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ABSTRACT 

Mutualistic plant-pollinator networks are complex and ecologically valuable assemblages, and 
deeper understandings of their structure could be critical to conservation and forest 
management. Modularity analysis, the study of subgrouping in a network, could bring insight to 
network structure at a finer level, and help elucidate the flow of resources, resiliency, and 
species roles in a community.  
  
I analyzed a longitudinal dataset of plant-pollinator interactions collected at the H. J. Andrews 
Experimental Forest in the Western Cascades of Oregon by calculating modularity statistics for 
several time periods, and comparing the results of weighted and binary approaches to 
modularity. I aimed to explore the various formulations of modularity for these networks, with 
species defined at the family level. I sought also to determine how phylogenetic relatedness of 
plants might play into module makeup. 
 
Modularity was calculated for four networks, defined by year, using Beckett’s DIRTLPawb+ 
algorithm [1], with plants and pollinators defined at the family level. Modularity scores and 
module counts were determined for each network, using both binary and weighted approaches, 
and results were compared to modularity results for a distribution of null networks matched to 
the observed networks for size, connectance and link density. Intra-module phylogenetic 
relatedness of plants was calculated for each network using Huestis’ phylogenetic distance 
metric [8]. These results were also compared to null distributions using Z-scores. 
 
Modularity scores were found to be low in all observed networks relative to null models, with a 
more extreme result for weighted networks. Weighted and binary formulations gave the same 
number of modules for every network. Intra-module relatedness was not significantly different 
from null models, except for the binary network in 2011-14, which was significantly lower than 
expected (p-value = .041).  
   
My findings of low modularity contrast other findings in the literature, where significantly high 
modularity is the norm. However, other studies have not considered networks at the family level. 
My result could be due to super generalist nodes common to the Andrews Forest: families with 
high degree and many links between modules, whose presence decreases modularity scores. 
Modules do not appear to be defined by closely phylogenetically related plant families, 
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suggesting that phylogeny might not be a driving factor for module makeup, at least at the family 
level. Continuation of this analysis at finer phylogenetic resolutions could be valuable in 
determining if modular structure does exist for these networks and if phylogenetic relatedness is 
associated with module membership when the network is viewed at the level of genus or 
species. 

INTRODUCTION 

Plant-pollinator networks are complex structures consisting of a great diversity of species 
interacting in non-random ways. The plant-pollinator networks studied in this paper occur in the 
montane meadows of the H.J. Andrews Experimental Forest (hereafter Andrews forest), located 
in the Western Cascades of Oregon. These communities are under a variety of pressures from 
climate change, invasive species, and forest encroachment, making the study of plant-pollinator 
networks critical at this time for conservation and forest management [12].  
 
Plant pollinator networks are bipartite, meaning that two classes of nodes exist, such that nodes 
in one class are only connected to nodes of the other class. In this context, the classes are 
plants and pollinators, but other bipartite networks have been studied in the ecological literature, 
including host-parasitoid networks [5]. Bipartite networks are either binary or weighted, 
depending on the presence of weights on the links. A binary network gives information only on 
whether links between plants and pollinators are present or absent, while a weighted approach 
takes into account the strength or weakness of a link based on the number of interactions 
between a pair of species [1,5]. Weighted networks hold more information than binary networks, 
and as such can be collapsed to their binary forms by removing link weights.   

 
Modularity is a network characteristic quantifying the amount of subgrouping or “clumping” 
present within a larger network. Module-finding algorithms for binary networks seek to find 
groupings of nodes where the average number of within-module links is maximized relative to 
between-module links; that is, nodes are more connected in their groups, and less connected 
outside of their groups [1,2,3,5,10, 11]. Weighted modularity compares sums of link weights 
rather than link counts, giving a very different picture of the modularity landscape [1,5].  

 
A partition is defined here as a grouping of nodes into some number of modules. Modularity is 
characteristic of a network partition, and since there are a great number of possible partitions for 
a given network, there are likewise many possible modularity values. In general, when I refer to 
the modularity of a network (rather than a partition), I am referring to the maximum modularity 
obtained by any partition of the network, or an estimate of this.  
  
Much of the literature on modularity of plant-pollinator networks takes a binary approach, 
disregarding link weights [1,2,10, 11,5]. Beckett (2016), proposes a weighted module-finding 
algorithm for bipartite networks superior to any in the literature so far, and as of yet, no analysis 
contrasting modularity for weighted and binary networks has been concluded using this 
algorithm.  
 
Null models as tools for standardizing modularity results are a recent area of focus in the 
context of modularity and plant pollinator networks. Standardization is valuable since it allows 
comparison among networks with different sizes, connectance, and link densities, three network 
characteristics that are associated with modularity. This approach has been used only once 
before, by Carstenson et al in a 2016 study of the modularity plant-pollinator networks in 
Brazilian rupestrian grasslands, and their interaction turnover across space [2]. 
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Modules are often thought to be co-evolutionary units, where the plant and pollinator species in 
a module have evolved together over time, and have developed compatible traits that allow for a 
mutualistic relationship [2]. If this is true, it is possible that plants within modules would be more 
likely to be closely related phylogenetically. No study has yet explored relationships between 
phylogenetic relatedness of plants and modularity. 
  
I analyzed plant-pollinator data collected at the Andrews forest in order to examine the following 
questions:  

(1) How modular are the networks observed in the Andrews forest? In particular, 
how do weighted and binary approaches compare, and how do these results 
compare to null distributions? 

(2) Is phylogenetic relatedness of plants a possible driver of module formation? 
 

I expected that the networks would be more modular than a null distribution, and that binary 
networks would yield different modularity and module count results from weighted networks. 
Assuming that that phylogenetic relatedness played a part in module formation, I expected to 
find high intra-modular relatedness relative to a null model as evidence of this.  

METHODS 

STUDY SITE 

 
The meadows sampled in this study are fragmented and located across several ridgelines in the 
Andrews forest. Archeological evidence suggests that prehistoric people created and 
maintained these open areas for hunting or foraging purposes, and the meadows have 
persisted due to both intentional human burns and wildfires [9]. The recent efforts to suppress 
wildfires in the Cascades have caused the meadows to decrease in area since the mid-19th 
century [12].  
 
Twelve of these meadows were surveyed, with significant variation among them in meadow 
size, location, aspect, and soil depth and moisture. All meadows are located at around 1500 feet 
of elevation. 
 
FIELD METHODS 

 
Surveying was conducted in five watches at each meadow during every summer from 2011 to 
2016. Each meadow contains ten 3m x 3m survey plots, 15m apart, in two parallel transects. 
Surveys consisted of two parts: 
  
Anthesis Portion    

An exhaustive survey of blooming flowers within the plot was conducted. Observers 
counted the number of stalks of a given species present, and calculated an average 
number of flowers by stalk by selecting up to 10 stalks. The total number of flowers for a 
species was estimated by multiplying these values. 
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A “flower” was considered as a unit of floral resource from the perspective of a pollinator, 
and as such sometimes differed from the strict botanical definition. For instance, umbels 
or umbelletes (tight clusters of tiny flowers) were counted as single flowers. 
 

15 Minute Interaction Watch  

For 15 minutes, each observed interaction between a pollinator and a plant was 
recorded, where an interaction was defined as contact between a potential pollinator and 
the surface of a flower. For each interaction, both the plant and pollinator species were 
recorded, as well as the number of plants visited. When the observer could not identify a 
pollinator, the pollinator was captured, pinned, and identified by an expert (Dr. Andy 
Moldenke, professor emeritus at Oregon State University).  
 
Capturing of pollinators was done as infrequently as possible so as not to influence the 
meadow ecology. Given that our survey plots represented a small fraction of the 
meadows, and that our watches lasted only 15 minutes, 5 times a year, we don’t believe 
that our pollinator sampling affected pollinator populations in a significant way.  

 
For a more detailed account of surveying methods, see the study description for the LTER at 
http://andlter.forestry.oregonstate.edu/data/abstractdetail.aspx?dbcode=SA026 
  
STATISTICAL METHODS 

 
Data Used 

 
Although both plants and pollinators were identified to the species level, in this study I observe 
networks defined at the family level for both plants and pollinators, since phylogenetic 
relatedness information was available only on the family level. My network data sets include the 
following years: 2011-14 combined, 2015, 2016, and an aggregated network made up of 
interactions from all 6 years (referred to as ALL). These groupings were chosen in order to see 
changes present from one year to the next, and also to provide sufficient interactions to contrast 
larger networks (those with more species and interactions) with smaller ones.  
   
Table 1. Descriptive statistics of networks studied in this paper.  
The number of possible links is the number of plant families times the number of pollinator 
families. The number of interactions is the sum of all link weights, and would be equal to the 
number of realized links in a binary network.  
 

year 

number of 
plant 

families 

number of 
pollinator 

families 

number of 
possible 

links 

percent of 
realized 

links 
number of 

interactions 

2011-14 29 73 2,117 23.5% 97,315 
2015 23 47 1,081 16.7% 9,055 
2016 24 49 1,176 17.1% 11,472 

ALL 32 78 2,496 22.0% 117,842 
  
 



5 
  

Modularity calculations  

I used Beckett’s DIRTLPawb+ algorithm for all modularity calculations. I chose this algorithm 
since it appears to be the best and most consistent method for estimating modularity in 
weighted networks; that is, it returns equal or higher modularity values compared to other 
algorithms in the literature [1]. Furthermore, the algorithm has the ability to return a binary 
network modularity given a binary input. DIRTLPawb+ is a stochastic optimization algorithm, 
attempting to find a partition that optimizes modularity, and thus may give a different value every 
time it runs. To get an accurate estimate of network modularity, I took the maximum of 20 
independent trials for each network. 
  
Modularity varies depending on the link density (number of links per species, or sum of weights 
of links per species, for weighted networks), size (total number of nodes), and connectance 
(proportion of realized links) of a network [1,11]. These characteristics vary among the years 
studied, and must be controlled for if modularity values are to be compared across networks. To 
accomplish this, I compared the modularity score of each observed network to a distribution of 
modularity scores calculated for 20 null model network partitions, where link density, size, and 
connectance were kept constant (see fig 1). R code for null model generation can be viewed in 
additional materials. Comparison to a null distribution was used to find the Z-score of the 
observed modularity value, where the Z-score was interpreted as a normalized modularity score 
that could be compared across networks. I developed this method independently but later found 
that it had been used by others, including Carstenson et al. in 2016 [2]. 
 

 
Figure 1. Example frequency histogram of the distribution of null network 
modularities. This example is from all years (2011-16) aggregated. The mean and 
standard deviation of this distribution can be used as a baseline from which to compare 
observed modularity values.    

 
 
Phylogenetic Relatedness Data 

Phylogenetic plant distance data was taken from Huestis’ (2017), and is calculated pairwise 
between two plant families. Huestis uses a shorthand metric to calculate pairwise distances 
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between terminal taxa on a phylogenetic tree. This metric takes into account the distance 
travelled in the tree in moving from one taxon to the other. Tree path distance is a sum of the 
link weights travelled in the shortest possible path, where link weights vary on an ordinal scale 
from 1 to 9 based on the resolution of the link. Courser-resolution links, i.e. those further from 
the terminal taxa, are more heavily weighted, while links closer to the terminal taxa have less 
weight. The phylogenetic distances for all pairs ranged from 1 to 58, so phylogenetic 
relatedness was defined simply as 59 – (distance). An illustration of Huestis’ method is provided 
in Additional Materials. 
 
The network index intra-module phylogenetic similarity or Sp, was defined as the average 
phylogenetic similarity of pairs of plants sharing a module. That is, for each module, 
phylogenetic similarities were determined for each pair of plants in that module, and then added 
to a list. All values of all lists were then averaged to find a network mean of Sp. For comparison, 
a distribution of null models was created for each network. For a given observed network, each 
null network was exactly the same, but the partition was randomized, since intra-module 
phylogenetic similarity is a function of a network partition. The null partitions had the same 
number of modules as the observed network, but the grouping of nodes into modules was 
randomized (methods and codes for null partition generation are found in Additional Materials). 
For each observed network, the Sp value was calculated and compared to the distribution of Sp 
values for 50 null partitions, and compared as Z-scores.  
 
P values of less than 0.05 were considered to be significant in all parts of this study.  

RESULTS 

 

HOW MODULAR ARE THE NETWORKS OBSERVED IN THE ANDREWS FOREST? 

 
Modularity values and module counts were calculated with 20 runs of DIRTLPawb+ for both 
binary and weighted networks. Modularity fell between .09 and .23 for weighted networks, and 
between .20 and .32 for binary networks. Module counts were identical for every year between 
weighted and binary networks, with 4 or 5 modules each.  
  

Table 2. DIRTLPawb	+	modularity	and	module	count	for	weighted	and	binary	
networks,	best	of	20	trials.  

 
weighted binary 

year modularity # of modules modularity # of modules 
2016 0.2240 5 0.3106854 5 
2015 0.0939 5 0.3151543 5 

2011-14 0.1952 4 0.2086982 4 
ALL 0.1766 4 0.2181035 4 

 
There is significant variation in modularity from year to year, especially in weighted results, with 
a notably low modularity value of 0.0939 in 2015. Because these are raw data, not compared to 
null models, values cannot be directly compared from one year to the next, or from weighted to 
binary. 
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HOW DOES OBSERVED MODULARITY DIFFER FROM A DISTRIBUTION OF NULL MODELS? 

 
 

WEIGHTED observed null average z score 
year modularity # modules modularity # modules modularity # modules 
2016 0.22 5 0.37 6.20 -15.19 -1.44 
2015 0.09 5 0.38 5.95 -46.22 -1.38 

2011-14 0.20 4 0.26 5.55 -15.79 -1.75 
ALL 0.18 4 0.26 5.85 -12.63 -1.78 

 
BINARY observed null average z score 

year modularity # modules modularity # modules modularity # modules 
2016 0.31 5 0.36 5.75 -6.11 -0.78 
2015 0.32 5 0.38 5.80 -5.47 -1.15 

2011-14 0.21 4 0.25 5.55 -13.83 -2.26 
ALL 0.22 4 0.25 5.85 -7.17 -2.11 

 
 

 
  

-50 
-45 
-40 
-35 
-30 
-25 
-20 
-15 
-10 
-5 
0 

Z
-s

co
re

 fo
r 

m
od

ul
ar

ity
 

weighted 
binary 

				2016																2015															2011-14													ALL	



8 
  

 
Figure 3. Standardized modularity and module count scores for binary and 
weighted networks. Observed modularity and module count values were compared to 
null models (see Fig. 1), and the resulting Z-scores are interpreted as standardized 
values. All values are negative, meaning that for all networks, both modularity and 
module counts are less than what would be expected from random mixing.  

 
Standardized modularity and module count scores are shown in Figure 3. All values are low, 
compared to null networks, modularity scores extremely so. Binary networks are more modular 
than weighted networks, and tend to have more modules. 
 
 
 
 
IS PHYLOGENETIC RELATEDNESS OF PLANTS A POSSIBLE DRIVER OF MODULE 
FORMATION? 

 
 

Table 2. Intra-module	phylogenetic	relatedness	(Sp)	scores	for	observed	networks	and	
corresponding	null	partitions.	Weighted	values	are	shown	in	(a),	and	binary	values	in	
(b) 

(a) weighted Sp 
Year observed  null average z score 
2016 33.21622 34.74377 -0.8053037 
2015 34.34 33.72441 0.3221022 

2011-14 35.35644 35.31099 0.03486598 
ALL 34.11024 33.02974 0.9304292 
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(b) binary Sp 
Year observed  value  null average z score 
2016 33.84348 34.65295 -0.568229 
2015 33.12857 34.25764 -0.578993 

2011-14 32.29915 34.83152 -1.720245 
ALL 30.37255 33.14163 -2.094282 

 

  
Figure 4. Z-scores for intra-module phylogenetic relatedness (Sp) in binary and 
weighted networks, compared to a null model. A positive value would indicate more 
phylogenetic relatedness than expected from a random network.  

 
Figure 4 shows Sp values, a network metric for phylogenetic relatedness of plants in modules, 
for all four years, and for binary and weighted partitions. All binary standardized Sp values were 
less than 0, indicating that there is a tendency in these networks for plants to be in modules with 
other plants that are less phylogenetically related. The weighted results vary from year to year, 
with the aggregated network of all six years of data having the highest standardized score.  

 
These results vary slightly from 0, but overall, they indicate modules do not have more closely 
related species than any other subset. The binary graph in 2015 is a possible exception. A Z-
score of -1.73 indicates that this value is significantly lower than expected (p = .041), and that 
modular structure may not be independent of phylogenetic relatedness of plants. This 
relationship is opposite of the relationship I expected to see, however. The low values for binary 
networks indicate that closely related plants are less likely to share a module than would be 
expected.  

DISCUSSION 

MODULARITY  

Weighted and binary network modularity scores were calculated for observed plant-pollinator 
networks in the Andrews forest with the dual intentions of learning more about the structure of 
these networks, and comparing inferences from the binary and weighted approaches. 
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Modularity was found to be extremely low compared to null model distributions for both 
weighted and binary networks, with a more extreme result (lower modularity) for weighted 
networks. This contrasts what has been previously found in the literature; plant-pollinator 
networks are generally found to be significantly modular, [1,2, 3,11,14], and binary networks 
have been found to be less modular than weighted networks [2]. It is possible that this 
difference could be explained by my choice to evaluate plants and pollinators at the family level. 
All other analyses cited considered nodes as plant or pollinator species. Grouping plants by 
family rather than species would likely decrease modularity values if modules in species-defined 
networks have high numbers of species with families in common sharing a module.  
 
My results could be explained by a variety of ecological and statistical interpretations. 
Connections across modules decrease modularity by definition, thus generalist plants and 
pollinators that form links with a wide diversity of species could play a part in the low observed 
modularity scores. Table 3 shows the top generalist plants and pollinators, defined as the top 
three families with highest degree. These nodes have extremely high degrees, and many 
(perhaps most) of their links are with nodes outside their module. This effect helps to explain the 
low modularity scores for both weighted and binary networks.   
 
These generalist nodes have high interaction counts, all falling above the 90th percentile. In fact, 
for both plants and pollinators, the family with the highest degree also has the highest number of 
interactions. This means that in the weighted approach, inter-module links for these nodes have 
the potential to be very heavily weighted, making their modularity-decreasing effects even 
greater.    
    

Table 3. Top generalist pollinators and plants and their connectance. The top 3 
plant and pollinator families for degree are shown below. There are 32 plant families 
total for all years, so Apidae with a degree of 28 is connected to all but 4 plant families. 
The top generalist plant family, Asteraceae is connected to 67 out of 78 possible 
pollinator families. The number of interactions for each species is shown along with the 
percentile for interactions. Families with high degree also have very high percentiles for 
number of interactions.  

 
family name degree 

number of 
interactions 

interactions 
percenti le 

Pollinators with 
highest degree  

Apidae 28 72,527 100 
Syrphidae 25 9,617 99 
Halictidae 23 2,646 95 

Plants with 
highest degree  

Asteraceae 67 31,501 97 
Apiaceae 51 9,954 91 

Polemoniaceae 48 34,042 100 
 
The negative effect of generalists on modularity could be tested by removing these generalists 
and recalculating modularity on the resulting network. A significantly higher modularity score for 
the new network would indicate modularity-undermining effects of these pollinators.  
 
Similarly, it is important to note that the most common generalist pollinators are also some of 
the physically largest, and most easily identified pollinators. Pollinators that are missed by the 
observer are not recorded, and neither are pollinators that the observer sees but cannot identify. 
Sampling bias against small or rare species might result in over-sampling of common 
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generalists. Misidentification of an unknown species as a common generalist could have the 
same effect. Oversampling of generalists could result in artificially low modularity results. 

 
These low modularity values indicate that modularity is not the most dominant, defining 
structure for these communities, at least at the whole network level. Exploration of modularity at 
the level of meadow or complex could yield different results. Observed plant-pollinator networks 
in the literature have aspects of both modular structure and nestedness – a network property 
where the plants visited by a pollinator with small degree is nested subset of the plants visited 
by a pollinator with larger degree, and vice versa with plant and pollinator roles reversed [6, 11, 
12]. In highly connected networks, nestedness tends to be indirectly associated with modularity 
[6], and further research into the nestedness of the networks we observed could give a better 
understanding of the interplay of these two network tendencies. 
  
It is important to keep in mind, however, that even if a network is estimated to have a low 
modularity score, the modularity-maximizing partition still contains important information, and 
there is value in looking for patterns in module membership for these networks. It is likely that 
species in a module tend to share certain characteristics, even if the modules are defined 
loosely, as indicated by a low modularity score, and uncovering these tendencies could 
elucidate driving factors of the modularity (or lack of modularity) of a network.  
 
INTRA-MODULE PHYLOGENETIC RELATEDNESS 

  
Intra-module phylogenetic relatedness tended to be lower in observed networks than in a null 
partition, refuting my hypothesis. I expected to see higher relatedness between species in 
modules, believing phylogeny to be a driving factor in the way modules formed. I expected, for 
instance, that if two plants were more phylogenetically related, they would be likely to be 
attractive to the same pollinators, creating triangles of links that might be the underlying 
structure of a module. As Huestis found, however, phylogenetic relatedness does not correlate 
strongly with shared pollinators, and as shown by my research, does not seem to have a 
positive relationship with module co-membership either.  
 
The results from this section are intriguing, since while the Sp values differed from my 
expectations, they also differed from null expectations for binary networks, indicating a possible 
relationship. This result suggests that something might be driving phylogenetically similar plants 
to attract different pollinators. It has been proposed that coexisting plants might evolve varied 
traits in order to decrease competition for pollinators, which may be an avenue by which 
phylogenetically similar plants come to have very distinct morphologies [13]. This non-alignment 
between phylogeny and traits could explain the low Sp values for observed networks, assuming 
that traits are a strong driver of likelihood of interaction.  
 

 
VALIDITY CONSIDERATIONS 

 
The reference distributions used in this study consisted of only 20 null networks for modularity 
comparisons, and only 100 for intra-module relatedness comparisons, and these low numbers 
may be a threat to the validity of the results. A small distribution will give less accurate 
estimations of the mean and standard distribution of the true null distribution, and as such could 
give z scores that are insufficiently accurate. A greater number of null networks could increase 
our confidence in the resulting Z-scores (normalized values). 
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Another source of possible inaccuracy is the data collection process, which only gives us a 
limited estimate of plant-pollinator interactions. Interaction watches occurred at different times of 
day, under different levels of sun and wind, and at slightly different points in the season from 
year to year (although all were in the months from June to August). The researchers were 
students with relatively little experience in this type of data collection, and there was high 
turnover of observers from year to year. The 3m x 3m plots are too large for one person to see 
every interaction that occurs during the busiest interaction periods, and pollinators that are fast 
or small could be easily missed. Misidentification of both plants and pollinators is also a 
concern, especially given the high number of species, and the acute similarities in appearance 
between many of them.  
 
One type of sampling bias includes the under-sampling of rare species, which has been shown 
to lead to the characterization of these species as more specialist than they really are [4].  
  
Using a weighted approach is one way to combat data inaccuracy. When considering link 
weights, we give more emphasis to very clear, well-documented relationships than to lightweight 
links that are possibly the result of a mistake or error. As noted above, this weighting also has 
disadvantages, and for some analyses, a binary approach is desired. In these cases, a third 
approach could involve truncating the lowest-weighted links from a weighted network, and then 
projecting this truncated network to its binary form. 
   
Aggregating all study years is another protection against these inaccuracy concerns. With larger 
data sets, we can be more confident in our results, trusting that over time, the trends that occur 
will better and better reflect the truth. Of course, this is only the case if mistakes are random, 
and many are not, including the consistent bias toward larger and more common pollinators. For 
this type of skew, a large dataset is no advantage. 
  
The aggregated data set is advantageous, however, to correct for variation in climate from year 
to year. The wetness of the spring and summer, the date of the last snowpack, the humidity and 
sun intensity of the summer, and other climatic or weather variations from year to year have a 
noticeable effect on plant and pollinator activity. When data are combined over several years, 
the effects of this type of variation will be lessened.  
 

CONCLUSIONS 

 
I sought to explore the modularity of the plant-pollinator networks in the Andrews by comparing 
weighted and binary approaches to modularity, and by comparing modularity results to a 
distribution of null models. I found, contrary to my hypothesis, that modularity and module 
counts were lower in observed networks than in the null models for both binary and weighted 
networks. Furthermore, the modularity values for the weighted networks were significantly lower 
than for binary networks in all years. Interestingly, binary and weighted modularity approaches 
both gave the same number of modules for a network, which raises the question of whether the 
members of each module differ, or whether the two approaches give the same or very similar 
partitions.  
 
I sought also to determine whether phylogenetic relatedness of plants might be a driving factor 
in the modular structure of these networks, and I did this by comparing intra-module 
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phylogenetic relatedness to a distribution of null partitions for each network. I expected intra-
module relatedness to be higher than the null distribution, but I found that this relatedness 
metric was not significantly different from the null distribution for weighted networks, and was 
lower than the null average for all binary networks. This result suggests that intra-module 
phylogenetic relatedness of plants is not a defining module feature, and that there are likely 
other stronger driving factors for module structure. An exploration of intra-module phylogenetic 
relatedness of pollinators is a logical next step for future study. 
 
In future studies, I recommend further study into module member roles, that is, the way that 
individual nodes function as part of their module and part of the network as a whole. Several 
studies have produced work in this area [11,14], and consideration of module member roles 
might be a natural continuation of the discussion in this paper of generalist and specialist roles 
in modularity. 
 
Future work might also examine the nodes that make up the modules in more detail, with the 
intention of finding patterns and possible explanations for module membership. One relevant 
approach is the study of pollination syndromes: groupings of plants by shared traits, with the 
goal of predicting shared pollinators based on syndrome groupings [2, 3, 11]. Others have 
suggested overlapping phenology as a driver of modularity [7]. 
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