

Resource Clustering

Pollinator Behavior types

- Solitary
 - Movement is independent of other pollinators
- Social
 - Communicate location of flowers to other pollinators
 - Communication occurs at a central "hive"
- Random
 - This is used as a control
 - Movement is random within a forward moving range.

Traits of Social Agents

- All agents have a small sensory range. Agents will travel directly to flowers within that range
- Modelled as a state machine; each state is governed by a different motive

Methods/Predictions

- Plot: Harvested Flowers vs. Time
- Social:
 - Expected: Faster resource acquisition when resources are in tight clusters.
- Solitary:
 - Expected: Faster resource acquisition when resources are dispersed.
- Simulation method:
 - 10 cluster radius settings
 - 100 trials per cluster radius
 - 1000 time-steps
- Use Simulation to design better experiments

Graphic User Interface

Conclusion

- Partial validation of my hypothesis
 - Social bees gather more resources when flowers are clustered
 - Solitary bees do not respond to changes in clustering

Thank you to Oregon State, H.J Andrews, and the advisors that made this possible!