.1 |
| 6545 | 100 | 27.5 | $\wedge$ | $\wedge$ | ** | 10.0 | 2.8 | medium | 1.8 | 1.8 |
| 6575 | 90 | 27.5 | $\wedge$ | $\wedge$ | ** | 10.0 | 2.8 | medium late | 1.5 | 2.4 |
| 846 wmgx25-6-3 | 100 | 27.5 | $\wedge$ | $\wedge$ | ** | 10.0 | 2.8 | late | 2.0 | 2.3 |
| 6530 | 100 | 28.0 | $\wedge$ | $\wedge$ | ** | 10.0 | 2.8 | medium | 2.6 | 2.1 |
| 6561 | 98 | 28.3 | $\wedge$ | $\wedge$ | ** | 10.0 | 2.8 | medium late | 2.3 | 2.4 |
| 6440 | 100 | 28.5 | $\wedge$ | $\wedge$ | ** | 9.8 | 2.9 | medium early | 2.5 | 2.1 |
| 6286 | 100 | 28.8 | $\wedge$ | $\wedge$ | ** | 10.0 | 2.9 | medium early | 3.0 | 2.1 |
| 6340 | 100 | 28.8 | $\wedge$ | $\wedge$ | ** | 10.0 | 2.9 | medium | 2.3 | 2.1 |
| 6510 | 100 | 28.8 | $\wedge$ | $\wedge$ | ** | 10.0 | 2.9 | medium | 2.0 | 2.0 |
| 6528 | 100 | 28.8 | $\wedge$ | $\wedge$ | ** | 10.0 | 2.9 | late | 2.1 | 2.0 |
| 6544 | 100 | 28.8 | $\wedge$ | $\wedge$ | ** | 10.0 | 2.9 | medium | 1.9 | 1.9 |
| 6452 | 100 | 30.0 | $\wedge$ | $\wedge$ | ** | 10.0 | 3.0 | medium | 1.8 | 1.8 |
| 6464 | 93 | 30.0 | $\wedge$ | $\wedge$ | ** | 10.0 | 3.0 | medium early | 1.6 | 2.3 |
| 6556 | 98 | 30.0 | $\wedge$ | $\wedge$ | ** | 10.0 | 3.0 | medium late | 2.4 | 2.1 |
| 828 wmgx25-48-5 | 100 | 30.0 | $\wedge$ | $\wedge$ | ** | 10.0 | 3.0 | late | 2.4 | 1.9 |
| 6549 | 100 | 31.3 | $\wedge$ | $\wedge$ | ** | 10.0 | 3.1 | medium | 1.5 | 2.3 |
| 6551 | 100 | 31.3 | $\wedge$ | $\wedge$ | ** | 10.0 | 3.1 | medium | 2.5 | 2.1 |
| 6439 | 100 | 31.8 | $\wedge$ | $\wedge$ | ** | 10.0 | 3.2 | medium | 2.4 | 2.3 |
| 6567 | 100 | 32.1 | $\wedge$ | $\wedge$ | ** | 9.8 | 3.3 | medium early | 1.9 | 1.6 |
| 6443 | 100 | 32.5 | $\wedge$ | $\wedge$ | ** | 10.0 | 3.3 | medium early | 2.3 | 2.1 |
| 6493 | 100 | 32.5 | $\wedge$ | $\wedge$ | ** | 10.0 | 3.3 | medium | 2.3 | 1.9 |
| 6517 | 100 | 32.5 | $\wedge$ | $\wedge$ | ** | 10.0 | 3.3 | medium | 1.8 | 2.3 |
| 6569 | 100 | 32.5 | $\wedge$ | $\wedge$ | ** | 10.0 | 3.3 | medium late | 2.3 | 2.4 |
| 6595 | 100 | 32.5 | $\wedge$ | $\wedge$ | ** | 10.0 | 3.3 | medium late | 2.6 | 2.0 |
| 5669 | 100 | 32.5 | $\wedge$ | $\wedge$ | ** | 10.0 | 3.3 | medium | 2.4 | 2.1 |

Table 15. Results from a white mold screening trial, Corvallis, 2008 (cont.) ${ }^{2}$

| Entry | Stand ${ }^{\text {y }}$ | White Mold Index ${ }^{\text {x }}$ | $\frac{\text { White Mold Check }}{\frac{\text { Comparisons }}{} \mathrm{M}}$ |  |  | White Mold Incidence ${ }^{\text {w }}$ | White Mold Severity ${ }^{\text {v }}$ | Maturity | Lodging | Estimated Yield Potential ${ }^{\text {t }}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | G 122 | 2 | 91G |  |  |  |  |  |
| 6348 | 100 | 33.8 | $\wedge$ | $\wedge$ | ** | 10.0 | 3.4 | medium early | 2.9 | 2.6 |
| 6438 | 100 | 33.8 | $\wedge$ | $\wedge$ | ** | 10.0 | 3.4 | medium early | 2.3 | 2.5 |
| 6449 | 100 | 33.8 | $\wedge$ | $\wedge$ | ** | 10.0 | 3.4 | medium late | 2.3 | 1.8 |
| 6479 | 100 | 33.8 | $\wedge$ | $\wedge$ | ** | 10.0 | 3.4 | medium late | 2.5 | 1.9 |
| 6501 | 100 | 33.8 | $\wedge$ | $\wedge$ | ** | 10.0 | 3.4 | medium late | 1.6 | 1.9 |
| 6525 | 100 | 33.8 | $\wedge$ | $\wedge$ | ** | 10.0 | 3.4 | medium late | 1.9 | 2.3 |
| 6546 | 100 | 33.8 | $\wedge$ | $\wedge$ | ** | 10.0 | 3.4 | medium | 2.5 | 2.1 |
| 6137 | 100 | 35.0 | $\wedge$ | $\wedge$ | ** | 10.0 | 3.5 | medium early | 2.5 | 2.1 |
| 6527 | 100 | 35.0 | $\wedge$ | $\wedge$ | ** | 10.0 | 3.5 | medium late | 2.0 | 2.5 |
| 6534 | 100 | 35.0 | $\wedge$ | $\wedge$ | ** | 10.0 | 3.5 | late | 1.4 | 1.6 |
| 814 wmgx25-44-3 | 100 | 35.0 | $\wedge$ | $\wedge$ | ** | 10.0 | 3.5 | medium late | 2.4 | 1.6 |
| 6496 | 100 | 36.3 | $\wedge$ | $\wedge$ |  | 10.0 | 3.6 | medium | 2.3 | 2.3 |
| 6537 | 100 | 36.3 | $\wedge$ | $\wedge$ |  | 10.0 | 3.6 | medium | 2.3 | 2.3 |
| 6552 | 100 | 36.3 | $\wedge$ | $\wedge$ |  | 10.0 | 3.6 | medium | 2.3 | 2.0 |
| 6553 | 100 | 36.3 | $\wedge$ | $\wedge$ |  | 10.0 | 3.6 | late | 2.1 | 2.1 |
| 5613 | 100 | 37.5 | $\wedge$ | $\wedge$ |  | 10.0 | 3.8 | medium | 2.5 | 2.0 |
| 6442 | 100 | 37.5 | $\wedge$ | $\wedge$ |  | 10.0 | 3.8 | medium | 2.8 | 2.1 |
| 6463 | 100 | 37.5 | $\wedge$ | $\wedge$ |  | 10.0 | 3.8 | early | 2.9 | 1.8 |
| 6531 | 100 | 37.5 | $\wedge$ | $\wedge$ |  | 10.0 | 3.8 | medium early | 2.0 | 1.8 |
| Savannah | 100 | 37.5 | $\wedge$ | $\wedge$ |  | 10.0 | 3.8 | medium late | 2.6 | 2.4 |
| 6512 | 100 | 38.8 | $\wedge$ | $\wedge$ |  | 10.0 | 3.9 | medium | 2.5 | 1.9 |
| 6535 | 100 | 38.8 | $\wedge$ | $\wedge$ |  | 10.0 | 3.9 | medium | 2.0 | 2.5 |
| 6541 | 100 | 38.8 | $\wedge$ | $\wedge$ |  | 10.0 | 3.9 | medium early | 2.5 | 1.6 |
| 6564 | 100 | 38.8 | $\wedge$ | $\wedge$ |  | 10.0 | 3.9 | medium early | 2.6 | 2.4 |
| 825 wmgx25-47-4 | 100 | 38.8 | $\wedge$ | $\wedge$ |  | 10.0 | 3.9 | medium early | 2.1 | 2.3 |
| 817 wmgx25-45-1 | 100 | 39.1 | $\wedge$ | $\wedge$ |  | 9.8 | 4.0 | medium | 2.3 | 1.8 |
| 5630 | 100 | 40.0 | $\wedge$ | $\wedge$ |  | 10.0 | 4.0 | medium | 2.3 | 2.6 |
| OR 54 | 100 | 41.3 | $\wedge$ | $\wedge$ |  | 10.0 | 4.1 | medium early | 2.4 | 1.8 |
| 6456 | 100 | 42.5 | $\wedge$ | $\wedge$ |  | 10.0 | 4.3 | medium | 2.6 | 2.4 |

Table 15. Results from a white mold screening trial, Corvallis, 2008 (cont.) ${ }^{z}$

| Entry | Stand ${ }^{\text {y }}$ | White Mold Index ${ }^{\text {x }}$ | White Mold Check Comparisons ${ }^{\mathrm{x}}$ M016 |  |  | White Mold Incidence ${ }^{\text {w }}$ | White Mold Severity ${ }^{\text {V }}$ | Maturity | Lodging ${ }^{\text {a }}$ | Estimated Yield Potential ${ }^{\text {t }}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | G 122 | 2 | 91G |  |  |  |  |  |
| 6566 | 100 | 42.5 | $\wedge$ | $\wedge$ |  | 10.0 | 4.3 | medium | 2.9 | 1.8 |
| 6481 | 100 | 43.8 | $\wedge$ | $\wedge$ |  | 10.0 | 4.4 | medium | 2.3 | 1.9 |
| 6502 | 100 | 43.8 | $\wedge$ | $\wedge$ |  | 10.0 | 4.4 | medium early | 2.1 | 1.8 |
| 6581 | 100 | 45.0 | $\wedge$ | $\wedge$ |  | 10.0 | 4.5 | late | 2.0 | 1.9 |
| 6538 | 100 | 46.3 | $\wedge$ | $\wedge$ |  | 10.0 | 4.6 | medium | 2.0 | 1.9 |
| 6542 | 100 | 46.3 | $\wedge$ | $\wedge$ |  | 10.0 | 4.6 | late | 1.8 | 2.0 |
| Pierroton | 100 | 46.3 | $\wedge$ | $\wedge$ |  | 10.0 | 4.6 | medium | 1.3 | 2.5 |
| 6189 | 100 | 47.5 | $\wedge$ | $\wedge$ |  | 10.0 | 4.8 | medium early | 1.9 | 2.0 |
| 6489 | 100 | 47.5 | $\wedge$ | $\wedge$ |  | 10.0 | 4.8 | medium early | 2.5 | 2.4 |
| 6533 | 100 | 47.5 | $\wedge$ | $\wedge$ |  | 10.0 | 4.8 | medium late | 2.4 | 1.8 |
| 6539 | 100 | 47.5 | $\wedge$ | $\wedge$ |  | 10.0 | 4.8 | medium early | 1.8 | 2.4 |
| 6550 | 100 | 47.5 | $\wedge$ | $\wedge$ |  | 10.0 | 4.8 | medium early | 2.6 | 2.1 |
| 6471 | 100 | 50.0 | $\wedge$ | $\wedge$ |  | 10.0 | 5.0 | medium early | 2.3 | 2.0 |
| 91G | 100 | 50.0 | $\wedge$ | $\wedge$ |  | 10.0 | 5.0 | medium early | 2.9 | 2.5 |
| 6485 | 100 | 51.3 | $\wedge$ | $\wedge$ |  | 10.0 | 5.1 | medium early | 2.9 | 2.0 |

${ }^{\text {Z }}$ Planted June 27.
${ }^{y}$ Visual assessment in percent with $100=$ perfect stand.
${ }^{x}$ Index = incidence $x$ severity; ** indicates significantly better than this check ( $p<0.05$ ); ^ indicates significantly worse than this check ( $p<0.05$ ).
${ }^{w}$ Scores based on a 1-10 scale with $1=$ low incidence, no symptoms observed and $10=$ high incidence, all plants in plot infected
${ }^{v}$ Scores based on a 1-9 scale with $9=$ severe infection.
${ }^{u}$ Scores based on a 1-3 scale with $1=$ upright and $3=$ prostrate.
${ }^{\text {t}}$ Scores based on a 1-3 scale with 3 = good yield potential.

Table 16. Comparison of field disease index averages from a white mold screening trial, two years combined, Corvallis, 2008 ${ }^{\text {² }}$

|  |  |  | Overall |
| :--- | :---: | :---: | :---: |
| Entry | 2007 | 2008 | AV |
| L192 | 7.4 | 5.5 | 6.5 |
| NY1-6020-4 | 6.3 | 7.0 | 6.7 |
| G122 | 11.0 | 5.3 | 8.2 |
| PI207130-2-4 | 11.3 | 5.5 | 8.4 |
| NY1-6020-5 | 12.2 | 4.9 | 8.6 |
| PI290990-4-1 | 19.6 | 4.9 | 12.3 |
| NYBS6637 | 20.3 | 9.0 | 14.7 |
| Ex Rico | 17.8 | 12.0 | 14.9 |
| $904 / 20-3$ | 20.0 | 11.0 | 15.5 |
| 6235 | 18.2 | 15.0 | 16.6 |
| 6554 | 19.3 | 16.0 | 17.7 |
| 6587 | 13.7 | 22.5 | 18.1 |
| 6560 | 18.8 | 18.8 | 18.8 |
| 6561 | 9.8 | 28.3 | 19.1 |
| 6557 | 18.2 | 20.0 | 19.1 |
| 6574 | 18.4 | 21.3 | 19.9 |
| 6576 | 17.6 | 25.0 | 21.3 |
| $853 / 6-9$ | 21.0 | 22.5 | 21.8 |
| $861 / 13-14$ | 25.0 | 20.0 | 22.5 |
| 6464 | 16.2 | 30.0 | 23.1 |
| 6569 | 14.0 | 32.5 | 23.3 |
| 6393 | 25.5 | 21.1 | 23.3 |
| 6556 | 20.7 | 30.0 | 25.4 |
| M0162 | 39.6 | 11.3 | 25.5 |
| 6573 | 27.7 | 23.8 | 25.8 |
| $903 / 20-2$ | 33.3 | 18.8 | 26.1 |
| $826 / 48-3$ | 27.2 | 25.0 | 26.1 |
| 6555 | 26.0 | 26.3 | 26.2 |
| $897 / 18-1$ | 42.1 | 13.8 | 28.0 |
| $811 / 43-4$ | 31.9 | 25.0 | 28.5 |
| $828 / 48-5$ | 27.5 | 30.0 | 28.8 |
| $856 / 7-2$ | 38.0 | 20.0 | 29.0 |
| $836 / 3-15$ | 34.7 | 23.8 | 29.3 |
| 6595 | 27.0 | 32.5 | 29.8 |
| $762 / 2-6$ | 38.4 | 22.5 | 30.5 |
| 6594 | 35.0 | 26.3 | 30.7 |
| 6575 | 35.0 | 27.5 | 31.3 |
| 6564 | 25.0 | 38.8 | 31.9 |
| 6567 | 32.9 | 32.1 | 32.5 |
| 6581 | 20.3 | 45.0 | 32.7 |
| Savannah | 29.8 | 37.5 | 33.7 |
| $846 / 6-3$ | 44.0 | 27.5 | 35.8 |
| 6137 | 38.3 | 35.0 | 36.7 |
| 6174 | 49.5 | 25.0 | 37.3 |
|  |  |  |  |

Table 16. Comparison of field disease index averages from a white mold screening trial, two years combined, Corvallis, 2008 (cont.) ${ }^{2}$

| Entry |  |  | Overall |
| :--- | :---: | :---: | :---: |
| 6241 | 2007 | 2008 | AV |
| 6493 | 54.5 | 22.5 | 38.5 |
| 6440 | 47.0 | 32.5 | 39.8 |
| 6479 | 51.9 | 28.5 | 40.2 |
| 6485 | 48.0 | 33.8 | 40.9 |
| $817 / 45-1$ | 31.4 | 51.3 | 41.4 |
| 6443 | 45.6 | 39.1 | 42.4 |
| 6566 | 55.0 | 32.5 | 43.8 |
| 6501 | 48.0 | 42.5 | 45.3 |
| 6340 | 57.4 | 33.8 | 45.6 |
| $814 / 44-3$ | 65.0 | 28.8 | 46.9 |
| 6439 | 60.0 | 35.0 | 47.5 |
| 6456 | 64.4 | 31.8 | 48.1 |
| $825 / 47-4$ | 55.0 | 42.5 | 48.8 |
| 5669 | 58.8 | 38.8 | 48.8 |
| 6286 | 68.0 | 32.5 | 50.3 |
| 6348 | 73.0 | 28.8 | 50.9 |
| 6471 | 68.0 | 33.8 | 50.9 |
| 6481 | 53.0 | 50.0 | 51.5 |
| OR 54 | 60.0 | 43.8 | 51.9 |
| 5613 | 63.0 | 41.3 | 52.2 |
| 5630 | 70.0 | 37.5 | 53.8 |
| 91G | 69.3 | 40.0 | 54.7 |
| 6489 | 60.0 | 50.0 | 55.0 |
| AV | 63.0 | 47.5 | 55.3 |
| LSD @ .05 | 36.4 | 27.3 | 31.8 |
|  | 24.0 | 14.7 | 20.8 |

${ }^{\text {z }}$ Scores are disease index scores obtained by multiplying scores for incidence $x$ severity; higher numbers indicate more severe infection.

Figure 1. Commercial Bean Adjusted TIA 2008 - Full Sieve Varieties


Figure 2. Commercial Bean T/A 2008 - Small Sieve Varieties



[^0]:    ${ }^{7}$ Mean of 2 replications; subplots of 5' were harvested from 20' plots in rows 30" apart.
    ${ }^{\mathrm{y}}$ Percent calculated as \% of total of 1-6 sieve beans.

