
# MALHEUR EXPERIMENT STATION ANNUAL REPORT 2017, Ext/CrS 159





Oregon State University Malheur Experiment Station Oregon State University, Malheur Experiment Station Annual Report 2017, Department of Crop and Soil Science Ext/CrS 159, July 2018, edited by Clinton C. Shock.

For additional copies of this publication, please contact

Clinton C. Shock Malheur Experiment Station 595 Onion Avenue Ontario, OR 97914

For additional information, please check our website

http://www.cropinfo.net

On the Cover: Monty Saunders driving a front end loader at the OSU Malheur Experiment Station. Monty has contributed to the research of Malheur Experiment Station over the last 30 years.

# Malheur Experiment Station Annual Report 2017

These projects were supported by Formula Grant nos. 2017-31100-06041 and 2017-31200-06041 from the USDA National Institute of Food and Agriculture.

The information in this report is for the purpose of informing cooperators in industry, colleagues at other universities, and others of the results of research in field crops. Reference to products and companies in this publication is for specific information only and does not endorse or recommend that product or company to the exclusion of others that may be suitable. Nor should information and interpretation thereof be considered as a recommendation for application of any pesticide. **Pesticide labels should always be consulted and followed before any pesticide use.** 

Common names and manufacturers of chemical products used in the trials reported here are contained in Appendices A and B. Common and scientific names of crops are listed in Appendix C. Common and scientific names of weeds are listed in Appendix D. Common and scientific names of diseases and insects are listed in Appendix E.

We are thankful for the broad support of the Oregon State University Malheur Experiment Station.

## CONTRIBUTORS AND COOPERATORS MALHEUR EXPERIMENT STATION ANNUAL REPORT 2017 RESEARCH

#### MALHEUR EXPERIMENT STATION

| Feibert, Erik    | Senior Faculty Research Assistant   |
|------------------|-------------------------------------|
| Felix, Joel      | Associate Professor of Weed Science |
| Ishida, Joey     | Bioscience Research Technician III  |
| Jones, Janet     | Office Specialist II                |
| Rivera, Alicia   | Bioscience Research Technician I    |
| Saunders, Lamont | Bioscience Research Technician III  |
| Shock, Clinton   | Professor, Director                 |
| Wieland, Kyle    | Bioscience Research Technician II   |

### MALHEUR COUNTY OFFICE, OREGON STATE UNIVERSITY EXTENSION SERVICE

| Arispe, Sergio   | Assistant Professor             |
|------------------|---------------------------------|
| Brody, Barbara   | Associate Professor of Practice |
| Howell, Bobbi    | Office Manager                  |
| Reitz, Stuart    | Professor                       |
| Sherman, Melissa | 4-H Program Coordinator         |

#### MALHEUR EXPERIMENT STATION AND EXTENSION SERVICE STUDENTS

| Alexander, Kelsey | Student Technical Assistant |
|-------------------|-----------------------------|
| Drake, Nichole    | Student Technical Assistant |
| Leavitt, Andrea   | Student Technical Assistant |
| Milian, Ruth      | Student Technical Assistant |
| Sandoval, Anthony | Student Technical Assistant |
| Simmons, Allison  | Student Technical Assistant |
| Travis, Megan     | Student Technical Assistant |
| Trenkel, Ian      | Student Technical Assistant |

### **OREGON STATE UNIVERSITY, CORVALLIS, AND OTHER STATIONS**

| Charlton, Brian   | Faculty Research Assistant, Klamath Falls                         |
|-------------------|-------------------------------------------------------------------|
| Lucas, Scott      | Assistant Professor, Hermiston                                    |
| Qian, Michael     | Professor, Food Science and Technology                            |
| Rondon, Silvia    | Professor, Hermiston                                              |
| Sathuvalli, Sagar | Assistant Professor, Hermiston                                    |
| Yilma, Solomon    | Senior Faculty Research Assistant, Dept. of Crop and Soil Science |

### **OTHER UNIVERSITIES**

| Morishita, Don<br>Neufeld, Jerry<br>Novy, Rich<br>Pavek, Mark | Associate Professor, Washington State University, Pullman, WA<br>Associate Professor, University of Idaho, Aberdeen, ID<br>Associate Professor, University of Idaho, Twin Falls, ID<br>Associate Professor, University of Idaho, Caldwell, ID<br>Research Geneticist/Potato Breeder, USDA, Aberdeen, ID<br>Associate Professor, Washington State University, Pullman, WA<br>Associate Professor, University of Idaho, Moscow, ID<br>County Director, Washington State University, Pasco, WA<br>Associate Professor, University of Idaho, Kimberly, ID |
|---------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                               | OPERATING ON SPECIAL PROJECTS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                                               | Ontario Chamber of Commerce, Ontario, OR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Brown, Charles                                                | USDA-ARS, Prosser, WA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Bushman, Shaun                                                | USDA-ARS Forage and Range Research Lab, Logan, UT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Campbell, Alan                                                | SmartVineyards, LLC, Tualatin, OR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Cane, Jim                                                     | UDSA-ARS, Bee Lab, Logan, UT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Carpenter, Mark                                               | Owyhee Irrigation District, Nyssa, OR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Chamberlin, Jay                                               | Owyhee Irrigation District, Nyssa, OR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Corn, Dan                                                     | Cooperating Grower, Ontario, OR<br>Cooperating Grower, Ontario, OR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Diebel, Ken                                                   | Malheur Watershed Council, Ontario, OR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| •                                                             | SmartVineyards, LLC, Tualatin, OR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Donar, Larry                                                  | Fresno Valves and Castings, Inc., Kennewick, WA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Erstrom, Jerry                                                | Malheur Watershed Council, Ontario, OR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Faw, Gary                                                     | Malheur County Soil & Water Conservation District, Ontario, OR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Gladwell, Randi                                               | Clearwater Supply, Inc., Ontario, OR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Halford, Anne                                                 | Bureau of Land Management, Boise, ID                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Hill, Carl                                                    | Owyhee Watershed Council, Ontario, OR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Jensen, Scott                                                 | USDA Forest Service Shrub Science Lab, Provo, UT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Johnson, Doug                                                 | USDA-ARS Forage and Range Research Lab, Logan, UT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Kameshige and Sor<br>Kilkenny, Francis                        | ns Cooperating Grower, Ontario, OR<br>USDA Forest Service, Boise, ID                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Kitamura Farms                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                                               | Cooperating Grower, Ontario, OR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Klauzer, Jim                                                  | Clearwater Supply, Inc., Ontario, OR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Kreeft, Harry                                                 | Western Laboratories, Inc., Parma, ID                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Lampe, Ivy                                                    | Sky Snap, LLC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Lampe, Kiel                                                   | Sky Snap, LLC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Larsen, Lynn                                                  | Natural Resources Conservation Service, Ontario, OR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                                               | Oregon Watershed Enhancement Board, La Grande, OR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Manser, Harvey                                                | Owyhee Irrigation District, Nyssa, OR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Page, Gary                                                    | Malheur County Weed Supervisor, Vale, OR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Penning, Tom                                                  | Irrometer Co., Inc., Riverside, CA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |

#### **OTHER PERSONNEL COOPERATING ON SPECIAL PROJECTS (continued)**

| Riley, Kay       | Snake River Produce, Nyssa, OR                                 |
|------------------|----------------------------------------------------------------|
| Rowe, Linda      | Malheur County Soil & Water Conservation District, Ontario, OR |
| Saito, Jeff      | Cooperating Land Owner, Ontario, OR                            |
| Schreiber, Alan  | Ag Development Group, Eltopia, WA                              |
| Shaw, Nancy      | USDA Forest Service, Boise, ID                                 |
| Simerly, Bob     | McCain Foods, Fruitland, ID                                    |
| Skeen Farms      | Cooperating Grower, Nyssa, OR                                  |
| Stander, J.R.    | Betaseed, Inc., Kimberly, ID                                   |
| Taberna, John    | Western Laboratories, Inc., Parma, ID                          |
| Tolmie, Don      | Treasure Valley Seed Co., Inc., Wilder, ID                     |
| Wahlert, Quenten | Wild West Seed, Albany, OR                                     |
| Weidemann, Kelly | Malheur Watershed Council, Ontario, OR                         |
| Wettstein, Lou   | Owyhee Watershed Council, Ontario, OR                          |
| Winegar, Dell    | Winegar Farms, Fruitland, ID                                   |
| Youtie, Berta    | Eastern Oregon Stewardship Services, Prineville, OR            |

#### **GROWERS ASSOCIATIONS SUPPORTING RESEARCH**

Idaho-Eastern Oregon Onion Committee Idaho Onion Growers Malheur County Potato Growers Malheur Onion Growers Northwest Potato Research Consortium Nyssa-Nampa Beet Growers Association Oregon Potato Commission Oregon Wheat Commission

#### PUBLIC AGENCIES SUPPORTING RESEARCH

Agricultural Research Foundation Bureau of Land Management Lower Willow Creek Working Group Malheur County Soil and Water Conservation District Malheur Watershed Council Oregon Department of Agriculture Oregon Watershed Enhancement Board Owyhee Watershed Council USDA Cooperative State Research, Education, and Extension Service USDA Forest Service

#### MALHEUR EXPERIMENT STATION ADVISORY BOARD

Beck, Deron Fitch, Candi Kitamura, Grant Klauzer, Jim Komoto, Bob Maag, Doug Phillips, Tom - Chair Price, Vikki Saito, Reid Simerly, Bob Skeen, Paul Svaty, Randi

#### **COMPANY CONTRIBUTORS**

Advanced Biological Marketing, Inc. Amalgamated Sugar Co. American Takii, Inc. Andrews Seed, Inc. BASF Corp. **Bayer CropScience** Bejo Seeds, Inc. Crookham Seed Co. D. Palmer Seeds Dow AgroScience DuPont FMC Corp. Gowan Co. Hilleshog/Syngenta Holly Hybrids Irrometer Co., Inc. J.R. Simplot Co. Kumiai McCain Foods Netafim Nunhems USA, Inc. Oro Agri Sakata Seed America Seminis Vegetable Seed, Inc. Sky Snap, LLC Syngenta Crop Protection **TKI NovaSource** Treasure Valley Seed Co., Inc. Valent BioSciences Corp. Valent USA Wilbur-Ellis Winfield Solutions

## TABLE OF CONTENTS

| WEATHER                                                                                                                       |   |
|-------------------------------------------------------------------------------------------------------------------------------|---|
| 2017 Weather Report 1                                                                                                         |   |
| ONION                                                                                                                         |   |
| 2017 Onion Variety Trials 12                                                                                                  | 2 |
| Onion Production from Transplants in 2017 32                                                                                  | 2 |
| Onion Internal Quality in Response to Artificial Heat and Heat Mitigation DuringBulb Development42                            | 2 |
| Timing of the Occurrence of Internal Quality Problems in Onion Bulbs 60                                                       | ) |
| Evaluation of Chlorine and Diatomaceous Earth for Control of Internal Decay in<br>Onion Bulbs                                 | 3 |
| Onion Response to Various Outlook <sup>®</sup> Herbicide Rates Applied Through<br>Irrigation Drip With and Without Fertilizer | ) |
| Response of Red and White Onion Cultivars to Outlook <sup>®</sup> Applied Through Drip<br>Irrigation                          | 5 |
| Onion Response to Chateau <sup>®</sup> and Fierce <sup>®</sup> Herbicides Applied Late Pre-<br>emergence on Mineral Soil      | 2 |
| Onion Response to Fomesafen (Reflex <sup>®</sup> ) Herbicide Applied at Various Timings<br>on Mineral Soil                    | 9 |
| Surface Water Quality in Treasure Valley Irrigation Canals in Relation to FSMA<br>Standards for Water Testing – 2017 10       | 6 |
| Thrips and Iris Yellow Spot Virus Management in the Treasure Valley 11                                                        | 3 |
| Monitoring Onion Pests across the Treasure Valley - 2017 12                                                                   | 8 |
| Onion Cultivar Trial: Evaluation of Cultivar Resistance to <i>Fusarium proliferatum</i> 13.<br>Storage Rot                    | 2 |
| NATIVE PLANT AND WILDFLOWER SEED PRODUCTION                                                                                   |   |
| Direct Surface Seeding Systems for the Establishment of Native Wildflowers in 2016 and 2017 13                                | 5 |
| Irrigation Requirements for Seed Production of Various Native Wildflower 14                                                   | 3 |
| Native Beeplant Seed Production in Response to Irrigation in a Semi-arid<br>Environment 15                                    | 4 |
| Irrigation Requirements for Native Buckwheat Seed Production in a Semi-arid<br>Environment                                    | 0 |

## TABLE OF CONTENTS (continued)

| Prairie Clover and Basalt Milkvetch Seed Production in Response to Irrigation                  | 168 |
|------------------------------------------------------------------------------------------------|-----|
| Irrigation Requirements for Lomatium Seed Production                                           | 175 |
| Irrigation Requirements for Seed Production of Five Native Penstemon Species                   | 189 |
| Ροτατο                                                                                         |     |
| 2017 Potato Variety Trials                                                                     | 202 |
| Evaluation of Potato Pest Management Programs                                                  | 224 |
| SUGAR BEETS                                                                                    |     |
| Evaluating Potential Hormetic Effects of Four Herbicides on Sugar Beet                         | 229 |
| Sugar Beet Response to Dual Magnum <sup>®</sup> Application Timing for Yellow Nutsedge Control | 233 |
| ALTERNATE CROPS                                                                                |     |
| Soybean Performance in Ontario in 2017                                                         | 236 |
| APPENDICES                                                                                     |     |
| A. Herbicides and Adjuvants                                                                    | 240 |
| B. Insecticides, Fungicides, and Nematicides                                                   | 242 |
| C. Common and Scientific Names of Crops, Forages, and Forbs                                    | 244 |
| D. Common and Scientific Names of Weeds                                                        | 246 |
| E. Common and Scientific Names of Diseases, Physiological Disorders, Insects, and Nematodes    | 247 |

# 2017 WEATHER REPORT

Erik B. G. Feibert and Clinton C. Shock, Malheur Experiment Station, Oregon State University, Ontario, OR

## Introduction

Air temperature and precipitation have been recorded daily at the Malheur Experiment Station since July 20, 1942. Installation of additional equipment in 1948 allowed for evaporation and wind measurements. A soil thermometer at 4-inch depth was added in 1967. Since 1962, the Malheur Experiment Station has participated in the National Cooperative Weather Station system of the National Weather Service. The daily readings from the station are reported to the National Weather Service forecast office in Boise, Idaho.

A biophenometer to monitor degree-days and pyranometers to monitor total solar and photosynthetically active radiation were added in 1985. Starting in June 1997, the daily weather data and the monthly weather summaries have been posted on the Malheur Experiment Station web site at www.cropinfo.net.

On June 1, 1992, in cooperation with the U.S. Department of the Interior, Bureau of Reclamation, a fully automated weather station, linked by satellite to the Northwest Cooperative Agricultural Weather Network (AgriMet) computer in Boise, Idaho, began transmitting data from Malheur Experiment Station. The automated AgriMet station continually monitors air temperature, relative humidity, dew point temperature, precipitation, wind run, wind speed, wind direction, solar radiation, and soil temperature at 8-inch and 20-inch depths. Data are transmitted via satellite to a computer in Boise every 4 hours and are used to calculate daily Malheur County crop water-use estimates. The AgriMet database can be accessed at www.usbr.gov/pn/agrimet and from links on the Malheur Experiment Station web page at www.cropinfo.net.

## **Materials and Methods**

The ground under and around the weather stations was bare until October 17, 1997, when it was covered with turf grass. The grass is irrigated by subsurface drip irrigation. The manually observed weather data are recorded each day at 8:00 a.m. Consequently, the data in the tables of daily observations refer to the previous 24 hours.

Evaporation is measured from April through October as inches of water evaporated from a standard class A pan (10 inches deep by 4-ft diameter) over 24 hours. Crop evapotranspiration ( $ET_c$ ) for each crop is calculated by the AgriMet computer using data from the AgriMet weather station and the Kimberly-Penman equation (Wright 1982). AgriMet calculates reference evapotranspiration ( $ET_0$ ) for a theoretical 12- to 20-inch-tall crop of alfalfa assuming full cover for the whole season. Evapotranspiration for each crop is calculated using ( $ET_0$ ) and crop coefficients for each crop. These crop coefficients vary throughout the growing season based on the plant growth stage (crop cover). The crop coefficients are tied to the plant growth stage by three dates: start, full cover, and termination dates. Start dates are the beginning of vegetative growth in the spring for perennial crops or the emergence date for row crops. Full cover dates are typically when plants reach full foliage. Termination dates are defined by harvest, frost, or

dormancy. Alfalfa mean  $ET_c$  is calculated for an alfalfa crop using  $ET_0$  and assuming a 15% reduction to account for cuttings.

Wind run is measured by the AgriMet weather station as total wind movement in miles over 24 hours at 9.8 ft above the ground. Weather data averages in the tables, except evapotranspiration, refer to the years preceding and up to, but not including, the current year.

## 2017 Weather

The total precipitation for 2017 (10.93 inches) was slightly higher than the 10-year and 74-year averages (10.09 inches) (Table 1). Precipitation for the months of January through April was higher than average.

Total snowfall for 2017 (31.5 inches) was higher than the 74-year average (17.7 inches) (Table 2). Contributing directly to the snow accumulation problems experienced over the winter of 2016-2017 were the higher than average snowfall and lower than average air temperature in December 2016 and January 2017. Snowfall in December 2016 was 19 inches and in January 2017 was 22 inches. From December 24, 2016 to February 15, 2017 there was a continuous minimum of 10 inches of snow on the ground. The highest snow depth of 28 inches occurred on January 19, 2017 and was the highest since records began in 1943. The average monthly maximum and minimum air temperatures for December of 2016 and January of 2017 were substantially lower than the 74-year average (Table 3). The lowest temperature for the year was -22°F on January 7.

The highest air temperature for 2017 was 102°F on both July 23 and 24. The average maximum air temperature in July and August was higher than average. The average minimum air temperature in July and August was substantially higher than average.

The average monthly maximum and minimum 4-inch soil temperatures were close to the 19-year and 50-year averages (Table 4).

Total monthly wind runs in 2017 were close to the 24-year average (Table 5). Total pan evaporation from May through October in 2017 was higher than the 69-year average (Table 6). Total accumulated reference evapotranspiration  $(ET_o)$  in 2017 was below the 25-year average (Table 7).

The year 2017 had 3337 growing degree-days (50 to 86°F), close to the 25-year average of 3300 (Table 8, Fig. 1). The year 2017 had a lower than average frost-free period (150 days) (Table 9). The last spring frost ( $\leq$ 32°F) occurred on May 13, 15 days later than the 41-year-average date of April 28; the first fall frost occurred on October 10, 2 days later than the 41-year-average date of October 8. Snow depth was the only record broken in 2017 (Table 10).

## Acknowledgements

This work was supported by the National Oceanic and Atmospheric Administration, U.S. Bureau of Reclamation, Oregon State University, the Malheur County Education Service District and supported by Formula Grant nos. 2017-31100-06041 and 2017-31200-06041 from the USDA National Institute of Food and Agriculture.

## References

Wright, J.L. 1982. New evapotranspiration crop coefficients. Journal of Irrigation and Drainage Division, American Society of Civil Engineers 108:57-74.

| ,         |      |      |      |      |      |      |          |      |      |      |      |      |       |
|-----------|------|------|------|------|------|------|----------|------|------|------|------|------|-------|
| Year      | Jan  | Feb  | Mar  | Apr  | May  | Jun  | Jul      | Aug  | Sep  | Oct  | Nov  | Dec  | Total |
|           |      |      |      |      |      |      | - inches |      |      |      |      |      |       |
| 1990      | 0.44 | 0.35 | 0.72 | 1.52 | 1.7  | 0.36 | 0.04     | 0.61 | 0    | 0.49 | 0.69 | 0.29 | 7.21  |
| 1991      | 0.59 | 0.44 | 0.88 | 0.81 | 1.89 | 1.09 | 0.01     | 0.04 | 0.35 | 1.01 | 1.71 | 0.43 | 9.25  |
| 1992      | 0.58 | 1.36 | 0.25 | 0.74 | 0.21 | 1.43 | 0.36     | 0.01 | 0.09 | 0.95 | 1.15 | 1.51 | 8.64  |
| 1993      | 2.35 | 1.02 | 2.41 | 2.55 | 0.70 | 1.55 | 0.18     | 0.50 | 0.00 | 0.80 | 0.64 | 0.60 | 13.30 |
| 1994      | 1.20 | 0.57 | 0.05 | 1.02 | 1.62 | 0.07 | 0.19     | 0.00 | 0.15 | 1.23 | 2.46 | 1.49 | 10.05 |
| 1995      | 2.67 | 0.28 | 1.58 | 1.16 | 1.41 | 1.60 | 1.10     | 0.13 | 0.07 | 0.57 | 0.88 | 2.56 | 14.01 |
| 1996      | 0.97 | 0.86 | 1.03 | 1.19 | 2.39 | 0.12 | 0.32     | 0.31 | 0.59 | 0.97 | 1.18 | 2.76 | 12.69 |
| 1997      | 2.13 | 0.17 | 0.25 | 0.66 | 0.67 | 0.86 | 1.40     | 0.28 | 0.40 | 0.43 | 1.02 | 0.94 | 9.21  |
| 1998      | 2.26 | 1.45 | 0.95 | 1.43 | 4.55 | 0.36 | 1.06     | 0.00 | 1.00 | 0.04 | 1.07 | 1.11 | 15.28 |
| 1999      | 1.64 | 2.50 | 0.59 | 0.23 | 0.28 | 1.02 | 0.00     | 0.09 | 0.00 | 0.40 | 0.49 | 0.73 | 7.97  |
| 2000      | 2.01 | 2.14 | 0.97 | 0.72 | 0.28 | 0.26 | 0.03     | 0.06 | 0.39 | 1.74 | 0.38 | 0.66 | 9.64  |
| 2001      | 1.15 | 0.41 | 1.11 | 0.70 | 0.37 | 0.64 | 0.32     | 0.00 | 0.10 | 0.68 | 1.33 | 1.00 | 7.81  |
| 2002      | 0.77 | 0.27 | 0.49 | 0.77 | 0.09 | 0.60 | 0.14     | 0.10 | 0.36 | 0.29 | 0.44 | 1.86 | 6.18  |
| 2003      | 1.46 | 0.48 | 0.99 | 1.12 | 1.52 | 0.24 | 0.36     | 0.11 | 0.15 | 0.02 | 0.86 | 1.47 | 8.78  |
| 2004      | 1.82 | 1.54 | 0.25 | 0.98 | 1.70 | 0.43 | 0.13     | 0.64 | 0.56 | 2.03 | 0.93 | 0.97 | 11.98 |
| 2005      | 0.41 | 0.12 | 1.66 | 0.80 | 2.94 | 1.02 | 0.22     | 0.06 | 0.14 | 1.38 | 1.58 | 3.92 | 14.25 |
| 2006      | 1.91 | 0.67 | 3.33 | 2.00 | 0.62 | 0.45 | 0.00     | 0.08 | 0.55 | 0.28 | 1.14 | 1.76 | 12.79 |
| 2007      | 0.07 | 0.95 | 0.12 | 0.82 | 0.47 | 0.63 | 0.03     | 0.15 | 0.92 | 0.68 | 1.07 | 1.56 | 7.47  |
| 2008      | 0.50 | 0.43 | 0.79 | 0.14 | 0.74 | 0.27 | 0.43     | 0.03 | 1.26 | 0.44 | 1.12 | 1.47 | 7.62  |
| 2009      | 0.65 | 0.43 | 0.86 | 0.13 | 1.47 | 2.27 | 0.09     | 1.39 | 0.02 | 1.24 | 0.63 | 1.82 | 11.00 |
| 2010      | 2.13 | 1.19 | 0.59 | 1.21 | 1.18 | 1.95 | 0.02     | 0.86 | 0.19 | 1.16 | 1.09 | 4.19 | 15.76 |
| 2011      | 1.05 | 0.42 | 2.97 | 0.44 | 2.61 | 0.81 | 0.19     | 0.02 | 0.08 | 1.59 | 0.57 | 0.45 | 11.20 |
| 2012      | 1.65 | 0.49 | 1.36 | 1.03 | 0.77 | 0.45 | 0.00     | 0.04 | 0.1  | 0.83 | 1.13 | 1.25 | 9.10  |
| 2013      | 0.58 | 0.34 | 0.32 | 0.19 | 0.37 | 0.80 | 0.00     | 0.11 | 2.39 | 0.44 | 0.90 | 0.59 | 7.03  |
| 2014      | 0.69 | 1.58 | 1.22 | 0.92 | 0.45 | 0.24 | 0.02     | 0.28 | 0.62 | 0.52 | 1.46 | 3.04 | 11.04 |
| 2015      | 0.64 | 0.74 | 0.77 | 0.67 | 1.80 | 0.18 | 0.51     | 0.05 | 0.50 | 1.13 | 1.29 | 3.21 | 11.49 |
| 2016      | 0.98 | 0.38 | 0.98 | 0.88 | 0.95 | 0.25 | 0.98     | 0.01 | 0.13 | 0.75 | 0.58 | 2.11 | 8.98  |
| 2017      | 3.02 | 1.61 | 1.61 | 1.27 | 1.02 | 0.62 | 0.00     | 0.00 | 0.49 | 0.45 | 0.00 | 0.84 | 10.93 |
| 10-yr avg | 0.89 | 0.70 | 1.00 | 0.64 | 1.08 | 0.79 | 0.23     | 0.29 | 0.62 | 0.88 | 0.98 | 1.97 | 10.07 |
| 74-yr avg | 1.25 | 0.92 | 0.95 | 0.79 | 1.05 | 0.80 | 0.23     | 0.33 | 0.47 | 0.74 | 1.14 | 1.42 | 10.09 |
|           |      |      |      |      |      |      |          |      |      |      |      |      |       |

Table 1. Monthly precipitation at the Malheur Experiment Station, Oregon State University, Ontario, OR, 1990-2017.

Table 2. Annual snowfall totals (inches) at the Malheur Experiment Station, Oregon State University, Ontario, OR, 1943-2017. Average annual snowfall (1943-2016) is 17.7 inches.

| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |       |       |       |      |       |       |       |      |       |       |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|-------|-------|------|-------|-------|-------|------|-------|-------|
| 195019511952195319541955195619571958195923.9 $32.4$ $22.3$ $7.5$ $10.4$ $40.3$ $15.6$ $26.4$ $9.8$ $12.1$ 1960196119621963196419651966196719681969 $21.2$ $9.7$ 14.813.3 $32.6$ 19.6 $6.3$ 11.914.9 $24.8$ 197019711972197319741975197619771978197913.517.1 $23.7$ 19.2 $20.3$ $27.3$ $21.3$ $21.3$ $9.3$ $31.0$ 198019811982198319841985198619871988198911.514.5 $32.7$ $35.4$ $21.0$ $33.4$ 13.015.5 $34.8$ $25.1$ 1990199119921993199419951996199719981999 $5.7$ $7.5$ 15.5 $36.0$ $32.0$ 15.014.5 $5.8$ 14.613.2200020012002200320042005200620072008200913.7515.5011.50 $4.50$ $24.00$ 13.5012.30 $3.75$ $26.00$ 13.7520102011201220132014201520162017 $2017$ |       |       |       | 1943 | 1944  | 1945  | 1946  | 1947 | 1948  | 1949  |
| 23.932.422.37.510.440.315.626.49.812.1196019611962196319641965196619671968196921.29.714.813.332.619.66.311.914.924.8197019711972197319741975197619771978197913.517.123.719.220.327.321.321.39.331.0198019811982198319841985198619871988198911.514.532.735.421.033.413.015.534.825.119901991199219931994199519961997199819995.77.515.536.032.015.014.55.814.613.2200020012002200320042005200620072008200913.7515.5011.504.5024.0013.5012.303.7526.0013.75201020112012201320142015201620172017                                                                                                                                                                      |       |       |       | 24.7 | 10.3  | 19.0  | 8.2   | 9.1  | 14.6  | 9.6   |
| 1960196119621963196419651966196719681969 $21.2$ 9.714.813.332.619.66.311.914.924.8197019711972197319741975197619771978197913.517.123.719.220.327.321.321.39.331.0198019811982198319841985198619871988198911.514.532.735.421.033.413.015.534.825.119901991199219931994199519961997199819995.77.515.536.032.015.014.55.814.613.2200020012002200320042005200620072008200913.7515.5011.504.5024.0013.5012.303.7526.0013.75201020112012201320142015201620172017                                                                                                                                                                                                        | 1950  | 1951  | 1952  | 1953 | 1954  | 1955  | 1956  | 1957 | 1958  | 1959  |
| 21.29.714.813.332.619.66.311.914.924.8197019711972197319741975197619771978197913.517.123.719.220.327.321.321.39.331.0198019811982198319841985198619871988198911.514.532.735.421.033.413.015.534.825.119901991199219931994199519961997199819995.77.515.536.032.015.014.55.814.613.2200020012002200320042005200620072008200913.7515.5011.504.5024.0013.5012.303.7526.0013.75201020112012201320142015201620172017                                                                                                                                                                                                                                                    | 23.9  | 32.4  | 22.3  | 7.5  | 10.4  | 40.3  | 15.6  | 26.4 | 9.8   | 12.1  |
| 197019711972197319741975197619771978197913.517.123.719.220.327.321.321.39.331.0198019811982198319841985198619871988198911.514.532.735.421.033.413.015.534.825.119901991199219931994199519961997199819995.77.515.536.032.015.014.55.814.613.2200020012002200320042005200620072008200913.7515.5011.504.5024.0013.5012.303.7526.0013.75201020112012201320142015201620172017                                                                                                                                                                                                                                                                                          | 1960  | 1961  | 1962  | 1963 | 1964  | 1965  | 1966  | 1967 | 1968  | 1969  |
| 13.517.123.719.220.327.321.321.39.331.0198019811982198319841985198619871988198911.514.532.735.421.033.413.015.534.825.119901991199219931994199519961997199819995.77.515.536.032.015.014.55.814.613.2200020012002200320042005200620072008200913.7515.5011.504.5024.0013.5012.303.7526.0013.75201020112012201320142015201620172017                                                                                                                                                                                                                                                                                                                                  | 21.2  | 9.7   | 14.8  | 13.3 | 32.6  | 19.6  | 6.3   | 11.9 | 14.9  | 24.8  |
| 198019811982198319841985198619871988198911.514.532.735.421.033.413.015.534.825.119901991199219931994199519961997199819995.77.515.536.032.015.014.55.814.613.2200020012002200320042005200620072008200913.7515.5011.504.5024.0013.5012.303.7526.0013.7520102011201220132014201520162017                                                                                                                                                                                                                                                                                                                                                                             | 1970  | 1971  | 1972  | 1973 | 1974  | 1975  | 1976  | 1977 | 1978  | 1979  |
| 11.514.532.735.421.033.413.015.534.825.119901991199219931994199519961997199819995.77.515.536.032.015.014.55.814.613.2200020012002200320042005200620072008200913.7515.5011.504.5024.0013.5012.303.7526.0013.75201020112012201320142015201620172017                                                                                                                                                                                                                                                                                                                                                                                                                 | 13.5  | 17.1  | 23.7  | 19.2 | 20.3  | 27.3  | 21.3  | 21.3 | 9.3   | 31.0  |
| 19901991199219931994199519961997199819995.77.515.536.032.015.014.55.814.613.2200020012002200320042005200620072008200913.7515.5011.504.5024.0013.5012.303.7526.0013.7520102011201220132014201520162017                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1980  | 1981  | 1982  | 1983 | 1984  | 1985  | 1986  | 1987 | 1988  | 1989  |
| 5.77.515.536.032.015.014.55.814.613.2200020012002200320042005200620072008200913.7515.5011.504.5024.0013.5012.303.7526.0013.7520102011201220132014201520162017                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 11.5  | 14.5  | 32.7  | 35.4 | 21.0  | 33.4  | 13.0  | 15.5 | 34.8  | 25.1  |
| 200020012002200320042005200620072008200913.7515.5011.504.5024.0013.5012.303.7526.0013.7520102011201220132014201520162017                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1990  | 1991  | 1992  | 1993 | 1994  | 1995  | 1996  | 1997 | 1998  | 1999  |
| 13.7515.5011.504.5024.0013.5012.303.7526.0013.7520102011201220132014201520162017                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 5.7   | 7.5   | 15.5  | 36.0 | 32.0  | 15.0  | 14.5  | 5.8  | 14.6  | 13.2  |
| 2010 2011 2012 2013 2014 2015 2016 2017                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2000  | 2001  | 2002  | 2003 | 2004  | 2005  | 2006  | 2007 | 2008  | 2009  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 13.75 | 15.50 | 11.50 | 4.50 | 24.00 | 13.50 | 12.30 | 3.75 | 26.00 | 13.75 |
| 28.0 1.0 4.0 14.0 22.5 14.0 24.5 31.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2010  | 2011  | 2012  | 2013 | 2014  | 2015  | 2016  | 2017 |       |       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 28.0  | 1.0   | 4.0   | 14.0 | 22.5  | 14.0  | 24.5  | 31.5 |       |       |

|       |     |         |        | -        |           |
|-------|-----|---------|--------|----------|-----------|
| Month |     | Highest | Lowest | 2017 avg | 74-yr avg |
|       |     |         |        | - °F     |           |
| Jan   | Max | 44      | 6      | 26       | 35        |
| Jan   | Min | 32      | -22    | 9        | 19        |
| Fab   | Max | 49      | 28     | 39       | 43        |
| Feb   | Min | 35      | 11     | 25       | 25        |
| Mor   | Max | 72      | 41     | 56       | 55        |
| Mar   | Min | 48      | 22     | 37       | 31        |
| A     | Max | 72      | 51     | 61       | 64        |
| Apr   | Min | 50      | 29     | 38       | 37        |
| Max   | Max | 93      | 52     | 73       | 74        |
| May   | Min | 58      | 32     | 46       | 45        |
| l e   | Max | 97      | 65     | 83       | 82        |
| Jun   | Min | 65      | 45     | 56       | 52        |
| L.J   | Max | 102     | 89     | 96       | 92        |
| Jul   | Min | 73      | 57     | 64       | 58        |
| A     | Max | 83      | 83     | 93       | 90        |
| Aug   | Min | 51      | 51     | 60       | 56        |
| 0     | Max | 97      | 61     | 80       | 80        |
| Sep   | Min | 63      | 37     | 50       | 46        |
| 0+    | Max | 72      | 47     | 63       | 65        |
| Oct   | Min | 48      | 27     | 35       | 37        |
| N.L.  | Max | 43      | 43     | 49       | 48        |
| Nov   | Min | 23      | 23     | 32       | 28        |
| Dee   | Max | 46      | 23     | 35       | 37        |
| Dec   | Min | 31      | 10     | 22       | 22        |
|       |     |         |        |          |           |

Table 3. Maximum and minimum air temperatures by month, Malheur Experiment Station, Oregon State University, Ontario, OR, 2017.

Table 4. Monthly soil temperature at 4-inch depth, Malheur Experiment Station, Oregon State University, Ontario, OR, 2017.

|                      | Jan  |      | Fe   | eb  | М    | ar    | A    | or   | Ma   | ay   | Ju   | ın  | Jı  | ul  | Αι  | ıg  | Se  | эр  | 0   | ct  | No  | vc  | De  | эс  |
|----------------------|------|------|------|-----|------|-------|------|------|------|------|------|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
|                      | Max  | Min  | Max  | Min | Max  | Min   | Max  | Min  | Max  | Min  | Max  | Min | Max | Min | Max | Min | Max | Min | Max | Min | Max | Min | Max | Min |
|                      |      |      |      |     |      |       |      |      |      |      |      |     | °F  |     |     |     |     |     |     |     |     |     |     |     |
| 2017 avg             | 33   | 33   | 34   | 33  | 43   | 42    | 49   | 47   | 58   | 53   | 67   | 63  | 73  | 70  | 73  | 70  | 66  | 63  | 54  | 51  | 45  | 44  | 35  | 34  |
| Highest              | 34   | 34   | 34   | 34  | 48   | 47    | 53   | 50   | 66   | 59   | 73   | 69  | 75  | 72  | 75  | 72  | 72  | 69  | 61  | 59  | 51  | 48  | 40  | 39  |
| Lowest               | 32   | 29   | 32   | 31  | 34   | 32    | 46   | 44   | 51   | 48   | 60   | 59  | 69  | 63  | 71  | 68  | 58  | 55  | 49  | 46  | 41  | 40  | 32  | 30  |
| 19-yr avg            | 33   | 32   | 36   | 35  | 43   | 41    | 50   | 46   | 60   | 55   | 68   | 62  | 74  | 68  | 72  | 67  | 65  | 61  | 55  | 52  | 43  | 42  | 35  | 34  |
| 50-yr avg            | 33   | 32   | 37   | 34  | 49   | 40    | 59   | 47   | 71   | 57   | 79   | 66  | 87  | 73  | 85  | 72  | 75  | 63  | 60  | 51  | 44  | 40  | 34  | 33  |
| <sup>a</sup> 1998-20 | 16 a | aver | age. | G   | rour | nd co | over | ed ۱ | with | turf | in 1 | 997 | •   |     |     |     |     |     |     |     |     |     |     |     |

| Daily         | Jan  | Feb  | Mar  | Apr  | May  | Jun     | Jul  | Aug  | Sep  | Oct  | Nov  | Dec  |
|---------------|------|------|------|------|------|---------|------|------|------|------|------|------|
|               |      |      |      |      |      | miles/  | day  |      |      |      |      |      |
| Mean          | 88   | 119  | 126  | 164  | 140  | 121     | 102  | 91   | 101  | 100  | 95   | 77   |
| Max           | 427  | 477  | 443  | 367  | 445  | 288     | 186  | 191  | 256  | 228  | 223  | 253  |
| Min           | 31   | 59   | 63   | 51   | 59   | 61      | 62   | 54   | 47   | 42   | 32   | 23   |
| Monthly total |      |      |      |      | 1    | miles/m | onth |      |      |      |      |      |
| 2017          | 2741 | 3333 | 3903 | 4917 | 4337 | 3628    | 3168 | 2816 | 3029 | 3102 | 2850 | 2401 |
| 24-yr average | 2828 | 3198 | 4210 | 4618 | 4182 | 3668    | 3356 | 3273 | 3162 | 3286 | 3010 | 3284 |

Table 5. Daily and monthly wind-run, Malheur Experiment Station, Oregon State University, Ontario, OR, 2017.

Table 6. Daily and monthly pan-evaporation, Malheur Experiment Station, Oregon State University, Ontario, OR, 2017.

| Totals    | April | May  | Jun  | Jul     | Aug     | Sep  | Oct  | Total |
|-----------|-------|------|------|---------|---------|------|------|-------|
| Daily     |       |      |      | inches  | s/day   |      |      |       |
| Mean      | 0.19  | 0.26 | 0.33 | 0.41    | 0.33    | 0.22 | 0.13 |       |
| Max       | 0.32  | 0.54 | 0.61 | 0.56    | 0.48    | 0.36 | 0.31 |       |
| Min       | 0.04  | 0.07 | 0.15 | 0.24    | 0.20    | 0.06 | 0.00 |       |
| Monthly   |       |      |      | inches/ | month - |      |      |       |
| 2017      | 5.64  | 8.13 | 9.99 | 12.69   | 10.11   | 6.74 | 4.08 | 57.38 |
| 69-yr avg | 5.79  | 7.91 | 9.21 | 11.44   | 9.80    | 6.44 | 3.41 | 54.00 |

| Table 7. Total accumulated reference evapotranspiration (ET <sub>0</sub> ) and estimated crop |
|-----------------------------------------------------------------------------------------------|
| evapotranspiration (ETc) (acre-inches/acre) for various crops, Malheur Experiment             |
| Station, Oregon State University, Ontario, OR, 1992-2017.                                     |

|      |      | Alfalfa | Winter | Spring | Sugar |       |        | Dry  | Field |       | Popla | r       |
|------|------|---------|--------|--------|-------|-------|--------|------|-------|-------|-------|---------|
| Year | EΤ。  | (Mean)  | Grain  | Ġrain  | Beet  | Onion | Potato | Bean | corn  | Yr. 1 | Yr. 2 | Yr. 3 + |
| 1992 | 53.7 | 44.4    | 26.9   | 27.9   | 36.1  | 30.3  | 28.8   | 21.3 | 29.8  |       |       |         |
| 1993 | 51.9 | 36.4    | 21.3   | 22.7   | 29.3  | 24.1  | 22.8   | 17.9 | 23.7  |       |       |         |
| 1994 | 57.6 | 40.6    | 21.3   | 22.6   | 34.5  | 29.5  | 28.2   | 21.1 | 27.7  |       |       |         |
| 1995 | 49.6 | 37.1    | 18.9   | 22.2   | 29.0  | 26.7  | 23.6   | 16.7 | 23.7  |       |       |         |
| 1996 | 52.8 | 39.8    | 22.3   | 24.1   | 32.9  | 27.2  | 26.3   | 19.5 | 25.7  |       |       |         |
| 1997 | 55.2 | 41.5    | 23.8   | 25.3   | 33.4  | 28.0  | 26.6   | 19.7 | 25.1  |       |       |         |
| 1998 | 55.0 | 40.7    | 21.3   | 23.9   | 32.4  | 28.2  | 26.2   | 21.0 | 27.9  | 23.9  | 37.1  | 44.0    |
| 1999 | 58.6 | 43.9    | 25.0   | 26.4   | 33.7  | 28.9  | 26.5   | 21.7 | 28.5  | 24.3  | 37.8  | 45.5    |
| 2000 | 58.7 | 45.5    | 26.0   | 25.7   | 38.3  | 32.0  | 29.5   | 24.1 | 30.6  | 24.9  | 38.9  | 47.1    |
| 2001 | 57.9 | 43.8    | 25.5   | 27.2   | 34.8  | 30.3  | 27.4   | 21.4 | 29.1  | 23.7  | 37.0  | 44.7    |
| 2002 | 58.8 | 41.7    | 25.9   | 28.7   | 35.2  | 30.4  | 27.7   | 21.9 | 27.8  | 23.6  | 36.7  | 44.4    |
| 2003 | 54.2 | 44.1    | 27.5   | 31.7   | 39.1  | 31.6  | 31.9   | 22.4 | 29.3  | 24.3  | 37.9  | 45.9    |
| 2004 | 52.8 | 43.5    | 27.8   | 30.6   | 34.3  | 30.2  | 27.9   | 22.1 | 28.4  | 23.3  | 36.3  | 44.1    |
| 2005 | 53.8 | 44.5    | 26.5   | 27.0   | 36.0  | 32.8  | 30.2   | 20.0 | 29.2  | 24.3  | 37.8  | 45.3    |
| 2006 | 57.7 | 47.9    | 24.4   | 31.4   | 38.5  | 33.8  | 29.4   | 23.9 | 29.6  | 26.3  | 41.0  | 49.3    |
| 2007 | 59.0 | 47.2    | 27.6   | 26.7   | 38.9  | 33.7  | 29.7   | 24.5 | 31.9  | 25.7  | 40.1  | 48.6    |
| 2008 | 58.0 | 46.4    | 28.1   | 30.4   | 36.4  | 32.7  | 30.0   | 24.0 | 30.4  | 23.3  | 36.5  | 44.5    |
| 2009 | 58.1 | 42.5    | 26.3   | 28.4   | 34.7  | 28.4  | 27.6   | 20.3 | 26.7  | 22.6  | 35.2  | 42.7    |
| 2010 | 51.5 | 41.9    | 21.0   | 26.8   | 33.4  | 28.9  | 27.7   | 21.1 | 26.7  | 22.2  | 34.5  | 41.4    |
| 2011 | 51.0 | 41.9    | 23.3   | 25.8   | 34.4  | 29.2  | 27.5   | 22.8 | 28.0  | 23.6  | 36.8  | 44.5    |
| 2012 | 57.3 | 45.3    | 23.6   | 27.6   | 36.4  | 31.5  | 31.6   | 24.0 | 31.2  | 25.3  | 39.4  | 47.4    |
| 2013 | 59.3 | 47.8    | 28.9   | 30.9   | 39.2  | 34.9  | 32.5   | 25.9 | 33.4  | 25.8  | 40.2  | 48.7    |
| 2014 | 59.2 | 49.0    | 29.7   | 32.6   | 37.5  | 35.0  | 34.5   | 26.6 | 35.1  | 26.1  | 40.8  | 49.6    |
| 2015 | 61.6 | 50.3    | 27.1   | 29.8   | 36.2  | 33.8  | 32.9   | 24.7 | 34.0  | 25.4  | 39.5  | 47.6    |
| 2016 | 60.0 | 49.7    | 28.0   | 31.3   | 37.0  | 34.0  | 31.5   | 23.4 | 34.6  | 26.3  | 41.1  | 49.9    |
| 2017 | 53.8 | 51.7    | 25.6   | 27.9   | 36.2  | 30.6  | 29.5   | 23.9 | 31.2  | 23.8  | 37.1  | 44.8    |
| Avg  |      |         |        |        |       |       |        |      |       |       |       |         |
| inch | 56.1 | 43.9    | 25.1   | 27.5   | 35.3  | 30.6  | 28.7   | 22.1 | 29.1  | 24.5  | 38.1  | 46.1    |
| mm   | 1426 | 1115    | 638    | 699    | 896   | 778   | 730    | 561  | 740   | 621   | 969   | 1170    |

|               | -   |     |     |     |     |     |     |     |     |     |     |     |       |
|---------------|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-------|
| Year          | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | OCT | NOV | DEC | Total |
| 1993          | 0   | 0   | 58  | 139 | 451 | 371 | 473 | 556 | 459 | 239 | 17  | 4   | 2768  |
| 1994          | 0   | 5   | 172 | 242 | 398 | 507 | 712 | 695 | 523 | 195 | 7   | 0   | 3456  |
| 1995          | 2   | 60  | 77  | 155 | 330 | 443 | 646 | 566 | 469 | 170 | 16  | 12  | 2945  |
| 1996          | 0   | 19  | 103 | 188 | 286 | 490 | 662 | 614 | 377 | 216 | 37  | 11  | 3004  |
| 1997          | 3   | 10  | 122 | 167 | 447 | 508 | 632 | 665 | 489 | 215 | 35  | 0   | 3293  |
| 1998          | 0   | 4   | 95  | 175 | 268 | 436 | 737 | 690 | 529 | 220 | 40  | 5   | 3198  |
| 1999          | 0   | 9   | 81  | 175 | 320 | 467 | 629 | 651 | 458 | 268 | 69  | 1   | 3127  |
| 2000          | 1   | 13  | 79  | 277 | 380 | 541 | 702 | 684 | 421 | 202 | 8   | 0   | 3309  |
| 2001          | 0   | 0   | 122 | 176 | 433 | 502 | 680 | 712 | 507 | 231 | 62  | 0   | 3424  |
| 2002          | 0   | 4   | 76  | 202 | 375 | 564 | 749 | 620 | 457 | 230 | 37  | 11  | 3325  |
| 2003          | 1   | 11  | 134 | 164 | 370 | 580 | 782 | 714 | 479 | 338 | 27  | 8   | 3610  |
| 2004          | 0   | 0   | 189 | 264 | 322 | 535 | 727 | 657 | 410 | 238 | 7   | 1   | 3349  |
| 2005          | 0   | 19  | 126 | 193 | 342 | 446 | 692 | 685 | 435 | 215 | 6   | 0   | 3158  |
| 2006          | 0   | 18  | 48  | 204 | 406 | 597 | 791 | 647 | 446 | 219 | 60  | 4   | 3441  |
| 2007          | 0   | 20  | 183 | 220 | 441 | 543 | 796 | 644 | 442 | 184 | 50  | 6   | 3528  |
| 2008          | 0   | 2   | 39  | 144 | 389 | 512 | 713 | 665 | 452 | 228 | 36  | 6   | 3186  |
| 2009          | 1   | 7   | 66  | 209 | 415 | 509 | 702 | 644 | 523 | 130 | 34  | 0   | 3239  |
| 2010          | 1   | 5   | 92  | 159 | 248 | 467 | 671 | 605 | 470 | 271 | 50  | 0   | 3037  |
| 2011          | 0   | 11  | 46  | 106 | 272 | 423 | 676 | 699 | 531 | 221 | 11  | 4   | 2999  |
| 2012          | 1   | 8   | 129 | 253 | 353 | 484 | 751 | 694 | 512 | 222 | 56  | 12  | 3475  |
| 2013          | 0   | 8   | 130 | 226 | 407 | 549 | 745 | 717 | 491 | 201 | 18  | 7   | 3498  |
| 2014          | 0   | 22  | 116 | 227 | 424 | 544 | 779 | 685 | 503 | 293 | 36  | 17  | 3647  |
| 2015          | 7   | 71  | 190 | 241 | 427 | 674 | 716 | 700 | 461 | 347 | 33  | 9   | 3876  |
| 2016          | 0   | 42  | 129 | 305 | 405 | 576 | 680 | 683 | 443 | 227 | 78  | 0   | 3570  |
| 2017          | 0   | 0   | 114 | 169 | 380 | 533 | 766 | 706 | 461 | 189 | 19  | 0   | 3337  |
| Avg 1993-2016 | 1   | 15  | 108 | 200 | 371 | 511 | 702 | 662 | 470 | 230 | 34  | 5   | 3300  |
|               |     |     |     |     |     |     |     |     |     |     |     |     |       |

Table 8. Monthly total growing degree-days (50-86°F), Malheur Experiment Station, Oregon State University, Ontario, OR, 1993-2017.

| Year          | Date of last frost | Date of first frost | Total frost-free days |
|---------------|--------------------|---------------------|-----------------------|
|               | Spring             | Fall                |                       |
| 1990          | 8-May              | 7-Oct               | 152                   |
| 1991          | 30-Apr             | 4-Oct               | 157                   |
| 1992          | 24-Apr             | 14-Sep              | 143                   |
| 1993          | 20-Apr             | 11-Oct              | 174                   |
| 1994          | 15-Apr             | 6-Oct               | 174                   |
| 1995          | 16-Apr             | 22-Sep              | 159                   |
| 1996          | 6-May              | 23-Sep              | 140                   |
| 1997          | 3-May              | 8-Oct               | 158                   |
| 1998          | 18-Apr             | 17-Oct              | 182                   |
| 1999          | 11-May             | 28-Sep              | 140                   |
| 2000          | 12-May             | 24-Sep              | 135                   |
| 2001          | 29-Apr             | 10-Oct              | 164                   |
| 2002          | 8-May              | 12-Oct              | 157                   |
| 2003          | 19-May             | 11-Oct              | 145                   |
| 2004          | 16-Apr             | 24-Oct              | 191                   |
| 2005          | 15-Apr             | 6-Oct               | 174                   |
| 2006          | 19-Apr             | 0ct 22              | 186                   |
| 2007          | 4-May              | 11-Oct              | 160                   |
| 2008          | 2-May              | 13-Oct              | 164                   |
| 2009          | 13-May             | 1-Oct               | 141                   |
| 2010          | 7-May              | 12-Oct              | 158                   |
| 2011          | 4-May              | 25-Oct              | 174                   |
| 2012          | 29-Apr             | 4-Oct               | 158                   |
| 2013          | 23-May             | 5-Oct               | 135                   |
| 2014          | 29-Apr             | 22-Oct              | 176                   |
| 2015          | 15-Apr             | 27-Oct              | 195                   |
| 2016          | 28-Mar             | 12-Oct              | 198                   |
| 2017          | 13-May             | 10-Oct              | 150                   |
| avg 1976-2016 | 28-Apr             | 8-Oct               | 162                   |

Table 9. Last and first frost (32°F) dates and number of frost-free days, Malheur Experiment Station, Oregon State University, Ontario, OR, 1990-2017.

Table 10. Record weather events at the Malheur Experiment Station, Oregon State University, Ontario, OR.

| Record event                             | Measurement      | Date                     |
|------------------------------------------|------------------|--------------------------|
| Since 2                                  | 1943             |                          |
| Highest annual precipitation             | 16.87 inches     | 1983                     |
| Lowest annual precipitation              | 5.16 inches      | 1949                     |
| Highest monthly precipitation            | 4.55 inches      | May 1998                 |
| Highest June precipitation               | 2.27 inches      | June 2009                |
| Highest December precipitation           | 4.19 inches      | Dec 2010                 |
| Highest 24-hour precipitation            | 1.52 inches      | Sep 14, 1959             |
| Highest annual snowfall                  | 40 inches        | 1955                     |
| Greatest snow depth                      | 28 inches        | Jan 17, 2017             |
| Highest 24-hour snowfall                 | 10 inches        | Nov 30, 1975             |
| Earliest snowfall                        | 1 inch           | Oct 25, 1970             |
| Highest air temperature                  | 110°F            | July 22, 2003            |
| Total days with maximum air temp. ≥100°F | 18 days          | 2013                     |
| Lowest air temperature                   | -26°F            | Jan 21 and 22, 1962      |
| Total days with minimum air temp. ≤0°F   | 35 days          | 1985                     |
| Longest frost-free period                | 198 days         | 2016                     |
| Since 2                                  | 1967             |                          |
| Lowest soil temperature at 4-inch depth  | 12°F             | Dec 24, 25, and 26, 1990 |
| Since                                    | 1993             |                          |
| Most yearly growing degree-days          | 3876 degree-days | 2015                     |
| Fewest yearly growing degree-days        | 2768 degree-days | 1993                     |
| Fewest growing degree-days in March      | 39               | 2008                     |
| Fewest growing degree-days in April      | 106              | 2011                     |
| Most growing degree-days in April        | 305              | 2016                     |
| Since                                    | 1992             |                          |
| Highest reference evapotranspiration     | 61.6 inches      | 2015                     |

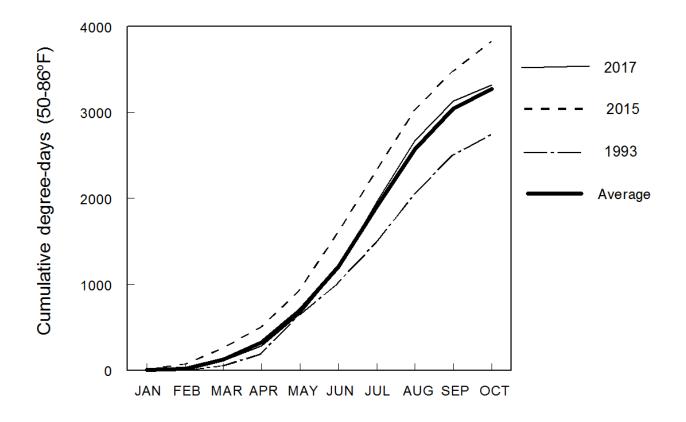



Figure 1. Cumulative growing degree-days (50-86°F) over time for 2017 compared to the years with lowest (1993) and highest (2015) totals since 1993 and to the 24-year average (1993-2016), Malheur Experiment Station, Oregon State University, Ontario, OR.

# 2017 ONION VARIETY TRIALS

Clinton C. Shock, Erik B. G. Feibert, Alicia Rivera, Kyle D. Wieland, and Lamont D. Saunders, Malheur Experiment Station, Oregon State University, Ontario, OR

## Introduction

Direct-seeded yellow, white, and red onion varieties were evaluated in the field for plant disease, thrips, maturity, bolting, and bulb single centers. Out of storage, the varieties were evaluated for yield, grade, and bulb decomposition. Four early-season yellow varieties were planted in April and were harvested and graded in early August. Fifty-one full-season varieties (34 yellow, 14 red, and 3 white) were planted in April, harvested in October, and were graded out of storage in January 2018. Each year, growers and seed industry representatives have the opportunity to examine the varieties at our annual Onion Variety Field Day in late August and during bulb evaluations in January. Onion varieties are evaluated objectively for bolting, yield, grade, single centers, and storability. Varieties are evaluated subjectively for maturity, thrips leaf damage, iris yellow spot virus, bulb shape, bulb shape uniformity, flesh brightness, and skin color and retention.

## **Materials and Methods**

Onions were grown in 2017 on an Owyhee silt loam previously planted to wheat. A soil analysis taken in the fall of 2016 showed that the top foot of soil had a pH of 8.2, 3.7% organic matter, 4 ppm nitrate, 3 ppm ammonium, 15 ppm phosphorus (P), 395 ppm potassium (K), 9 ppm sulfur (S), 3774 ppm calcium, 549 ppm magnesium (Mg), 208 ppm sodium, 0.6 ppm zinc (Zn), 17 ppm manganese (Mn), 0.4 ppm copper (Cu), 47 ppm iron, and 0.5 ppm boron (B). In the fall of 2016, the wheat stubble was shredded and the field was irrigated. The field was then disked. Based on a soil analysis, 55 lb of P/acre, 200 lb of S/acre, 9 lb of Zn/acre, 1 lb Cu/acre, and 1 lb of B/acre were broadcast before plowing. Also before plowing, 10 tons/acre of composted cattle manure were broadcast. The manure supplied 196 lb nitrogen (N)/acre, 156 lb P/acre, and 342 lb K/acre. The field was then moldboard plowed, and groundhogged. After groundhogging, the field was fumigated with K-Pam<sup>®</sup> at 15 gal/acre and bedded at 22 inches.

The experimental designs for the full-season and the early-maturing trials were randomized complete blocks with five replicates. A sixth nonrandomized replicate was planted for demonstrating onion variety performance to growers and seed company representatives at the Onion Variety Day. Both trials were planted on April 4 in plots 4 double rows wide and 27 ft long. The early-maturing trial had 4 varieties from 2 seed companies and the full-season trial had 51 varieties from 10 seed companies.

Seed was planted in double rows spaced 3 inches apart at 9 seeds/ft of single row. Each double row was planted on beds spaced 22 inches apart. Planting was done with customized John Deere Flexi Planter units equipped with disc openers. Immediately after planting, the field received a narrow band of Lorsban 15G<sup>®</sup> at 3.7 oz/1000 ft of row (0.82 lb ai/acre) over the seed rows and the soil surface was rolled. Onion emergence started on April 20. On May 2, alleys 4 ft wide were cut between plots, leaving plots 23 ft long. On May 23-25, the seedlings were hand thinned

to a spacing of 4.75 inches between individual onion plants in each single row, or 120,000 plants/acre.

The field had drip tape laid at 4-inch depth between pairs of beds during planting. The drip tape had emitters spaced 12 inches apart and an emitter flow rate of 0.22 gal/min/100 ft (Toro Aqua-Traxx, Toro Co., El Cajon, CA). The distance between the tape and the center of each double row of onions was 11 inches.

The onions were managed to minimize yield reductions from weeds, pests, diseases, water stress, and nutrient deficiencies. For weed control, the following herbicides were broadcast:  $Prowl^{\mbox{\sc Prowl}^{\mbox{\sc Prowl}^{\$ 

For thrips control, the following insecticides were applied by ground: Movento<sup>®</sup> at 5 oz/acre on May 26; Movento at 5 oz/acre and Aza-Direct<sup>®</sup> at 12 oz/acre on June 2; Agri-Mek<sup>®</sup> SC at 3.5 oz/acre on June 15 and 23. The following insecticides were applied by air: Radiant<sup>®</sup> at 10 oz/acre on July 1, 8, and 30; Lannate<sup>®</sup> at 3 pt/acre on July 17 and 23.

Urea ammonium nitrate solution (URAN) was applied through the drip tape weekly starting May 1 and ending June 28, totaling 120 lb N/acre. Starting on May 26, root tissue and soil solution samples were taken every week from field borders (variety 'Vaquero') and analyzed for nutrients by Western Laboratories, Inc., Parma Idaho (Tables 1 and 2). Nutrients were applied through the drip tape only if both the root tissue and soil solution analyses concurrently indicated a deficiency (Table 3). Nitrogen was applied at the fixed amount previously mentioned, but was limited to 120 lb/acre, because the soil solution test indicated the soil was supplying the crop with adequate amounts of N after June 27. The amounts of total available soil N went above the critical level of 80 lb N/acre (Sullivan et al. 2001) starting July 11 (Table 4).

| Nutrient                 |                   | 26-May | 12-Jun | 19-Jun | 27-Jun | 4-Jul | 11-Jul | 17-Jul | 24-Jul | 31-Jul | 7-Aug |
|--------------------------|-------------------|--------|--------|--------|--------|-------|--------|--------|--------|--------|-------|
| NO <sub>3</sub> -N (ppm) | Sufficiency range | 8500   | 7667   | 7000   | 6000   | 5000  | 4338   | 3000   | 2000   | 1834   | 1000  |
| NO <sub>3</sub> -N (ppm) |                   | 3743   | 4431   | 3988   | 4378   | 5472  | 6782   | 5746   | 5134   | 3944   | 3704  |
| P (%)                    | 0.32 - 0.7        | 0.34   | 0.27   | 0.39   | 0.47   | 0.52  | 0.58   | 0.5    | 0.48   | 0.43   | 0.62  |
| K (%)                    | 2.7 - 6.0         | 2.81   | 3.11   | 3.74   | 4.44   | 4.37  | 4.09   | 3.18   | 2.93   | 2.03   | 2.32  |
| S (%)                    | 0.24 - 0.85       | 0.72   | 0.7    | 0.95   | 0.99   | 0.81  | 0.96   | 0.77   | 0.74   | 0.72   | 0.91  |
| Ca (%)                   | 0.4 - 1.2         | 1.03   | 0.92   | 0.72   | 0.83   | 1     | 1.15   | 1.03   | 0.84   | 1.01   | 1.12  |
| Mg (%)                   | 0.3 - 0.6         | 0.4    | 0.35   | 0.33   | 0.33   | 0.3   | 0.37   | 0.34   | 0.38   | 0.4    | 0.47  |
| Zn (ppm)                 | 25 - 50           | 44     | 33     | 41     | 31     | 37    | 34     | 35     | 32     | 31     | 27    |
| Mn (ppm)                 | 35 - 100          | 124    | 114    | 131    | 109    | 116   | 120    | 115    | 97     | 76     | 90    |
| Cu (ppm)                 | 6 - 20            | 17     | 14     | 20     | 15     | 14    | 11     | 9      | 8      | 9      | 7     |
| B (ppm)                  | 19 - 60           | 22     | 20     | 25     | 19     | 22    | 25     | 31     | 35     | 42     | 33    |

Table 1. Onion root tissue nutrient content in the onion variety trial, Malheur Experiment Station, Oregon State University, Ontario, OR, 2017.

Table 2. Weekly soil solution analyses in the onion variety trial. Data represent the amount of each plant nutrient per day that the soil can potentially supply to the crop. Numbers following each nutrient are the critical levels. Malheur Experiment Station, Oregon State University, Ontario, OR, 2017.

|          | Critical level,            |        |        |        |        |       |        |        |        |        |       |
|----------|----------------------------|--------|--------|--------|--------|-------|--------|--------|--------|--------|-------|
| Nutrient | lb or g/acre               | 26-May | 12-Jun | 19-Jun | 27-Jun | 4-Jul | 11-Jul | 17-Jul | 24-Jul | 31-Jul | 7-Aug |
| Ν        | Critical level,<br>lb/acre | 8.6    | 7.8    | 7      | 6      | 5     | 4.6    | 4      | 3      | 2      | 2     |
| Ν        |                            | 5.4    | 4.6    | 4      | 6.6    | 10.9  | 12.9   | 13.1   | 16     | 16     | 14.6  |
| Р        | 0.7 lb                     | 1      | 1.3    | 0.7    | 0.8    | 1.1   | 1.3    | 1.5    | 1.1    | 1.2    | 1     |
| K        | 5 lb                       | 5      | 5.1    | 4.3    | 5.3    | 4.3   | 5.3    | 6      | 6.9    | 5.2    | 6.5   |
| S        | 1 lb                       | 4.1    | 3.1    | 2.1    | 2      | 2.4   | 3      | 3.7    | 4.4    | 5.1    | 3.9   |
| Ca       | 3 lb                       | 9.5    | 7.8    | 10.5   | 8.8    | 7.8   | 6.9    | 6.8    | 5.9    | 5.2    | 5.1   |
| Mg       | 2 lb                       | 17.9   | 14     | 8.3    | 8      | 6.8   | 7.5    | 7.8    | 8.3    | 8.8    | 7.5   |
| Zn       | 28 g                       | 27     | 33     | 27     | 33     | 42    | 51     | 63     | 72     | 75     | 66    |
| Mn       | 28 g                       | 24     | 18     | 9      | 15     | 27    | 30     | 33     | 30     | 36     | 39    |
| Cu       | 12 g                       | 6      | 9      | 6      | 12     | 15    | 18     | 15     | 18     | 21     | 24    |

Table 3. Nutrients applied through the drip irrigation system in the onion variety trial, Malheur Experiment Station, Oregon State University, Ontario, OR, 2017.

| Date   | Ν   | Р       | К  |
|--------|-----|---------|----|
|        |     | lb/acre |    |
| 1-May  | 30  |         |    |
| 26-May | 15  |         | 11 |
| 2-Jun  | 15  | 5       |    |
| 9-Jun  | 15  |         |    |
| 13-Jun | 15  |         |    |
| 22-Jun | 15  |         |    |
| 28-Jun | 15  |         |    |
| Total  | 120 | 5       | 11 |

Table 4. Soil available N (NO<sub>3</sub> + NH<sub>4</sub>) in the top foot of soil in the onion variety trial, Malheur Experiment Station, Oregon State University, Ontario, OR, 2017.

| Date   | Available soil N, lb/acre |
|--------|---------------------------|
| 26-May | 38                        |
| 12-Jun | 32                        |
| 19-Jun | 28                        |
| 27-Jun | 46                        |
| 4-Jul  | 76                        |
| 11-Jul | 90                        |
| 17-Jul | 92                        |
| 24-Jul | 112                       |
| 31-Jul | 112                       |
| 7-Aug  | 102                       |

Onions were irrigated automatically to maintain the soil water tension (SWT) in the onion root zone below 20 cb (Shock et al. 2000). Soil water tension was measured with eight granular matrix sensors (GMS, Watermark Soil Moisture Sensors Model 200SS, Irrometer Co. Inc., Riverside, CA) installed at 8-inch depth in the center of the double row. Sensors had been calibrated to SWT (Shock et al. 1998). The GMS were connected to the datalogger via multiplexers (AM 16/32, Campbell Scientific, Logan, UT). The datalogger (CR1000, Campbell Scientific) read the sensors and recorded the SWT every hour. The datalogger automatically made irrigation decisions every 12 hours. The field was irrigated if the average of the eight sensors was a SWT of 20 cb or higher. The irrigations were controlled by the datalogger using a controller (SDM CD16AC, Campbell Scientific) connected to a solenoid valve. Irrigation durations were 8 hours, 19 min to apply 0.48 inch of water. The water was supplied from a well and pump that maintained a continuous and constant water pressure of 35 psi. The pressure in the drip lines was maintained at 10 psi by a pressure-regulating valve. The automated irrigation system was started on May 10 and irrigations ended on September 5.

Onions in the early-maturing trial were evaluated for maturity, severity of symptoms of iris yellow spot virus (IYSV), and bolting on August 1. Onions in the full-season trial were evaluated for maturity on August 1 and 15. On August 15, onions in the full-season trial were also evaluated for IYSV, thrips damage severity, and bolting. Onions in each plot were evaluated subjectively for maturity by visually rating the percentage of onions with the tops down and the percent dry leaves. For IYSV, onions in each plot were given a subjective rating on a scale of 0 to 5 of increasing severity of IYSV symptoms. The rating was 0 if there were no symptoms, 1 if 1-25% of foliage was diseased, 2 if 26-50% of foliage was diseased, 3 if 51-75% of foliage was diseased, 4 if 76-99% of foliage was diseased, and 5 if 100% of foliage was diseased. For thrips leaf damage, each plot was given a subjective rating on a scale of 0 to 10 for increasing severity of leaf damage from thrips feeding. The number of bolted onion plants was counted in each plot.

Onions from the middle two double rows in each plot in the early-maturity trial were topped by hand and bagged on August 8. Onions from the early-maturity trial were graded on August 10. After grading, onions were stored in a shed at ambient air temperature for 2 weeks, after which the onions were evaluated for decomposition and sprouting.

The onions in the full-season trial were lifted on September 22 to field cure. Onions from the middle two rows in each plot of the full-season trial were topped by hand and bagged on October 2. The bags were put in storage on October 11. The storage shed was ventilated and the temperature was slowly decreased to maintain air temperature as close to 34°F as possible. Onions from the full-season trial were graded out of storage on January 9-12, 2018.

After harvest, bulbs from one of the border rows in each plot of both trials were rated for single centers. Twenty-five consecutive onions ranging in diameter from  $3\frac{1}{2}$  to  $4\frac{1}{4}$  inches were rated. The onions were cut equatorially through the bulb middle and separated into single-centered (bullet) and multiple-centered bulbs. The multiple-centered bulbs had the long axis of the inside diameter of the first single ring measured. These multiple-centered onions were ranked according to the inside diameter of the first entire single ring: small had diameters less than  $1\frac{1}{2}$  inches, medium had diameters from  $1\frac{1}{2}$  to  $2\frac{1}{4}$  inches, and large had diameters greater than  $2\frac{1}{4}$  inches. Onions were considered "functionally single centered" for processing if they were single centered (bullet) or had a small multiple center.

During grading, bulbs were separated according to quality: bulbs without blemishes (No. 1s), split bulbs (No. 2s), bulbs infected with the fungus *Botrytis allii* in the neck or side, bulbs infected with the fungus *Fusarium oxysporum* (plate rot), bulbs infected with the fungus *Aspergillus niger* (black mold), and bulbs infected with unidentified bacteria in the external scales. The No. 1 bulbs were graded according to diameter: small (<2¼ inches), medium (2¼-3 inches), jumbo (3-4 inches), colossal (4-4¼ inches), and supercolossal (>4¼ inches). Bulb counts per 50 lb of supercolossal onions were determined for each plot of every variety by weighing and counting all supercolossal bulbs during grading. Marketable yield consisted of No.1 bulbs larger than 2¼ inches.

During grading, one bag from each plot was saved for additional evaluations of internal bulb quality. Fifty bulbs from each plot were cut longitudinally and evaluated for the presence of incomplete scales, dry scales, internal bacterial rot, and internal rot caused by *Fusarium proliferatum* or other fungi. Incomplete scales were defined as scales that had more than 0.25 inch from the center of the neck missing or any part missing lower down on the scale. Dry scales were defined as scales that had either more than 0.25 inch from the center of the neck dry or any part dry lower down on the scale. This evaluation was not finished at the time of the printing of this report. The results will be published later.

After grading, two replicates of each yellow and red variety were evaluated for bulb shape, bulb shape uniformity, firmness, skin color, skin retention, and flesh brightness on January 16, 2018. The quality characteristics were evaluated by a group of 10 people who did not know the variety identities. Evaluators included OSU personnel, seed company employees, and others.

The varieties from each of the early-maturity and full-season trials were compared for yield, grade, internal quality, and disease expression. Varietal differences were determined using analysis of variance. Means separation was determined using a protected Fisher's least significant difference test at the 5% probability level, LSD (0.05). The least significant difference LSD (0.05) values in each table should be considered when comparisons are made between varieties for significant differences in their performance characteristics. Differences between varieties equal to or greater than the LSD value for a characteristic should exist before any variety is considered different from any other variety in that characteristic. Variety performance varies by year. Growers are encouraged to review performance over a number of years before choosing a variety to plant.

## Results

The rate of accumulation and total number of growing degree-days (50-86°F) in 2017 were close to the 24-year average, until July (Fig. 1), which had higher than average growing degree-days (Fig. 2). The SWT remained close to the target during the season (Fig. 3).

### **Early-maturing Trial**

On August 11, all varieties had at least 39% tops down (Table 5). After 2 weeks of storage, bulb sprouting and decomposition were low, averaging 0.4% of total bulbs (Table 5). The percentage of onions that were functionally single centered averaged 55.9% and ranged from 49.9% for 'Avalon' and 'Great Western' to 65.2% for 'Spanish Medallion' (Table 6). Total yield averaged 1087 cwt/acre, ranging from 1019 cwt/acre for Great Western to 1122 cwt/acre for 'Scout' (Table 7).

#### **Full-season Trial**

On August 1, the percentage of tops down averaged 9% and ranged from 0% for several varieties to 82% for 10058 (Table 8). By August 15, the percentage of tops down averaged 53% and ranged from 16% for 'Sedona' to 96% for 10058. The severity of thrips leaf damage, on a scale from 0 to10, averaged 2.6 and ranged from 1.0 for 'Lasso' and 10043 to 5.2 for ROL221-222. None of the varieties had bolting in 2017. Iris yellow spot virus severity was low in this trial, with all varieties having a rating of 1 (0-25% of foliage diseased), with no statistically significant differences among varieties.

The percentage of functionally single-centered bulbs averaged 68% and ranged from 26% for TAS027 to 98.7% for 'Oloroso' (Table 9).

Marketable yield averaged 957 cwt/acre and ranged from 298 cwt/acre for ROM 223-224 to 1357 cwt/acre for Scout (Table 10). 'Joaquin', Scout, SV6672, 'Ranchero', 'Morpheus', 'Barbaro', SV6646, 16000, 'Dulce Reina', and 'Grand Perfection' were among the varieties with the highest marketable yield. Storage decomposition averaged 3% and ranged from 0.2% for 'Arcero' to 22% for 'White Cloud'.

#### **Subjective Quality Evaluation**

Subjective bulb quality ratings can be found in Table 13 and explanation of the rating system can be found in Figure 4 and Tables 11 and 12. Significant variations were found among varieties in all the subjective characteristics except bulb shape uniformity.

#### **Internal Defect Evaluation**

The percentage of bulbs with incomplete scales, regardless of dry scale or disease, averaged 56% and ranged from 12% for 10043 to 97% for 'Marenge' (Table 14). The percentage of bulbs with internal decomposition, regardless of incomplete or dry scales, averaged 2% and ranged from 0% for 'Delgado', Avalon, 'Caoba', 10043, and 10058 to 12% for ROM223-224. For most varieties, most of the internal decomposition occurred in bulbs with incomplete scales. In 2017, most of the internal decomposition was caused by black mold (Table 15).

## **Acknowledgements**

This project was funded by the Idaho-Eastern Oregon Onion Committee, cooperating onion seed companies, Oregon State University, the Malheur County Education Service District, and supported by Formula Grant nos. 2017-31100-06041 and 2017-31200-06041 from the USDA National Institute of Food and Agriculture.

## References

- Shock, C.C., J. Barnum, and M. Seddigh. 1998. Calibration of Watermark soil moisture sensors for irrigation management. Irrigation Association. Proceedings of the International Irrigation Show. Pages 139-146. San Diego, CA.
- Shock, C.C., E.B.G. Feibert, and L.D. Saunders. 2000. Irrigation criteria for drip-irrigated onions. HortScience 35:63-66.

Sullivan, D.M., B.D. Brown, C.C. Shock, D.A. Horneck, R.G. Stevens, G.Q. Pelter, and E.B.G. Feibert. 2001. Nutrient Management for Sweet Spanish Onions in the Pacific Northwest. Pacific Northwest Extension Publication PNW 546:1-26.

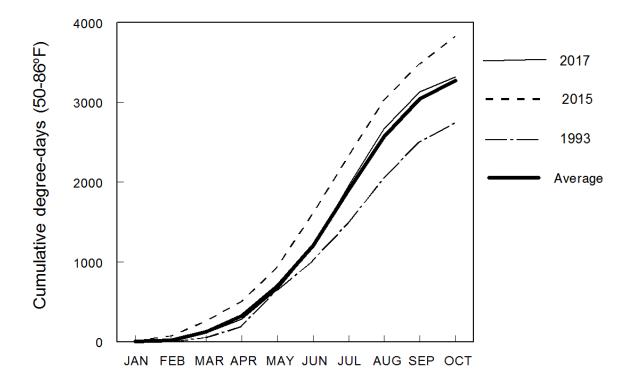



Figure 1. Cumulative growing degree-days (50-86°F) for 2015-2017 and 24-year average, Malheur Experiment Station, Oregon State University, Ontario, OR, 2017.

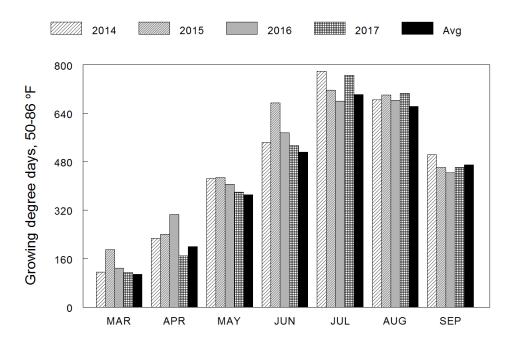



Figure 2. Monthly growing degree-days (50-86°F) for 2014-2017 and 24-year average, Malheur Experiment Station, Oregon State University, Ontario, OR, 2017.

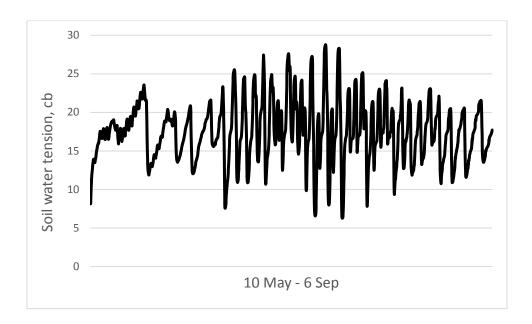



Figure 3. Soil water tension at 8-inch depth below the onion row. Malheur Experiment Station, Oregon State University, Ontario, OR, 2017.

Table 5. Bulb quality 2 weeks after harvest for early-maturing onion varieties lifted and harvested August 14, 2017, Malheur Experiment Station, Oregon State University, Ontario, OR.

|                 | _                 | Matur        | ity Aug. 11  | Bulb quality 2 weeks after harvest |            |                         |                                 |  |  |  |
|-----------------|-------------------|--------------|--------------|------------------------------------|------------|-------------------------|---------------------------------|--|--|--|
| Seed<br>company | Variety           | Tops<br>down | Leaf dryness | sprouted                           | decomposed | sprouted and decomposed | total sprouted or<br>decomposed |  |  |  |
|                 |                   |              |              |                                    | % -        |                         |                                 |  |  |  |
| Crookham        | Avalon            | 39           | 4            | 0.0                                | 0.2        | 0.0                     | 0.0                             |  |  |  |
|                 | Scout             | 41           | 4            | 0.0                                | 0.7        | 0.0                     | 0.7                             |  |  |  |
| Sakata          | Great Western     | 50           | 10           | 0.5                                | 0.2        | 0.0                     | 0.7                             |  |  |  |
|                 | Spanish Medallion | 43           | 5            | 0.0                                | 0.4        | 0.0                     | 0.4                             |  |  |  |
|                 | Average           | 43           | 6            | 0.1                                | 0.4        | 0.0                     | 0.4                             |  |  |  |
| LSD (0.05)      | -                 | NS           | 3            | NS                                 | NS         | NS                      | NS                              |  |  |  |

Table 6. Single- and multiple-center bulb ratings for early-maturing onion varieties lifted and harvested August 14, 2017, Malheur Experiment Station, Oregon State University, Ontario, OR.

|              |                   | Multiple center |        |       | Single center |        |  |
|--------------|-------------------|-----------------|--------|-------|---------------|--------|--|
| Seed company | Varietv           | large           | medium | small | functionala   | bullet |  |
|              | variety           | laiye           |        |       |               | Duilet |  |
| Crookham     | Avalon            | 22.1            | 28.0   | 13.5  | 49.9          | 36.5   |  |
|              | Scout             | 14.3            | 27.2   | 20.5  | 58.5          | 38.0   |  |
| Sakata       | Great Western     | 21.3            | 28.8   | 12.3  | 49.9          | 37.6   |  |
|              | Spanish Medallion | 11.8            | 23.0   | 21.8  | 65.2          | 43.4   |  |
|              | Average           | 17.4            | 26.8   | 17.0  | 55.9          | 38.9   |  |
| LSD (0.05)   |                   | NS              | NS     | NS    | NS            | NS     |  |

<sup>a</sup>Functional single-centered bulbs are the small multiple-centered plus the bullet-centered onion.

|                   |                   |                |        | Marketa | ole yield b | by grade | Э       | _     |        |              |             |           |                       |
|-------------------|-------------------|----------------|--------|---------|-------------|----------|---------|-------|--------|--------------|-------------|-----------|-----------------------|
| Seed<br>company   | Variety           | Total<br>yield | Total  | >4¼ in  | 4-4¼ in     | 3-4 in   | 2¼-3 in | Small | No. 2s | Total<br>rot | Neck<br>rot | Plate rot | Bulb counts<br>>4¼ in |
| cwt/acre cwt/acre |                   |                |        |         |             |          |         |       |        |              | #/50 lb     |           |                       |
| Crookham          | Avalon            | 1104.2         | 1094.8 | 40.6    | 376.6       | 658.8    | 18.9    | 7.3   | 0.0    | 0.0          | 0.0         | 0.0       | 31.5                  |
|                   | Scout             | 1122.4         | 1114.5 | 44.1    | 403.8       | 647.9    | 18.7    | 6.1   | 0.0    | 0.0          | 0.0         | 0.0       | 32.0                  |
| Sakata            | Great Western     | 1018.8         | 977.4  | 29.9    | 222.1       | 680.5    | 44.9    | 16.8  | 4.3    | 0.0          | 0.0         | 0.0       | 32.6                  |
|                   | Spanish Medallion | 1103.0         | 1094.5 | 81.7    | 398.8       | 590.2    | 23.8    | 8.6   | 0.0    | 0.0          | 0.0         | 0.0       | 31.1                  |
|                   | Average           | 1087.1         | 1070.3 | 49.1    | 350.3       | 644.4    | 26.6    | 9.7   | 1.1    | 0.0          | 0.0         | 0.0       | 31.8                  |
| LSD (0.05)        |                   | NS             | 88.4   | NS      | 81.9        | NS       | 17.4    | NS    | NS     | NS           | NS          | NS        | NS                    |

Table 7. Yield and grade performance of early-maturing onion varieties lifted and harvested August 14, 2017, Malheur Experiment Station, Oregon State University, Ontario, OR.

Table 8. Maturity, bolting, and thrips leaf damage ratings of full-season onion varieties, Malheur Experiment Station, Oregon State University, Ontario, OR, 2017.

|                   |                  | Bulb          |              | Aug             |              | -Aug            | 9-Aug              |
|-------------------|------------------|---------------|--------------|-----------------|--------------|-----------------|--------------------|
| Seed company      | Variety          | color         | Tops<br>down | Leaf<br>dryness | Tops<br>down | Leaf<br>dryness | Thrips leaf damage |
|                   |                  |               | uown         |                 | %            | uryness         | 0 - 10             |
| A. Takii          | Grand Perfection | Y             | 2            | 0               | 26           | 8               | 2.2                |
| Bejo              | Dawson           | Y             | 2            | 0               | 58           | 10              | 2.6                |
| Dejo              | Delgado          | Y             | 4            | 0               | 70           | 10              | 2.0                |
|                   | Hamilton         | Y             | 6            | 0               | 16           | 10              | 3.2                |
|                   | Legend           | Y             | 6            | 0               | 76           | 8               | 1.8                |
|                   | Sedona           | Y             | 0            | 0               | 16           | 。<br>10         | 2.8                |
| Crookham          | Avalon           | <u>'</u><br>Y | 12           | 0               | 76           | 9               | 1.4                |
| CIOOKIIaIII       | Scout            | Ý             | 10           | 0               | 70           | 9               | 1.8                |
|                   | Morpheus         | Ý             | 4            | 0               | 62           | 8               | 1.2                |
|                   | Advantage        | Y             | 4            | 0               | 24           | 7               | 1.4                |
|                   | OLYX08-640       | Y             | 18           | 0               | 82           | 16              | 3.6                |
|                   | Red Devil        | R             | 6            | 0               | 72           | 10              | 4.4                |
|                   | Red Beret        | R             | 4            | 4               | 62           | 22              | 4.4                |
|                   | Purple Haze      | R             | 4            | 4               | 30           | 22              | 4.2                |
|                   | White Cloud      | Ŵ             | 6            | 0               | 30<br>72     | 10              | 4.0                |
| Enza Zaden        | Caoba            | Y             | 6            |                 | 7244         | 8               | 1.0                |
| Enza Zauen        | 10043            | ř<br>Y        |              | 0<br>0          | 44<br>70     | о<br>8          |                    |
|                   |                  |               | 6            |                 |              |                 | 1.0                |
|                   | Monastrell       | R             | 68           | 10              | 90           | 26              | 3.8                |
|                   | 10058            | R             |              | 12              | 96           |                 | 4.2                |
| Hazera            | Rhino            | Y             | 2            | 0               | 82           | 9               | 1.8                |
| New Zealand Onion | TAS016           | R             | 2            | 6               | 22           | 28              | 5.0                |
|                   | TAS018           | R             | 64           | 10              | 90           | 26              | 4.0                |
|                   | TAS027           | R             | 46           | 10              | 86           | 22              | 4.0                |
|                   | ROL221-222       | R             | 8            | 10              | 30           | 34              | 5.2                |
|                   | ROM223-224       | R             | 0            | 4               | 18           | 32              | 4.8                |
| Nunhems           | Annillo          | Y             | 4            | 0               | 26           | 10              | 2.6                |
|                   | Arcero           | Y             | 2            | 0               | 26           | 10              | 2.2                |
|                   | Granero          | Y             | 2            | 0               | 64           | 10              | 2.2                |
|                   | Ranchero         | Y             | 4            | 0               | 59           | 10              | 2.4                |
|                   | Joaquin          | Y             | 0            | 0               | 30           | 7               | 1.6                |
|                   | Montero          | Y             | 8            | 2               | 69           | 11              | 3.0                |
|                   | Oloroso          | Y             | 2            | 2               | 26           | 10              | 2.6                |
|                   | Pandero          | Y             | 0            | 0               | 32           | 9               | 2.0                |
|                   | Vaquero          | Y             | 4            | 0               | 52           | 10              | 1.8                |
|                   | Salsa            | R             | 2            | 2               | 22           | 22              | 4.4                |
|                   | Marenge          | R             | 6            | 2               | 56           | 20              | 3.4                |
| Sakata            | Aruba            | Y             | 6            | 0               | 72           | 8               | 1.4                |
|                   | Lasso            | Y             | 10           | 0               | 70           | 9               | 1.0                |
|                   | Dulce Reina      | Y             | 4            | 0               | 54           | 8               | 1.2                |
|                   | Yukon            | Y             | 4            | 0               | 56           | 10              | 2.0                |
| Seminis           | Barbaro          | Y             | 0            | 0               | 22           | 9               | 2.2                |
|                   | Swale            | Y             | 0            | 0               | 44           | 10              | 2.0                |
|                   | Tucannon         | Y             | 4            | 0               | 68           | 8               | 1.4                |
|                   | 16000            | Ŷ             | 4            | 0               | 60           | 9               | 1.4                |
|                   | SV4058           | Ŵ             | 2            | 0               | 44           | 10              | 2.0                |
|                   | SV6646           | Ŷ             | 0            | 0               | 42           | 10              | 2.2                |
|                   | SV6672           | Ý             | 2            | Ő               | 38           | 10              | 1.8                |
|                   | SV4643NT         | R             | 24           | 8               | 83           | 28              | 4.0                |
| D. Palmer         | Saffron          | Y             | 2            | 0               | 38           | 10              | 2.2                |
| D. Fullion        | Diamond Swan     | Ŵ             | 0            | 0               | 36           | 9               | 1.8                |
|                   | Cherry Mountain  | R             | 6            | 0               | 54           | 13              | 3.4                |
| Average           |                  | 13            | 9            | 2               | 53           | 14              | 2.6                |
|                   |                  |               | 3            | 4               | 55           | 14              | 2.0                |

<sup>a</sup>Thrips leaf damage: 0 = no damage, 10 = most damage.

| 0               |                     | Dulla a la |            | ultiple cen  |              | Single ce    |            |
|-----------------|---------------------|------------|------------|--------------|--------------|--------------|------------|
| Seed company    | Variety             | Bulb color | large      | medium       |              | functionala  | bulle      |
| A. Takii        | Grand Perfection    | Y          | 16.0       | 22.0         | % ·<br>20.0  | 62.0         | 42.0       |
| Bejo            | Dawson              | Y          | 4.0        | 8.0          | 29.6         | 88.0         | 58.4       |
| Deju            |                     | Ý          | 21.6       | 34.4         | 29.0<br>21.6 | 44.0         | 22.4       |
|                 | Delgado<br>Hamilton | Ý          | 25.6       | 20.8         | 23.2         | 53.6         | 30.4       |
|                 | Legend              | Ý          | 32.8       | 35.2         | 23.2         | 32.0         | 10.        |
|                 | Sedona              | Ý          | 23.2       | 35.2<br>25.4 | 34.3         | 52.0<br>51.4 | 17.        |
| Crookham        | Avalon              | Y          | 23.2       | 23.4         | 25.3         | 54.3         | 29.        |
| CIOOKNam        | Scout               | ř<br>Y     | 21.9       | 23.8<br>27.9 | 25.3<br>20.4 | 54.3<br>49.2 | 29.<br>28. |
|                 | Morpheus            | Ý          | 4.8        | 4.8          | 13.6         | 49.2<br>90.4 | 76.        |
|                 | Advantage           | Ý          | 4.8<br>6.4 | 4.8<br>16.8  | 12.0         | 90.4<br>76.8 | 64.        |
|                 |                     | Ý          |            |              | 14.4         | 95.2         |            |
|                 | OLYX08-640          | R          | 2.4<br>4.0 | 2.4<br>5.6   |              | 95.2<br>90.4 | 80.        |
|                 | Red Devil           |            |            |              | 12.0         |              | 78.        |
|                 | Red Beret           | R          | 6.4        | 10.4         | 11.2         | 83.2         | 72.        |
|                 | Purple Haze         | R          | 0.0        | 8.0          | 15.2         | 92.0         | 76.        |
|                 | White Cloud         | W          | 24.0       | 26.4         | 21.6         | 49.6         | 28.        |
| Enza Zaden      | Caoba               | Y          | 36.0       | 29.6         | 20.0         | 34.4         | 14.        |
|                 | 10043               | Y          | 31.2       | 27.2         | 27.2         | 41.6         | 14.        |
|                 | Monastrell          | R          | 18.4       | 32.0         | 34.4         | 49.6         | 15.        |
|                 | 10058               | R          | 26.0       | 32.0         | 37.0         | 42.0         | 5.0        |
| Hazera          | Rhino               | Υ          | 7.2        | 20.0         | 26.4         | 72.8         | 46.        |
| w Zealand Onion | TAS016              | R          | 14.5       | 26.5         | 46.1         | 59.0         | 12.        |
|                 | TAS018              | R          | 23.4       | 34.6         | 29.2         | 42.0         | 12.        |
|                 | TAS027              | R          | 39.0       | 35.0         | 23.0         | 26.0         | 3.0        |
|                 | ROL221-222          | R          | 23.0       | 22.0         | 33.0         | 55.0         | 22.        |
|                 | ROM223-224          | R          | 20.2       | 13.6         | 21.7         | 66.1         | 44.        |
| Nunhems         | Annillo             | Y          | 3.2        | 3.2          | 6.5          | 93.6         | 87.        |
|                 | Arcero              | Y          | 3.0        | 3.0          | 11.0         | 94.0         | 83.        |
|                 | Granero             | Y          | 5.6        | 20.0         | 20.8         | 74.4         | 53.        |
|                 | Ranchero            | Y          | 15.2       | 17.6         | 29.6         | 67.2         | 37.        |
|                 | Joaquin             | Y          | 1.6        | 9.1          | 22.4         | 89.3         | 66.        |
|                 | Montero             | Y          | 2.7        | 5.3          | 8.0          | 92.0         | 84.        |
|                 | Oloroso             | Y          | 1.3        | 0.0          | 12.0         | 98.7         | 86.        |
|                 | Pandero             | Ý          | 7.5        | 25.7         | 35.8         | 66.8         | 31.        |
|                 | Vaquero             | Ý          | 2.4        | 9.7          | 29.0         | 87.9         | 58         |
|                 | Salsa               | R          | 25.6       | 20.0         | 23.2         | 54.4         | 31.        |
|                 | Marenge             | R          | 8.0        | 20.3         | 24.8         | 71.7         | 46.        |
| Sakata          | Aruba               | Y          | 12.0       | 11.2         | 15.2         | 76.8         | 61         |
| Canala          | Lasso               | Ý          | 16.0       | 13.0         | 20.0         | 70.0         | 51.        |
|                 | Dulce Reina         | Ý          | 13.6       | 16.0         | 20.0         | 70.4         | 48.        |
|                 | Yukon               | Ý          | 19.2       | 19.2         | 30.4         | 61.6         | 31.        |
| Saminia         |                     |            |            |              |              |              |            |
| Seminis         | Barbaro             | Y          | 0.8        | 8.1          | 17.4         | 91.1         | 73.        |
|                 | Swale               | Y          | 14.3       | 17.0         | 28.7         | 68.7         | 39.        |
|                 | Tucannon            | Y<br>Y     | 3.0        | 7.8          | 16.8         | 89.2<br>70 5 | 72.        |
|                 | 16000               |            | 8.3        | 12.3         | 15.5         | 79.5         | 64.        |
|                 | SV4058              | W          | 5.6        | 16.8         | 20.0         | 77.6         | 57.        |
|                 | SV6646              | Y          | 4.0        | 16.0         | 20.0         | 80.0         | 60.        |
|                 | SV6672              | Y          | 13.0       | 20.4         | 20.1         | 66.5         | 46.        |
|                 | SV4643NT            | R          | 19.2       | 12.8         | 23.2         | 68.0         | 44.        |
| D. Palmer       | Saffron             | Y          | 22.4       | 27.2         | 32.8         | 50.4         | 17.        |
|                 | Diamond Swan        | W          | 20.8       | 25.6         | 27.2         | 53.6         | 26.        |
|                 | Cherry Mountain     | R          | 16.8       | 10.4         | 21.6         | 72.8         | 51.        |
| Average         |                     |            | 14.1       | 17.9         | 22.5         | 68.0         | 45.        |
| LSD (0.05)      |                     |            | 10.2       | 9.5          | 11.1         | 13.0         | 13.        |

Table 9. Single- and multiple-center ratings for full-season onion varieties, Malheur Experiment Station, Oregon State University, Ontario, OR, 2017.

<sup>a</sup>Functional single-centered bulbs are the small multiple-centered plus the bullet-centered onion.

|                   |                  |       |       |       | Marketa | able yield | by gra | de      | -     |      | Bulb    |       |         |           |       |
|-------------------|------------------|-------|-------|-------|---------|------------|--------|---------|-------|------|---------|-------|---------|-----------|-------|
| Seed company      | Variety          | Bulb  | Total |       |         |            |        |         |       | No.  | counts  | Total | Neck    | Plate     | Black |
| Occu company      | Vallety          | color | yield | Total | >4¼ in  | 4-4¼ in    | 3-4 in | 2¼-3 in | Small | 2s   | >4¼ in  | rot   | rot     | rot       | mold  |
|                   |                  |       |       |       |         | cwt/a      | cre    |         |       |      | #/50 lb |       | % of to | tal yield | d k   |
| A. Takii          | Grand Perfection | Y     | 1183  | 1157  | 235.7   | 469.7      | 431.7  | 20.0    | 7.7   | 2.7  | 31.8    | 1.4   | 1.2     | 0.2       | 0.0   |
| Bejo              | Dawson           | Y     | 940   | 905   | 22.9    | 294.9      | 539.9  | 47.4    | 20.6  | 6.9  | 34.0    | 0.9   | 0.1     | 0.8       | 0.0   |
|                   | Delgado          | Y     | 1025  | 983   | 73.0    | 293.5      | 571.8  | 44.3    | 14.6  | 20.8 | 33.5    | 0.7   | 0.3     | 0.3       | 0.1   |
|                   | Hamilton         | Y     | 1011  | 980   | 56.5    | 306.2      | 571.4  | 45.8    | 11.0  | 16.8 | 31.7    | 0.3   | 0.3     | 0.0       | 0.0   |
|                   | Legend           | Y     | 921   | 879   | 8.6     | 202.3      | 642.1  | 26.0    | 9.0   | 22.4 | 35.0    | 1.1   | 0.8     | 0.1       | 0.1   |
|                   | Sedona           | Y     | 1102  | 1016  | 59.4    | 333.0      | 596.6  | 27.0    | 8.6   | 69.1 | 33.1    | 0.7   | 0.5     | 0.1       | 0.2   |
| Crookham          | Avalon           | Y     | 1294  | 1047  | 205.1   | 360.9      | 450.0  | 31.1    | 9.5   | 10.7 | 28.9    | 17.6  | 10.3    | 0.1       | 7.2   |
|                   | Scout            | Y     | 1357  | 1243  | 323.5   | 506.1      | 394.9  | 18.0    | 7.4   | 11.1 | 28.8    | 7.1   | 3.4     | 0.2       | 3.5   |
|                   | Morpheus         | Y     | 1237  | 1203  | 202.0   | 503.0      | 469.3  | 28.2    | 6.4   | 6.0  | 31.8    | 1.8   | 1.4     | 0.1       | 0.2   |
|                   | Advantage        | Y     | 1193  | 1119  | 251.9   | 453.2      | 397.9  | 16.2    | 7.3   | 3.2  | 30.6    | 5.3   | 4.9     | 0.1       | 0.3   |
|                   | OLYX08-640       | Y     | 811   | 793   | 3.2     | 77.5       | 650.5  | 61.7    | 15.2  | 1.0  | 32.5    | 0.3   | 0.1     | 0.2       | 0.0   |
|                   | Red Devil        | R     | 606   | 571   | 0.0     | 18.3       | 457.0  | 95.9    | 21.3  | 7.0  |         | 1.3   | 0.9     | 0.2       | 0.2   |
|                   | Red Beret        | R     | 613   | 569   | 5.1     | 36.3       | 438.5  | 89.3    | 27.3  | 6.5  | 30.1    | 1.8   | 0.9     | 0.7       | 0.2   |
|                   | Purple Haze      | R     | 633   | 607   | 0.0     | 14.0       | 482.0  | 110.8   | 15.2  | 3.1  |         | 1.2   | 0.8     | 0.2       | 0.2   |
|                   | White Cloud      | W     | 1191  | 887   | 107.9   | 318.3      | 436.6  | 24.2    | 10.2  | 36.4 | 29.9    | 22.1  | 0.7     | 0.3       | 21.1  |
| Enza Zaden        | Caoba            | Y     | 1104  | 1047  | 100.7   | 420.2      | 498.6  | 27.8    | 9.4   | 32.9 | 30.8    | 1.3   | 0.6     | 0.4       | 0.3   |
|                   | 10043            | Y     | 1028  | 950   | 73.3    | 254.8      | 591.2  | 30.3    | 17.0  | 53.8 | 31.0    | 0.7   | 0.4     | 0.2       | 0.1   |
|                   | Monastrell       | R     | 655   | 498   | 6.7     | 30.4       | 400.8  | 60.1    | 15.6  | 34.9 | 31.1    | 16.8  | 15.2    | 0.0       | 1.6   |
|                   | 10058            | R     | 688   | 531   | 5.5     | 19.5       | 405.9  | 100.6   | 22.7  | 63.2 | 28.3    | 11.6  | 11.2    | 0.2       | 0.2   |
| Hazera            | Rhino            | Y     | 1047  | 1007  | 99.2    | 363.8      | 521.0  | 22.5    | 6.5   | 14.9 | 32.4    | 1.9   | 1.6     | 0.2       | 0.0   |
| New Zealand Onion | TAS016           | R     | 448   | 326   | 0.0     | 0.0        | 140.8  | 185.3   | 51.1  | 70.3 |         | 0.2   | 0.2     | 0.0       | 0.0   |
|                   | TAS018           | R     | 463   | 392   | 0.0     | 1.1        | 253.2  | 138.1   | 45.7  | 19.9 |         | 1.1   | 0.3     | 0.8       | 0.0   |
|                   | TAS027           | R     | 544   | 476   | 0.0     | 2.1        | 358.2  | 115.9   | 44.6  | 13.8 |         | 1.7   | 0.5     | 1.3       | 0.0   |
|                   | ROL221-222       | R     | 333   | 167   | 0.0     | 0.0        | 48.3   | 118.9   | 67.9  | 91.6 |         | 2.0   | 1.9     | 0.1       | 0.0   |
|                   | ROM223-224       | R     | 298   | 183   | 0.0     | 0.0        | 50.4   | 133.1   | 67.1  | 36.4 |         | 4.0   | 1.8     | 2.1       | 0.0   |

Table 10. Yield and grade of full-season experimental and commercial onion varieties graded out of storage in January 2018, Malheur Experiment Station, Oregon State University, Ontario, OR. Continued on next page.

|            |                 |       |       |       | Marketa | able yield | by gra | de      | _     |      | Bulb    |                 |      |       |       |
|------------|-----------------|-------|-------|-------|---------|------------|--------|---------|-------|------|---------|-----------------|------|-------|-------|
| Seed       |                 | Bulb  | Total |       |         |            |        |         |       | No.  | counts  | Total           | Neck | Plate | Black |
| company    | Variety         | color | yield | Total | >4¼ in  | 4-4¼ in    | 3-4 in | 2¼-3 in | Small | 2s   | >4¼ in  | rot             | rot  | rot   | mold  |
|            |                 |       |       |       |         | cwt/a      |        |         |       |      | #/50 lb | % of total yiel |      |       |       |
| Nunhems    | Annillo         | Y     | 1032  | 1014  | 73.6    | 381.3      | 532.0  | 27.0    | 13.6  | 1.4  | 31.9    | 0.4             | 0.2  | 0.2   | 0.0   |
|            | Arcero          | Y     | 1094  | 1073  | 111.9   | 410.4      | 522.4  | 28.5    | 16.0  | 2.4  | 30.6    | 0.2             | 0.1  | 0.1   | 0.0   |
|            | Granero         | Y     | 1032  | 997   | 80.6    | 337.9      | 539.0  | 39.8    | 20.6  | 7.2  | 30.8    | 0.7             | 0.2  | 0.2   | 0.3   |
|            | Ranchero        | Y     | 1249  | 1204  | 196.7   | 480.2      | 494.4  | 32.4    | 14.1  | 12.5 | 30.3    | 1.5             | 1.0  | 0.0   | 0.6   |
|            | Joaquin         | Y     | 1268  | 1251  | 293.1   | 464.8      | 467.7  | 25.4    | 8.6   | 3.4  | 31.0    | 0.4             | 0.2  | 0.1   | 0.1   |
|            | Montero         | Y     | 966   | 942   | 49.0    | 305.9      | 550.1  | 37.2    | 11.4  | 4.8  | 32.5    | 0.7             | 0.4  | 0.3   | 0.0   |
|            | Oloroso         | Y     | 915   | 893   | 20.9    | 202.3      | 630.9  | 39.0    | 10.9  | 1.7  | 34.5    | 1.1             | 0.4  | 0.4   | 0.3   |
|            | Pandero         | Y     | 1136  | 1097  | 170.6   | 457.1      | 441.1  | 28.5    | 10.0  | 15.1 | 31.6    | 1.2             | 0.4  | 0.6   | 0.2   |
|            | Vaquero         | Y     | 1163  | 1134  | 181.3   | 446.3      | 468.8  | 38.1    | 16.7  | 4.2  | 29.7    | 0.7             | 0.2  | 0.1   | 0.4   |
|            | Salsa           | R     | 637   | 495   | 0.0     | 41.5       | 387.4  | 65.9    | 43.8  | 83.3 |         | 2.5             | 1.7  | 0.8   | 0.0   |
|            | Marenge         | R     | 739   | 698   | 0.0     | 17.3       | 612.1  | 68.2    | 20.0  | 16.3 |         | 0.7             | 0.5  | 0.1   | 0.1   |
| Sakata     | Aruba           | Y     | 1123  | 1077  | 209.1   | 383.7      | 448.1  | 35.6    | 14.4  | 22.9 | 30.3    | 0.8             | 0.5  | 0.1   | 0.2   |
|            | Lasso           | Y     | 1061  | 992   | 96.8    | 356.5      | 507.4  | 31.2    | 13.4  | 13.2 | 32.2    | 4.1             | 4.0  | 0.1   | 0.0   |
|            | Dulce Reina     | Y     | 1243  | 1166  | 294.8   | 416.2      | 426.0  | 29.3    | 8.1   | 11.4 | 30.1    | 4.6             | 1.5  | 0.0   | 3.1   |
|            | Yukon           | Y     | 1201  | 1115  | 231.8   | 440.5      | 426.0  | 16.6    | 8.8   | 42.6 | 29.9    | 3.0             | 2.2  | 0.1   | 0.8   |
| Seminis    | Barbaro         | Y     | 1220  | 1198  | 373.8   | 418.4      | 382.5  | 23.8    | 9.6   | 0.0  | 29.3    | 1.0             | 0.4  | 0.6   | 0.0   |
|            | Swale           | Y     | 1128  | 1086  | 168.8   | 398.8      | 490.6  | 28.0    | 13.6  | 9.6  | 31.2    | 1.7             | 0.5  | 0.7   | 0.5   |
|            | Tucannon        | Y     | 1038  | 1002  | 127.5   | 333.1      | 501.6  | 39.5    | 11.4  | 15.6 | 31.5    | 0.9             | 0.2  | 0.2   | 0.5   |
|            | 16000           | Y     | 1187  | 1167  | 315.4   | 423.9      | 406.1  | 22.0    | 9.6   | 3.7  | 30.1    | 0.6             | 0.1  | 0.4   | 0.1   |
|            | SV4058          | W     | 1091  | 984   | 127.8   | 350.2      | 483.0  | 23.0    | 9.5   | 6.9  | 31.1    | 8.4             | 2.2  | 0.3   | 5.9   |
|            | SV6646          | Y     | 1210  | 1187  | 258.3   | 485.3      | 424.6  | 19.3    | 8.8   | 2.9  | 29.6    | 0.9             | 0.2  | 0.7   | 0.0   |
|            | SV6672          | Y     | 1252  | 1204  | 315.5   | 444.0      | 419.5  | 24.6    | 10.3  | 10.1 | 28.6    | 2.3             | 0.9  | 0.2   | 1.2   |
|            | SV4643NT        | R     | 674   | 574   | 3.0     | 50.4       | 455.6  | 64.8    | 24.2  | 60.6 | 34.5    | 2.7             | 1.4  | 1.3   | 0.0   |
| D. Palmer  | Saffron         | Y     | 760   | 668   | 11.8    | 97.7       | 505.8  | 52.6    | 18.2  | 69.4 | 37.0    | 0.6             | 0.3  | 0.2   | 0.1   |
|            | Diamond Swan    | W     | 1051  | 938   | 98.4    | 315.0      | 497.7  | 26.5    | 9.2   | 57.5 | 32.5    | 4.5             | 2.6  | 0.8   | 1.1   |
|            | Cherry Mountain | R     | 604   | 506   | 0.0     | 31.7       | 420.0  | 54.7    | 27.0  | 57.2 |         | 2.1             | 2.0  | 0.1   | 0.0   |
|            | average         |       | 957   | 886   | 110.8   | 270.0      | 455.7  | 49.8    | 18.1  | 23.4 | 31.4    | 3.0             | 1.7  | 0.3   | 1.0   |
| LSD (0.05) | -               |       | 94    | 110   | 46.2    | 68.4       | 90.5   | 22.9    | 10.1  | 17.0 | 2.2     | 4.5             | 3.9  | 0.9   | 2.7   |

Table 10. (Continued) Yield and grade of full-season experimental and commercial onion varieties graded out of storage in January 2018, Malheur Experiment Station, Oregon State University, Ontario, OR.

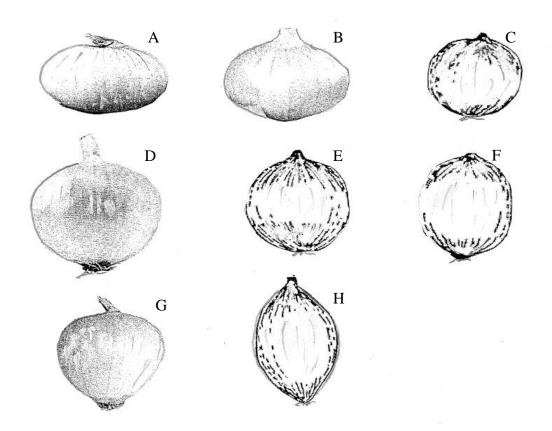



Figure 4. Onion bulb shape rating system (see Table 11). Malheur Experiment Station, Oregon State University, Ontario, OR.

| Table 11. Description of bulb |
|-------------------------------|
| shapes, see Fig. 4.           |

| Bulb shape      |  |  |  |  |  |  |  |  |  |
|-----------------|--|--|--|--|--|--|--|--|--|
| Shape           |  |  |  |  |  |  |  |  |  |
| Flat            |  |  |  |  |  |  |  |  |  |
| Granex          |  |  |  |  |  |  |  |  |  |
| Flattened globe |  |  |  |  |  |  |  |  |  |
| Globe           |  |  |  |  |  |  |  |  |  |
| Blocky globe    |  |  |  |  |  |  |  |  |  |
| Tall globe      |  |  |  |  |  |  |  |  |  |
| Тор             |  |  |  |  |  |  |  |  |  |
| Torpedo         |  |  |  |  |  |  |  |  |  |
|                 |  |  |  |  |  |  |  |  |  |

| Table 12. Or | nion variety | subjective | quality evaluat | ion rating system. |
|--------------|--------------|------------|-----------------|--------------------|
|--------------|--------------|------------|-----------------|--------------------|

| Characteristic        | Scale | Description                                     |
|-----------------------|-------|-------------------------------------------------|
| Bulb shape            | A-H   | see Fig. 4                                      |
| Skin color            | 1-5   | 1 = light, 5 = dark                             |
| Bulb shape uniformity | 1-5   | 1 = nonuniform shape, 5 = uniform shape         |
| Firmness              | 1-5   | 1 = soft, $5 = $ hard                           |
| Skin retention        | 1-5   | 1 = bald, 5 = no cracks                         |
| Flesh brightness      | 1-5   | yellow varieties: 1 = yellow, 5 = white         |
|                       |       | red varieties: 1 = dark red, 5 = pale red       |
|                       |       | white varieties: 1 = less white, 5 = very white |
|                       |       |                                                 |

| Company                                    | Variety          | Color           | Bulb<br>shape <sup>a</sup> | Skin<br>color <sup>b</sup> | Bulb shape<br>uniformity <sup>b</sup> | Firmness <sup>b</sup> | Scale<br>retention <sup>b</sup> | Flesh<br>brightness <sup>b</sup> |
|--------------------------------------------|------------------|-----------------|----------------------------|----------------------------|---------------------------------------|-----------------------|---------------------------------|----------------------------------|
| Sompany                                    | vanoty           | 00101           | Shape                      |                            |                                       | 1 - 5                 |                                 |                                  |
| A. Takii                                   | Grand Perfection | Y               | е                          | 3.0                        | 3.8                                   | 4.5                   | 3.5                             | 4.0                              |
| Bejo                                       | Dawson           | Y               | d                          | 3.0                        | 4.0                                   | 3.8                   | 4.0                             | 3.3                              |
| -                                          | Delgado          | Y               | d                          | 3.8                        | 4.0                                   | 3.5                   | 4.5                             | 3.5                              |
|                                            | Hamilton         | Y               | d                          | 4.0                        | 4.0                                   | 5.0                   | 5.0                             | 4.0                              |
|                                            | Legend           | Y               | d                          | 3.3                        | 3.8                                   | 4.0                   | 4.0                             | 3.3                              |
|                                            | Sedona           | Y               | d                          | 3.3                        | 4.0                                   | 4.0                   | 4.0                             | 3.5                              |
| Crookham                                   | Avalon           | Y               | С                          | 2.0                        | 2.5                                   | 1.5                   | 2.5                             | 4.0                              |
|                                            | Scout            | Y               | d                          | 1.5                        | 2.5                                   | 2.3                   | 2.0                             | 3.8                              |
|                                            | Morpheus         | Y               | d                          | 2.3                        | 3.5                                   | 3.3                   | 3.5                             | 4.8                              |
|                                            | Advantage        | Y               | е                          | 2.8                        | 3.5                                   | 3.0                   | 3.5                             | 3.5                              |
|                                            | OLYX08-640       | Y               | d                          | 4.0                        | 4.0                                   | 5.0                   | 5.0                             | 4.0                              |
|                                            | Red Devil        | R               | d                          | 3.0                        | 3.4                                   | 3.0                   | 3.0                             | 2.8                              |
|                                            | Red Beret        | R               | d                          | 3.0                        | 3.0                                   | 3.0                   | 3.5                             | 2.8                              |
|                                            | Purple Haze      | R               | d                          | 3.0                        | 3.0                                   | 3.5                   | 4.0                             | 3.0                              |
|                                            | White Cloud      | W               | d                          | 3.8                        | 4.0                                   | 3.0                   | 3.0                             | 3.0                              |
| Enza Zaden                                 | Caoba            | Y               | d                          | 4.0                        | 4.0                                   | 4.5                   | 3.8                             | 3.5                              |
|                                            | 10043            | Y               | d                          | 3.3                        | 3.5                                   | 3.3                   | 3.8                             | 3.3                              |
|                                            | Monastrell       | R               | С                          | 4.0                        | 4.0                                   | 3.0                   | 3.0                             | 2.0                              |
|                                            | 10058            | R               | а                          | 3.0                        | 4.0                                   | 3.0                   | 2.0                             | 3.0                              |
| Hazera                                     | Rhino            | Y               | d                          | 3.5                        | 3.5                                   | 3.5                   | 4.0                             | 3.8                              |
| New Zealand Onion                          | TAS016           | R               | C                          | 3.0                        | 4.0                                   | 3.5                   | 4.0                             | 3.0                              |
|                                            | <b>TAS018</b>    | R               | С                          | 2.0                        | 4.0                                   | 4.0                   | 2.0                             | 3.0                              |
|                                            | TAS027           | R               | C                          | 3.0                        | 3.0                                   | 3.0                   | 2.0                             | 3.0                              |
|                                            | ROL221-222       | R               | d                          | 4.0                        | 4.0                                   | 4.0                   | 4.0                             | 3.0                              |
|                                            | ROM223-224       | R               | C                          | 4.0                        | 2.0                                   | 3.0                   | 4.0                             | 2.5                              |
| Nunhems                                    | Annillo          | Y               | d                          | 3.5                        | 3.8                                   | 4.3                   | 4.3                             | 4.3                              |
|                                            | Arcero           | Ý               | d                          | 3.5                        | 4.5                                   | 4.0                   | 3.5                             | 4.0                              |
|                                            | Granero          | Ý               | d                          | 3.3                        | 4.0                                   | 4.1                   | 3.5                             | 3.3                              |
|                                            | Ranchero         | Ý               | ď                          | 3.0                        | 3.0                                   | 3.0                   | 2.8                             | 3.5                              |
|                                            | Joaquin          | Ŷ               | e                          | 3.5                        | 4.0                                   | 3.8                   | 4.3                             | 4.0                              |
|                                            | Montero          | Ý               | d                          | 3.0                        | 3.0                                   | 3.0                   | 3.3                             | 3.6                              |
|                                            | Oloroso          | Ŷ               | d                          | 4.0                        | 4.0                                   | 4.0                   | 4.0                             | 4.3                              |
|                                            | Pandero          | Ŷ               | d                          | 3.8                        | 4.0                                   | 4.5                   | 4.5                             | 3.5                              |
|                                            | Vaquero          | Ý               | d                          | 3.0                        | 4.0                                   | 3.5                   | 3.5                             | 3.8                              |
|                                            | Salsa            | R               | d                          | 3.0                        | 3.0                                   | 3.0                   | 3.0                             | 3.0                              |
|                                            | Marenge          | R               | d                          | 4.0                        | 3.5                                   | 3.0                   | 3.0                             | 2.0                              |
| Sakata                                     | Aruba            | Ŷ               | <u>d</u>                   | 2.0                        | 2.8                                   | 2.5                   | 3.0                             | 4.4                              |
| Cunata                                     | Lasso            | Ý               | d                          | 2.0                        | 3.0                                   | 2.0                   | 2.5                             | 4.5                              |
|                                            | Dulce Reina      | Ý               | e                          | 2.0                        | 3.0                                   | 3.0                   | 3.3                             | 3.8                              |
|                                            | Yukon            | Ý               | e                          | 2.5                        | 3.0                                   | 2.5                   | 3.5                             | 4.3                              |
| Seminis                                    | Barbaro          | Ý               | 0                          | 3.0                        | 4.0                                   | 3.8                   | 4.0                             | 4.0                              |
| Commis                                     | Swale            | Ý               | d                          | 2.5                        | 3.3                                   | 3.5                   | 3.5                             | 4.0                              |
|                                            | Tucannon         | Ý               | d                          | 4.0                        | 2.0                                   | 4.0                   | 4.0                             | 4.5                              |
|                                            | 16000            | Ý               | e                          | 2.5                        | 3.8                                   | 3.8                   | 3.3                             | 4.5                              |
|                                            | SV4058           | Ŵ               | d                          | 2.5                        | 3.5                                   | 3.3                   | 3.5                             | 4.0                              |
|                                            | SV6646           | Ŷ               | d                          | 3.0                        | 4.0                                   | 4.0                   | 4.0                             | 3.5                              |
|                                            | SV6672           | Ý               | f                          | 3.0                        | 3.0                                   | 3.0                   | 3.0                             | 3.5                              |
|                                            | SV4643NT         | R               | d                          | 3.0<br>4.0                 | 4.0                                   | 3.0<br>4.3            | 3.0<br>4.0                      | 3.0                              |
| D. Palmer                                  | Saffron          | <u>- к</u><br>Ү | u<br>f                     | 4.0                        | 2.8                                   | <u>4.3</u><br>5.0     | 5.0                             | 3.0                              |
| D. Faillei                                 | Diamond Swan     | W               |                            |                            |                                       |                       |                                 |                                  |
|                                            |                  |                 | d                          | 2.5                        | 4.0<br>3.0                            | 4.0                   | 4.0                             | 3.0<br>4.0                       |
| Average                                    | Cherry Mountain  | R               | d                          | 2.0                        |                                       | 2.0                   | 4.0                             |                                  |
| Average                                    |                  |                 | d                          | 3.1                        | 3.5                                   | 3.5                   | 3.6                             | 3.5                              |
| LSD (0.05)<br><sup>a</sup> Bulb shape: see |                  |                 | 0.9 <sup>c</sup>           | 0.6                        | NS<br>NS ned in Table '               | 0.6                   | 0.7°                            | 0.7                              |

Table 13. Subjective evaluations of onion appearance and firmness by variety on January 16, 2018, Malheur Experiment Station, Oregon State University, Ontario, OR.

<sup>a</sup>Bulb shape: see Fig. 4. <sup>b</sup>Subjective ratings are described in Table 12. <sup>c</sup>LSD (0.10)

|                 |                  | All bulbs Complete scales Incomplete scales Total |                 |              |       |                 |              |       |       |                 | Dis          | eased bu | lbs             |              |       |      |
|-----------------|------------------|---------------------------------------------------|-----------------|--------------|-------|-----------------|--------------|-------|-------|-----------------|--------------|----------|-----------------|--------------|-------|------|
|                 |                  |                                                   | Comp            | lete sc      | ales  | Incom           | olete sc     | ales  | Total | Comp            | lete sc      | ales     | Incomp          | olete so     | ales  | Tota |
| Seed company    | Variety          | Bulb<br>color                                     | no dry<br>scale | dry<br>scale | total | no dry<br>scale | dry<br>scale | total |       | no dry<br>scale | dry<br>scale | total    | no dry<br>scale | dry<br>scale | total |      |
| · · · · · ·     |                  |                                                   |                 |              |       |                 |              |       |       | %               |              |          |                 |              |       |      |
| A. Takii        | Grand Perfection | <u> </u>                                          | 68.4            | 0.4          | 68.8  | 26.8            | 4.4          | 31.2  | 100   | 0.0             | 0.0          | 0.0      | 0.0             | 1.2          | 1.2   | 1.2  |
| Bejo            | Dawson           | Y                                                 | 43.6            | 0.0          | 43.6  | 46.8            | 9.6          | 56.4  | 100   | 0.0             | 0.0          | 0.0      | 0.0             | 0.8          | 0.8   | 0.8  |
|                 | Delgado          | Y                                                 | 54.8            | 0.0          | 54.8  | 38.0            | 7.2          | 45.2  | 100   | 0.0             | 0.0          | 0.0      | 0.0             | 0.0          | 0.0   | 0.0  |
|                 | Hamilton         | Y                                                 | 49.2            | 1.2          | 50.4  | 32.0            | 17.6         | 49.6  | 100   | 0.0             | 0.0          | 0.0      | 0.8             | 0.8          | 1.6   | 1.6  |
|                 | Legend           | Y                                                 | 33.2            | 0.4          | 33.6  | 54.8            | 11.6         | 66.4  | 100   | 0.4             | 0.0          | 0.4      | 0.0             | 1.2          | 1.2   | 1.6  |
|                 | Sedona           | Y                                                 | 66.0            | 0.4          | 66.4  | 23.6            | 10.0         | 33.6  | 100   | 0.0             | 0.0          | 0.0      | 0.4             | 0.0          | 0.4   | 0.4  |
| Crookham        | Avalon           | Y                                                 | 57.4            | 0.4          | 57.8  | 35.6            | 6.6          | 42.2  | 100   | 0.0             | 0.0          | 0.0      | 0.0             | 0.0          | 0.0   | 0.0  |
|                 | Scout            | Y                                                 | 45.5            | 1.2          | 46.7  | 43.7            | 9.6          | 53.3  | 100   | 0.0             | 0.0          | 0.0      | 0.8             | 0.0          | 0.8   | 0.8  |
|                 | Morpheus         | Y                                                 | 60.0            | 0.4          | 60.4  | 29.6            | 10.0         | 39.6  | 100   | 2.0             | 0.0          | 2.0      | 0.0             | 0.0          | 0.0   | 2.0  |
|                 | Advantage        | Y                                                 | 86.4            | 0.0          | 86.4  | 11.5            | 2.1          | 13.6  | 100   | 1.8             | 0.0          | 1.8      | 0.0             | 0.0          | 0.0   | 1.8  |
|                 | OLYX08-640       | Y                                                 | 33.9            | 0.4          | 34.3  | 45.6            | 20.0         | 65.7  | 100   | 0.0             | 0.0          | 0.0      | 1.6             | 0.0          | 1.6   | 1.6  |
|                 | Red Devil        | R                                                 | 22.8            | 0.4          | 23.2  | 56.0            | 20.8         | 76.8  | 100   | 0.0             | 0.0          | 0.0      | 1.2             | 0.0          | 1.2   | 1.2  |
|                 | Red Beret        | R                                                 | 39.2            | 0.0          | 39.2  | 46.4            | 14.4         | 60.8  | 100   | 0.0             | 0.0          | 0.0      | 0.0             | 1.2          | 1.2   | 1.2  |
|                 | Purple Haze      | R                                                 | 21.2            | 0.0          | 21.2  | 65.6            | 13.2         | 78.8  | 100   | 0.4             | 0.0          | 0.4      | 0.0             | 2.0          | 2.0   | 2.4  |
|                 | White Cloud      | W                                                 | 51.1            | 0.4          | 51.5  | 42.5            | 6.0          | 48.5  | 100   | 0.0             | 0.0          | 0.0      | 0.4             | 0.8          | 1.2   | 1.2  |
| Enza Zaden      | Caoba            | Y                                                 | 54.4            | 0.8          | 55.2  | 37.6            | 7.2          | 44.8  | 100   | 0.0             | 0.0          | 0.0      | 0.0             | 0.0          | 0.0   | 0.0  |
|                 | 10043            | Y                                                 | 87.6            | 0.0          | 87.6  | 11.2            | 1.2          | 12.4  | 100   | 0.0             | 0.0          | 0.0      | 0.0             | 0.0          | 0.0   | 0.0  |
|                 | Monastrell       | R                                                 | 11.6            | 0.4          | 12.0  | 77.6            | 10.4         | 88.0  | 100   | 0.8             | 0.0          | 0.8      | 0.0             | 0.0          | 0.0   | 0.8  |
|                 | 10058            | R                                                 | 7.2             | 0.0          | 7.2   | 90.0            | 2.8          | 92.8  | 100   | 0.0             | 0.0          | 0.0      | 0.0             | 0.0          | 0.0   | 0.0  |
| Hazera          | Rhino            | Y                                                 | 27.6            | 0.0          | 27.6  | 52.0            | 20.4         | 72.4  | 100   | 0.0             | 0.0          | 0.0      | 0.0             | 0.4          | 0.4   | 0.4  |
| . Zealand Onion | TAS016           | R                                                 | 46.4            | 0.0          | 46.4  | 41.6            | 12.0         | 53.6  | 100   | 0.0             | 0.0          | 0.0      | 0.4             | 3.6          | 4.0   | 4.0  |
|                 | TAS018           | R                                                 | 19.7            | 0.0          | 19.7  | 77.1            | 3.2          | 80.3  | 100   | 0.0             | 0.0          | 0.0      | 0.4             | 0.8          | 1.2   | 1.2  |
|                 | TAS027           | R                                                 | 16.8            | 0.0          | 16.8  | 73.2            | 10.0         | 83.2  | 100   | 0.0             | 0.0          | 0.0      | 0.4             | 1.2          | 1.6   | 1.6  |
|                 | ROL221-222       | R                                                 | 34.8            | 0.0          | 34.8  | 38.4            | 26.8         | 65.2  | 100   | 0.0             | 0.0          | 0.0      | 0.0             | 11.2         | 11.2  | 11.  |
|                 | ROM223-224       | R                                                 | 39.5            | 0.0          | 39.5  | 35.0            | 25.5         | 60.5  | 100   | 0.0             | 0.0          | 0.0      | 0.0             | 12.0         | 12.0  | 12.  |

Table 14. Internal defects of full-season experimental and commercial onion varieties evaluated out of storage in January 2018, Malheur Experiment Station, Oregon State University, Ontario, OR. Continued on next page.

|                 |                 |               |                 |              | All b | oulbs           |              |       |       |                 |              | Dis   | eased bu        | lbs          |       |       |
|-----------------|-----------------|---------------|-----------------|--------------|-------|-----------------|--------------|-------|-------|-----------------|--------------|-------|-----------------|--------------|-------|-------|
|                 |                 |               | Comp            | lete sc      | ales  | Incom           | plete so     | ales  | Total | Comp            | lete sca     | ales  | Incom           | plete sc     | ales  | Total |
| Seed<br>company | Variety         | Bulb<br>color | no dry<br>scale | dry<br>scale | total | no dry<br>scale | dry<br>scale | total |       | no dry<br>scale | dry<br>scale | total | no dry<br>scale | dry<br>scale | total |       |
|                 |                 |               |                 |              |       |                 |              |       |       | %               |              |       |                 |              |       |       |
| Nunhems         | Annillo         | Y             | 18.0            | 0.0          | 18.0  | 54.4            | 27.6         | 82.0  | 100   | 0.8             | 0.0          | 0.8   | 1.2             | 1.6          | 2.8   | 3.6   |
|                 | Arcero          | Y             | 37.6            | 0.8          | 38.4  | 38.4            | 23.2         | 61.6  | 100   | 0.8             | 0.0          | 0.8   | 0.0             | 0.8          | 0.8   | 1.6   |
|                 | Granero         | Y             | 42.4            | 0.4          | 42.8  | 45.6            | 11.6         | 57.2  | 100   | 0.4             | 0.0          | 0.4   | 0.8             | 0.0          | 0.8   | 1.2   |
|                 | Ranchero        | Y             | 64.0            | 1.6          | 65.6  | 28.0            | 6.4          | 34.4  | 100   | 0.0             | 0.0          | 0.0   | 0.0             | 0.4          | 0.4   | 0.4   |
|                 | Joaquin         | Y             | 66.8            | 1.7          | 68.5  | 25.1            | 6.4          | 31.5  | 100   | 0.0             | 0.0          | 0.0   | 0.4             | 0.4          | 0.8   | 0.8   |
|                 | Montero         | Y             | 18.8            | 0.8          | 19.6  | 46.8            | 33.6         | 80.4  | 100   | 0.0             | 0.0          | 0.0   | 0.4             | 1.6          | 2.0   | 2.0   |
|                 | Oloroso         | Y             | 34.4            | 0.0          | 34.4  | 47.2            | 18.4         | 65.6  | 100   | 0.0             | 0.0          | 0.0   | 0.4             | 2.4          | 2.8   | 2.8   |
|                 | Pandero         | Y             | 40.0            | 0.4          | 40.4  | 39.2            | 20.4         | 59.6  | 100   | 0.0             | 0.0          | 0.0   | 0.4             | 0.0          | 0.4   | 0.4   |
|                 | Vaquero         | Y             | 36.0            | 4.0          | 40.0  | 48.0            | 12.0         | 60.0  | 100   | 0.0             | 0.0          | 0.0   | 0.0             | 0.4          | 0.4   | 0.4   |
|                 | Salsa           | R             | 18.8            | 0.0          | 18.8  | 69.6            | 11.6         | 81.2  | 100   | 0.4             | 0.0          | 0.4   | 0.4             | 3.6          | 4.0   | 4.4   |
|                 | Marenge         | R             | 3.2             | 0.0          | 3.2   | 73.6            | 23.2         | 96.8  | 100   | 0.4             | 0.0          | 0.4   | 2.4             | 1.2          | 3.6   | 4.0   |
| Sakata          | Aruba           | Y             | 43.6            | 0.8          | 44.4  | 34.0            | 21.6         | 55.6  | 100   | 0.4             | 0.0          | 0.4   | 0.0             | 0.4          | 0.4   | 0.8   |
|                 | Lasso           | Y             | 48.8            | 0.0          | 48.8  | 30.8            | 20.4         | 51.2  | 100   | 0.4             | 0.0          | 0.4   | 0.0             | 0.0          | 0.0   | 0.4   |
|                 | Dulce Reina     | Y             | 66.0            | 0.0          | 66.0  | 28.0            | 6.0          | 34.0  | 100   | 0.0             | 0.0          | 0.0   | 0.4             | 0.4          | 0.8   | 0.8   |
|                 | Yukon           | Y             | 56.0            | 0.0          | 56.0  | 31.6            | 12.4         | 44.0  | 100   | 5.6             | 0.0          | 5.6   | 0.0             | 0.4          | 0.4   | 6.0   |
| Seminis         | Barbaro         | Y             | 56.4            | 1.2          | 57.6  | 36.0            | 6.4          | 42.4  | 100   | 0.0             | 0.0          | 0.0   | 1.2             | 0.8          | 2.0   | 2.0   |
|                 | Swale           | Y             | 56.0            | 0.4          | 56.4  | 34.4            | 9.2          | 43.6  | 100   | 0.4             | 0.0          | 0.4   | 0.0             | 0.0          | 0.0   | 0.4   |
|                 | Tucannon        | Y             | 62.4            | 1.6          | 64.0  | 24.4            | 11.6         | 36.0  | 100   | 0.8             | 0.0          | 0.8   | 0.0             | 0.8          | 0.8   | 1.6   |
|                 | 16000           | Y             | 60.0            | 0.4          | 60.4  | 27.6            | 12.0         | 39.6  | 100   | 0.0             | 0.0          | 0.0   | 0.0             | 0.4          | 0.4   | 0.4   |
|                 | SV4058          | W             | 55.6            | 0.4          | 56.0  | 32.0            | 12.0         | 44.0  | 100   | 2.8             | 0.0          | 2.8   | 1.2             | 5.2          | 6.4   | 9.2   |
|                 | SV6646          | Y             | 55.8            | 0.0          | 55.8  | 35.3            | 8.9          | 44.2  | 100   | 0.4             | 0.0          | 0.4   | 0.4             | 0.0          | 0.4   | 0.8   |
|                 | SV6672          | Y             | 56.0            | 0.0          | 56.0  | 36.0            | 8.0          | 44.0  | 100   | 0.0             | 0.0          | 0.0   | 0.4             | 0.0          | 0.4   | 0.4   |
|                 | SV4643NT        | R             | 10.4            | 0.0          | 10.4  | 76.0            | 13.6         | 89.6  | 100   | 0.0             | 0.0          | 0.0   | 1.2             | 1.6          | 2.8   | 2.8   |
| D. Palmer       | Saffron         | Y             | 29.2            | 0.4          | 29.6  | 38.0            | 32.4         | 70.4  | 100   | 0.0             | 0.0          | 0.0   | 0.4             | 0.4          | 0.8   | 0.8   |
|                 | Diamond Swan    | Ŵ             | 63.2            | 1.2          | 64.4  | 29.2            | 6.4          | 35.6  | 100   | 0.0             | 0.0          | 0.0   | 0.0             | 1.6          | 1.6   | 1.6   |
|                 | Cherry Mountain | R             | 20.4            | 0.8          | 21.2  | 47.2            | 31.6         | 78.8  | 100   | 0.4             | 0.0          | 0.4   | 0.0             | 0.8          | 0.8   | 1.2   |
|                 | average         |               | 43.1            | 0.5          | 43.6  | 42.9            | 13.5         | 56.4  | 100   | 0.4             | 0.0          | 0.4   | 0.4             | 1.2          | 1.6   | 2.0   |
| LSD (0.05)      | avolago         |               | 17.5            | 1.6          | 17.7  | 16.0            | 11.6         | 17.7  | 100   | NS              | NS           | NS    | 1.2             | 2.4          | 2.4   | 3.4   |
| LOD (0.05)      |                 |               | 17.5            | 1.0          | 17.7  | 10.0            | 11.0         | 17.7  |       | IN2             | 112          | 112   | 1.2             | 2.4          | ∠.4   | 3     |

Table 14. (Continued) Internal defects of full-season experimental and commercial onion varieties evaluated out of storage in January 2018, Malheur Experiment Station, Oregon State University, Ontario, OR.

Table 15. Internal decomposition by disease type of full-season experimental and commercial onion varieties evaluated out of storage in January 2018, Malheur Experiment Station, Oregon State University, Ontario, OR. Continued on next page.

| Seed company      | Variety          | Bulb color | Bacterial rot | Fusarium proliferatum | Neck rot | Black mold |
|-------------------|------------------|------------|---------------|-----------------------|----------|------------|
|                   |                  |            |               | %                     |          |            |
| A. Takii          | Grand Perfection | Y          | 0.4           | 0.0                   | 0.0      | 0.8        |
| Bejo              | Dawson           | Y          | 0.0           | 0.0                   | 0.0      | 0.8        |
|                   | Delgado          | Y          | 0.0           | 0.0                   | 0.0      | 0.0        |
|                   | Hamilton         | Y          | 0.0           | 0.4                   | 0.0      | 1.2        |
|                   | Legend           | Y          | 0.4           | 0.0                   | 0.0      | 1.2        |
|                   | Sedona           | Y          | 0.0           | 0.4                   | 0.0      | 0.0        |
| Crookham          | Avalon           | Y          | 0.0           | 0.0                   | 0.0      | 0.0        |
|                   | Scout            | Y          | 0.0           | 0.0                   | 0.8      | 0.0        |
|                   | Morpheus         | Y          | 0.0           | 0.0                   | 0.8      | 1.2        |
|                   | Advantage        | Y          | 0.0           | 0.0                   | 1.4      | 0.4        |
|                   | OLYX08-640       | Y          | 0.0           | 0.4                   | 0.4      | 0.8        |
|                   | Red Devil        | R          | 0.0           | 0.8                   | 0.0      | 0.4        |
|                   | Red Beret        | R          | 0.0           | 0.0                   | 0.0      | 1.2        |
|                   | Purple Haze      | R          | 0.8           | 0.4                   | 0.0      | 1.2        |
|                   | White Cloud      | W          | 0.4           | 0.4                   | 0.0      | 0.4        |
| Enza Zaden        | Caoba            | Y          | 0.0           | 0.0                   | 0.0      | 0.0        |
|                   | 10043            | Y          | 0.0           | 0.0                   | 0.0      | 0.0        |
|                   | Monastrell       | R          | 0.4           | 0.0                   | 0.4      | 0.0        |
|                   | 10058            | R          | 0.0           | 0.0                   | 0.0      | 0.0        |
| Hazera            | Rhino            | Y          | 0.4           | 0.0                   | 0.0      | 0.0        |
| New Zealand Onion | TAS016           | R          | 0.0           | 0.0                   | 0.0      | 4.0        |
|                   | TAS018           | R          | 0.4           | 0.0                   | 0.0      | 0.8        |
|                   | TAS027           | R          | 0.8           | 0.0                   | 0.4      | 0.4        |
|                   | ROL221-222       | R          | 0.0           | 0.0                   | 0.0      | 11.2       |
|                   | ROM223-224       | R          | 1.5           | 0.0                   | 0.0      | 10.5       |

| Seed company | Variety         | Bulb color | Bacterial rot | Fusarium proliferatum | Neck rot | Black mold |
|--------------|-----------------|------------|---------------|-----------------------|----------|------------|
|              |                 |            |               | %                     |          |            |
| Nunhems      | Annillo         | Y          | 0.4           | 0.8                   | 1.2      | 1.2        |
|              | Arcero          | Y          | 0.8           | 0.0                   | 0.0      | 0.8        |
|              | Granero         | Y          | 0.0           | 0.4                   | 0.4      | 0.4        |
|              | Ranchero        | Y          | 0.0           | 0.4                   | 0.0      | 0.0        |
|              | Joaquin         | Y          | 0.0           | 0.0                   | 0.4      | 0.4        |
|              | Montero         | Y          | 0.4           | 0.0                   | 0.0      | 1.6        |
|              | Oloroso         | Y          | 0.0           | 0.4                   | 0.0      | 2.4        |
|              | Pandero         | Y          | 0.0           | 0.0                   | 0.4      | 0.0        |
|              | Vaquero         | Y          | 0.0           | 0.0                   | 0.0      | 0.4        |
|              | Salsa           | R          | 0.4           | 0.0                   | 0.4      | 3.6        |
|              | Marenge         | R          | 0.0           | 0.0                   | 0.8      | 3.2        |
| Sakata       | Aruba           | Y          | 0.0           | 0.4                   | 0.4      | 0.0        |
|              | Lasso           | Y          | 0.4           | 0.0                   | 0.0      | 0.0        |
|              | Dulce Reina     | Y          | 0.4           | 0.0                   | 0.0      | 0.4        |
|              | Yukon           | Y          | 5.6           | 0.4                   | 0.0      | 0.0        |
| Seminis      | Barbaro         | Y          | 1.6           | 0.0                   | 0.0      | 0.4        |
|              | Swale           | Y          | 0.4           | 0.0                   | 0.0      | 0.0        |
|              | Tucannon        | Y          | 1.2           | 0.0                   | 0.0      | 0.4        |
|              | 16000           | Y          | 0.0           | 0.4                   | 0.0      | 0.0        |
|              | SV4058          | W          | 8.4           | 0.8                   | 0.0      | 0.0        |
|              | SV6646          | Y          | 0.8           | 0.0                   | 0.0      | 0.0        |
|              | SV6672          | Y          | 0.4           | 0.0                   | 0.0      | 0.0        |
|              | SV4643NT        | R          | 0.4           | 0.0                   | 0.0      | 2.4        |
| D. Palmer    | Saffron         | Y          | 0.0           | 0.0                   | 0.0      | 0.8        |
|              | Diamond Swan    | W          | 1.2           | 0.0                   | 0.0      | 0.4        |
|              | Cherry Mountain | R          | 0.0           | 0.0                   | 0.4      | 0.8        |
|              | average         |            | 0.6           | 0.1                   | 0.2      | 1.1        |
| LSD (0.05)   | -               |            | 2.4           | NS                    | NS       | 2.1        |

Table 15. (Continued) Internal decomposition by disease type of full-season experimental and commercial onion varieties evaluated out of storage in January 2018, Malheur Experiment Station, Oregon State University, Ontario, OR.

# ONION PRODUCTION FROM TRANSPLANTS IN 2017

Clinton C. Shock, Erik B. G. Feibert, Alicia Rivera, and Lamont D. Saunders, Malheur Experiment Station, Oregon State University, Ontario, OR

Bob Simerly, McCain Foods, Fruitland, ID

## Introduction

Interest in an earlier start for onion harvest and marketing has led to interest in transplanting onions. In the Treasure Valley, onions are available out of the field from mid-August through October and then out of storage from October through March. An earlier harvest would extend the time when onions are available locally, which is important for onion processors. Onion varieties suitable for processing into onion rings must be highly single centered, produce large bulbs, and store well. Previous Treasure Valley research showed that when onions are grown from transplants, they can be harvested starting in July (Shock et al. 2004, 2007-2009, and 2011-2017). This trial evaluated eight onion varieties potentially suitable for processing grown from transplants in 2017. Six varieties were grown from transplants produced in a greenhouse at the Oregon State University Malheur Experiment Station (MES), in Ontario, Oregon and two varieties were grown from transplants produced in Arizona.

# **Materials and Methods**

Transplants were grown at MES in a heated greenhouse with minimum air temperatures during the day of 65°F and 45°F at night. Onion seed of varieties 'Salute' (Crookham Co., Caldwell, ID), 'Avalon' (Crookham Co.), 'Avenger' (Crookham Co.), 'Minister' (Seminis, Payette, ID), 'Chancellor' (Seminis), and 903S (New Zealand Onion) was planted in the greenhouse on January 27, 2017 in flats with a vacuum seeder at 72 seeds/flat. The seed was sown on a 1-inch layer of Sunshine general purpose potting mix. The seed was then covered with 1 inch of the potting mix. The trays were watered immediately after planting and were kept moist. Onion seedlings began emerging on February 6. Transplants were grown without supplemental light. Bare-rooted transplants of 'Montero' (Nunhems, Parma, ID) and SV0106NG (Seminis) were grown in Arizona during the winter of 2016-2017.

Onions were grown at MES on an Owyhee silt loam previously planted to wheat. In the fall of 2016, the wheat stubble was shredded and the field was irrigated. The field was then disked, moldboard plowed, and groundhogged. A soil analysis taken in the fall of 2016 showed a pH of 8.2, 3.7% organic matter, 4 ppm nitrogen (N) as nitrate, 3 ppm N as ammonium, 15 ppm phosphorus (P), 395 ppm potassium (K), 9 ppm sulfur (S), 3774 ppm calcium, 549 ppm magnesium, 208 ppm sodium, 0.6 ppm zinc (Zn), 17 ppm manganese (Mn), 0.4 ppm copper (Cu), 47 ppm iron, and 0.5 ppm boron (B). Based on the soil analysis, 55 lb of P/acre, 200 lb of S/acre, 1 lb Cu/acre, 9 lb Zn/acre, and 1 lb of B/acre were broadcast before plowing. In addition to the fertilizer, 10 tons of composted cattle feedlot manure was broadcast before plowing. Based on an analysis of the manure, 196 lb of N/acre, 156 lb of P/acre, and 342 lb of K/acre were

added from the manure. After plowing, the field was fumigated with Vapam<sup>®</sup> at 15 gal/acre and bedded at 22 inches.

Drip tape was laid at 4-inch depth between pairs of onion beds before planting. The drip tape had emitters spaced 12 inches apart and an emitter flow rate of 0.22 gal/min/100 ft (Toro Aqua-Traxx, Toro Co., El Cajon, CA). The distance between the tape and the center of each double row of onions was 11 inches.

Varieties Salute, Avalon, Avenger, Minister, Chancellor and 903S were transplanted on April 5. Variety Montero was transplanted on April 17 and variety SV0106NG was transplanted on April 18. The onions were transplanted on four 22-inch beds in double rows 3 inches apart. The spacing between plants in each row was 4.8 inches, equivalent to 120,000 plants/acre. Plots of each variety were 20 ft long by 4 double rows wide. The experimental design was a randomized complete block with five replicates.

The onion crop was managed to avoid yield reductions from weeds, pests, diseases, water stress, and nutrient deficiencies. Prowl<sup>®</sup> H<sub>2</sub>O at 2 pt/acre and Poast<sup>®</sup> at 2 pt/acre were broadcast for weed control on April 25. Thrips were controlled by ground application using the following insecticides: Aza-Direct<sup>®</sup> at 12 oz/acre and Movento<sup>®</sup> at 5 oz/acre on May 11 and 23, Radiant<sup>®</sup> at 10 oz/acre on June 2. Thrips were controlled by aerial application using the following insecticides: Radiant at 10 oz/acre on July 1, 8, and 30, and Lannate<sup>®</sup> at 3 pt/acre on July 17 and 23.

A total of 90 lb N/acre was applied in 20-lb increments during the season as urea ammonium nitrate solution (URAN) injected through the drip tape. Five pounds of P/acre, 11 lb of K/acre, and 0.5 lb of Mn/acre were applied on May 23 through the drip tape based on root tissue and soil solution analyses.

Onions were irrigated automatically to maintain the soil water tension (SWT) in the onion root zone below 20 cb (Fig. 1, Shock et al. 2000). Soil water tension was measured with eight granular matrix sensors (GMS, Watermark Soil Moisture Sensors Model 200SS, Irrometer Co. Inc., Riverside, CA) installed at 8-inch depth in the center of the double row. Sensors had been calibrated to SWT (Shock et al. 1998). The GMS were connected to the datalogger via multiplexers (AM 16/32, Campbell Scientific, Logan, UT). The datalogger (CR1000, Campbell Scientific) read the sensors and recorded the SWT every hour. The datalogger automatically made irrigation decisions every 12 hours. The field was irrigated if the average SWT of the eight sensors was 20 cb or higher. The irrigations were controlled by the datalogger using a controller (SDM CD16AC, Campbell Scientific) connected to a solenoid valve. Irrigation durations were 8 hours, 19 min to apply 0.48 inch of water. The water supply was well water maintained at a constant water pressure of 35 psi. The pressure in the drip lines was maintained at 10 psi by a pressure-regulating valve. The automated irrigation system was started on April 19 and terminated on August 3.

Bolted onions were counted in each plot on July 27. On July 20, 27, and August 3, bulbs from 6 ft of the middle 2 double rows in each plot were topped and bagged. Variety Avenger started maturing earlier than the other varieties and harvest began 1 week earlier. Decomposing bulbs were not bagged. At each harvest, onions in each plot were rated visually for the percentage of tops that were down and the percent dry leaves. Following each harvest the onions were graded. Bulbs were separated according to quality: bulbs without blemishes (No. 1s), split bulbs (No. 2s), bulbs infected with neck rot (*Botrytis allii*) in the neck or side, plate rot (*Fusarium oxysporum*),

or black mold (*Aspergillus niger*). The No. 1 bulbs were graded according to diameter: small ( $<2\frac{1}{4}$  inches), medium ( $2\frac{1}{4}$ -3 inches), jumbo (3-4 inches), colossal (4- $4\frac{1}{4}$  inches), and supercolossal ( $>4\frac{1}{4}$  inches). Bulb counts per 50 lb of supercolossal onions were calculated for each plot of every variety by weighing and counting all supercolossal bulbs during grading.

After grading, a sample of approximately 100 No. 1 jumbo bulbs of each variety was placed in crates and stored in a shed at ambient temperature for 2 weeks. After 2 weeks the samples were evaluated for the number of sprouted or decomposed bulbs.

Onion bulbs from all harvests were rated for single centers. Twenty-five onions ranging in diameter from  $3\frac{1}{2}$  to  $4\frac{1}{4}$  inches from each plot were rated. The onions were cut equatorially through the bulb middle and separated into single-centered and multiple-centered bulbs. The multiple-centered bulbs had the long axis of the inside diameter of the first single ring measured. These multiple-centered onions were ranked according to the diameter of the first single ring: small multiple-centered onions had diameters under  $1\frac{1}{2}$  inch, medium multiple-centered onions had diameters from  $1\frac{1}{2}$  to  $2\frac{1}{4}$  inches, and large multiple-centered onions had diameters over  $2\frac{1}{4}$  inches. Onions were considered "functionally single centered" for processing if they were single centered or had a small multiple center.

Variety differences were compared using repeated measures analysis of variance. Means separation was determined using a protected Fisher's least significant difference test at the 5% probability level, LSD (0.05).

# **Results and Discussion**

#### July 13 Harvest - Avenger

Marketable yield on July 13 for variety Avenger averaged 1076 cwt/acre (Table 1). The percentage of functionally single-centered bulbs averaged 86.4% (Table 2). The percentage of tops down at harvest averaged 99% and bulb decomposition or sprouting after 2 weeks of storage averaged 2% (Table 3).

#### July 20 Harvest

Marketable yield on July 20 averaged 975 cwt/acre and ranged from 537 cwt/acre for 903S to 1172 cwt/acre for Minister (Table 1). The percentage of functionally single-centered bulbs averaged 73.5% and ranged from 46% for 903S to 98.4% for Avalon (Table 2). The percentage of tops down at harvest averaged 57% and ranged from 22% for Montero to 100% for Avenger (Table 3). Bulb decomposition or sprouting after 2 weeks of storage averaged 5% and ranged from 1.3% for 903S to 7.5% for Chancellor. Bolting averaged 1% and ranged from 0% for Avenger and Minister to 4.3% for Avalon (Table 1).

#### July 27 Harvest

Marketable yield on July 27 averaged 1090 cwt/acre and ranged from 615 cwt/acre for 903S to 1314 cwt/acre for Minister (Table 1). The percentage of functionally single-centered bulbs averaged 70.9% and ranged from 44% for 903S to 94% for Avalon (Table 2). The percentage of tops down at harvest averaged 79% and ranged from 64% for Salute to 100% for Avenger (Table 3). Bulb decomposition or sprouting after 2 weeks of storage averaged 3% and ranged from 0.3% for 903S to 15% for Avalon.

#### August 3 Harvest

Marketable yield on August 3 averaged 1161 cwt/acre and ranged from 593 cwt/acre for 903S to 1385 cwt/acre for Minister (Table 1). The percentage of functionally single-centered bulbs averaged 61% and ranged from 35% for SV0106NG to 93% for Avalon (Table 2). The percentage of tops down at harvest averaged 85% and ranged from 74% for Chancellor to 98% for Minister (Table 3). Bulb decomposition or sprouting after 2 weeks of storage averaged 1.1% and ranged from 0% for Minister and 903S to 3% for Salute.

#### Overall

In 2017, the accumulated number of growing degree-days was higher than the 24-year average, but was the lowest of the years 2014-2017 (Table 4). For comparison, performance data for varieties Avalon and Montero, which were in the transplant trials in 2014-2017 is presented in Table 5.

### Acknowledgements

This project was funded by McCain Foods, cooperating onion seed companies, Oregon State University, the Malheur County Service District, and was supported by Formula Grant nos. 2017-31100-06041 and 2017-31200-06041 from the USDA National Institute of Food and Agriculture.

## References

- Shock, C.C., J. Barnum, and M. Seddigh. 1998. Calibration of Watermark soil moisture sensors for irrigation management. Irrigation Association. Proceedings of the International Irrigation Show. Pages 139-146. San Diego, CA.
- Shock, C.C., E.B.G. Feibert, and L.D. Saunders. 2000. Irrigation criteria for drip-irrigated onions. HortScience 35:63-66.
- Shock, C.C., E.B.G. Feibert, and L.D. Saunders. 2004. Onion production from transplants in the Treasure Valley. Oregon State University Agricultural Experiment Station Special Report 1055:47-52.
- Shock, C.C., E.B.G. Feibert, and L.D. Saunders. 2007. Onion production from transplants. Oregon State University Agricultural Experiment Station Special Report 1075:45-50.
- Shock, C.C., E.B.G. Feibert, and L.D. Saunders. 2008. Onion production from transplants grown in a low tunnel cold frame and in a greenhouse. Oregon State University Agricultural Experiment Station Special Report 1087:26-33.
- Shock, C.C., E.B.G. Feibert, L.D. Saunders, and B. Simerly. 2009. Onion production from transplants grown in a low tunnel cold frame and in a greenhouse. Oregon State University Agricultural Experiment Station Special Report 1094:32-40.
- Shock, C.C., E.B.G. Feibert, L.D. Saunders, and B. Simerly. 2011. Onion production from transplants. Malheur Experiment Station Annual Report 2010, Ext/CrS 132:42-51.

- Shock, C.C., E.B.G. Feibert, L.D. Saunders, and B. Simerly. 2012. Onion production from transplants. Malheur Experiment Station Annual Report 2011, Ext/CrS 141:24-31.
- Shock, C.C., E.B.G. Feibert, L.D. Saunders, and B. Simerly. 2013. Onion production from transplants and sets. Malheur Experiment Station Annual Report 2012, Ext/CrS 144:26-34.
- Shock, C.C., E.B.G. Feibert, L.D. Saunders, and B. Simerly. 2014. Onion production from transplants. Malheur Experiment Station Annual Report 2013, Ext/CrS 149:29-33.
- Shock, C.C., E.B.G. Feibert, L.D. Saunders, and B. Simerly. 2015. Onion production from transplants. Malheur Experiment Station Annual Report 2014, Ext/CrS 152:35-41.
- Shock, C.C., E.B.G. Feibert, L.D. Saunders, and B. Simerly. 2016. Onion production from transplants. Malheur Experiment Station Annual Report 2015, Ext/CrS 156:28-37.
- Shock, C.C., E.B.G. Feibert, A. Rivera, L.D. Saunders, and B. Simerly. 2017. Onion production from transplants. Malheur Experiment Station Annual Report 2016, Ext/CrS 157:32-42.

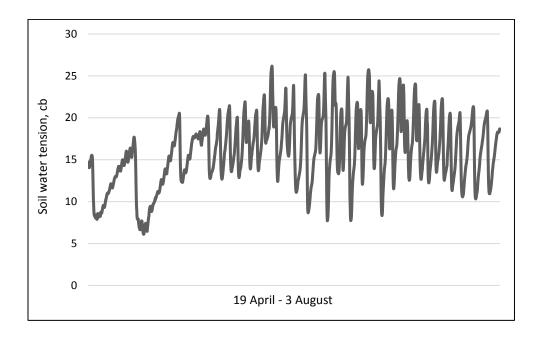



Figure 1. Soil water tension at 8-inch depth. Malheur Experiment Station, Oregon State University, Ontario, OR, 2017.

Table 1. Bulb yield and grade for seven yellow onion varieties and one red variety (903S) grown from transplants over three harvest dates, Malheur Experiment Station, Oregon State University, Ontario, OR, 2017. Continued on next page.

|                  |                      | Total |      |       | able yield |         |        |      |         | Total |           |           | Bulb counts |
|------------------|----------------------|-------|------|-------|------------|---------|--------|------|---------|-------|-----------|-----------|-------------|
| Company          | Variety              | yield |      |       |            |         |        |      | Doubles | rot   | Plate rot | Slime rot | >4¼ in      |
|                  |                      |       |      |       |            |         |        |      |         |       | %         |           | #/50 lb     |
|                  |                      |       |      |       |            | y 13 ha |        |      |         |       |           |           |             |
| Crookham         | Avenger <sup>a</sup> | 1079  | 1076 | 73.3  | 357.0      | 626.9   |        | 3.3  | 0.0     | 0.0   | 0.0       | 0.0       | 30.0        |
|                  |                      |       |      |       |            | y 20 ha |        |      |         |       |           |           |             |
| Crookham         | Avenger              | 1150  | 1139 | 87.1  | 464.2      | 579.0   | 8.2    | 1.9  | 0.0     | 0.9   | 0.0       | 0.9       | 33.3        |
|                  | Salute               | 1130  | 1128 | 151.0 | 498.8      | 468.3   | 10.2   | 0.3  | 0.0     | 0.2   | 0.0       | 0.2       | 31.3        |
|                  | Avalon               | 928   | 919  | 40.7  | 282.2      | 580.6   | 15.2   | 5.3  | 0.0     | 0.4   | 0.0       | 0.4       | 34.1        |
| Nunhems          | Montero              | 778   | 768  | 0.0   | 69.9       | 656.1   | 41.7   | 10.3 | 0.0     | 0.0   | 0.0       | 0.0       |             |
| Seminis          | Minister (2102)      | 1172  | 1163 | 128.9 | 565.0      | 465.1   | 4.3    | 1.6  | 0.0     | 0.6   | 0.0       | 0.6       | 34.1        |
|                  | Chancellor (9131)    | 953   | 949  | 25.2  | 276.8      | 637.6   | 9.2    | 0.6  | 1.7     | 0.2   | 0.0       | 0.2       | 34.6        |
|                  | SV0106NG             | 1151  | 1148 | 84.6  | 454.4      | 594.6   | 13.9   | 2.5  | 1.0     | 0.0   | 0.0       | 0.0       | 33.9        |
| N. Zealand Onion | 903S                 | 537   | 516  | 0.0   | 5.1        | 367.4   | 143.1  | 21.6 | 0.0     | 0.0   | 0.0       | 0.0       |             |
|                  | Average              | 950   | 941  | 61.5  | 307.5      | 538.5   | 33.9   | 6.0  | 0.4     | 0.2   | 0.0       | 0.2       | 33.6        |
|                  |                      |       |      |       | Jul        | y 27 ha | rvest  |      |         |       |           |           |             |
| Crookham         | Avenger              | 1233  | 1202 | 260.1 | 495.2      | 441.2   | 5.7    | 1.8  | 0.0     | 2.3   | 0.6       | 1.7       | 31.8        |
|                  | Salute               | 1287  | 1249 | 178.3 | 615.3      | 451.4   | 3.5    | 2.8  | 0.0     | 2.8   | 0.0       | 2.8       | 30.1        |
|                  | Avalon               | 1138  | 1111 | 46.7  | 528.5      | 523.7   | 11.9   | 4.8  | 0.0     | 1.8   | 0.0       | 1.8       | 33.1        |
| Nunhems          | Montero              | 857   | 841  | 0.0   | 109.8      | 707.5   | 24.1   | 9.7  | 0.0     | 0.7   | 0.0       | 0.7       |             |
| Seminis          | Minister (2102)      | 1314  | 1309 | 140.9 | 577.1      | 587.1   | 3.7    | 0.0  | 0.0     | 0.4   | 0.0       | 0.4       | 30.4        |
|                  | Chancellor (9131)    | 1094  | 1087 | 34.3  | 351.6      | 694.0   | 7.3    | 4.8  | 0.0     | 0.2   | 0.0       | 0.2       | 31.5        |
|                  | SV0106NG             | 1184  | 1176 | 86.1  | 496.7      | 577.9   | 15.8   | 3.0  | 0.0     | 0.5   | 0.0       | 0.5       | 31.6        |
| N. Zealand Onion | 903S                 | 615   | 602  | 0.0   | 1.5        | 450.4   | 149.9  | 11.9 | 0.0     | 0.2   | 0.0       | 0.2       |             |
|                  | Average              | 1070  | 1054 | 69.5  | 382.9      | 570.3   | 30.9   | 5.3  | 0.0     | 0.9   | 0.0       | 0.9       | 31.4        |
|                  |                      |       |      |       | Aug        | ust 3 h | arvest |      |         |       |           |           |             |
| Crookham         | Salute               | 1347  | 1330 | 412.0 | 560.1      | 354.8   | 3.5    | 0.0  | 0.0     | 1.2   | 0.1       | 1.1       | 30.2        |
|                  | Avalon               | 1291  | 1278 | 375.8 | 568.2      | 320.1   | 13.4   | 8.5  | 0.0     | 0.4   | 0.2       | 0.2       | 30.9        |
| Nunhems          | Montero              | 964   | 947  | 37.4  | 239.2      | 646.3   | 24.6   | 12.5 | 0.0     | 0.5   | 0.5       | 0.0       | 32.6        |
| Seminis          | Minister (2102)      | 1385  | 1352 | 357.8 | 565.8      | 424.6   | 3.7    | 0.0  | 0.0     | 1.8   | 0.0       | 1.8       | 30.4        |
|                  | Chancellor (9131)    | 1197  | 1178 | 112.1 | 476.9      | 578.5   | 10.4   | 4.2  | 0.0     | 0.6   | 0.0       | 0.6       | 31.1        |
|                  | SV0106NG             | 1352  | 1340 | 317.4 | 575.8      | 437.5   | 8.9    | 5.3  | 0.0     | 0.2   | 0.0       | 0.2       | 30.4        |
| N. Zealand Onion | 903S                 | 593   | 572  | 0.0   | 0.0        | 447.3   | 124.5  | 21.0 | 0.0     | 0.0   | 0.0       | 0.0       |             |
|                  | Average              | 1161  | 1142 | 230.3 | 426.6      | 458.4   | 27.0   | 7.4  | 0.0     | 0.7   | 0.1       | 0.6       | 30.9        |

<sup>a</sup> Data for Avenger were not included in the statistical analysis.

Table 1. (Continued). Bulb yield and grade for seven yellow onion varieties and one red variety (903S) grown from transplants over three harvest dates, Malheur Experiment Station, Oregon State University, Ontario, OR, 2017.

|                           |                      |                |       | Marketa | able yield | by grad | de      | _     |         | Total |           |           | Bulb             |
|---------------------------|----------------------|----------------|-------|---------|------------|---------|---------|-------|---------|-------|-----------|-----------|------------------|
| Company                   | Variety              | Total<br>vield | Total | >4¼ in  | 4-4¼ in    | 3-4 in  | 2¼-3 in | Small | Doubles | rot   | Plate rot | Slime rot | counts<br>>4¼ in |
|                           |                      | <b>,</b>       |       |         | cwt/a      | acre    |         |       |         |       | %         |           | #/50 lb          |
|                           |                      |                |       | Avera   | ge over h  | narvest | dates   |       |         |       |           |           |                  |
| Crookham                  | Avenger <sup>a</sup> | 1154           | 1139  | 140.2   | 438.8      | 549.1   | 10.8    | 2.4   | 0.0     | 1.1   | 0.5       | 0.6       | 30.7             |
|                           | Salute               | 1255           | 1236  | 247.1   | 558.1      | 424.8   | 5.7     | 1.0   | 0.0     | 1.4   | 0.1       | 1.3       | 31.2             |
|                           | Avalon               | 1119           | 1102  | 154.4   | 459.6      | 474.8   | 13.5    | 6.2   | 0.0     | 0.8   | 0.2       | 0.7       | 32.1             |
| Nunhems                   | Montero              | 867            | 852   | 12.5    | 139.6      | 670.0   | 30.1    | 10.9  | 0.0     | 0.4   | 0.2       | 0.2       | 32.6             |
| Seminis                   | Minister (2102)      | 1296           | 1275  | 209.2   | 569.3      | 492.3   | 3.9     | 0.5   | 0.0     | 0.9   | 0.2       | 0.7       | 30.8             |
|                           | Chancellor (9131)    | 1081           | 1071  | 57.2    | 368.4      | 636.7   | 9.0     | 3.2   | 1.7     | 0.3   | 0.1       | 0.3       | 32.2             |
|                           | SV0106NG             | 1229           | 1221  | 162.7   | 509.0      | 536.6   | 12.9    | 3.6   | 1.0     | 0.2   | 0.0       | 0.2       | 31.6             |
| N. Zealand Onion          | 903S                 | 582            | 563   | 0.0     | 2.2        | 421.7   | 139.2   | 18.2  | 0.0     | 0.1   | 0.0       | 0.1       |                  |
| LSD (0.05) Variety        |                      | 89.6           | 93.9  | 83.4    | 66.8       | 79.2    | 13.4    | 5.5   | NS      | NS    | NS        | NS        | NS               |
| LSD (0.05) Date           |                      | 34.5           | 34.3  | 26.5    | 44.9       | 38.7    | NS      | NS    | NS      | NS    | NS        | NS        | NS               |
| LSD (0.05) Variety x date |                      | 91.1           | 90.9  | 70.0    | 118.7      | 59.1    | NS      | NS    | NS      | NS    | NS        | NS        | NS               |

<sup>a</sup> Data for Avenger were not included in the statistical analysis.

Table 2. Single and multiple bulb centers, and bolting for seven yellow onion varieties and one red variety (903S) grown from transplants over three harvest dates, Malheur Experiment Station, Oregon State University, Ontario, OR, 2017.

| Company         Variety         Iarge medium small         Single center<br>functional* bullet         Bolters           July 13 harvest           Crookham         Avenger         0.0         13.6         45.6         86.4         40.8           July 20 harvest         July 20 harvest         July 20 harvest         7         7           Crookham         Avenger         0.0         17.8         54.5         82.2         27.7           Salute         8.8         37.6         44.0         53.6         9.6         86.4           Nunhems         Monister         3.2         33.6         57.6         63.2         5.6           Seminis         Minister         3.2         32.6         57.6         63.2         5.6           Nzealand Onion         9035         2.0         52.0         46.0         40.0         0.0           Average         2.3         24.1         40.0         73.5         33.6         0.0           Salute         10.4         39.2         37.6         50.4         12.8         1.7           Average         2.4         15.2         53.6         82.4         28.8         0.0           Salute         10.4                                                                                     |                    |            | •     |      |          |            |       |         |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|------------|-------|------|----------|------------|-------|---------|
| %           July 13 harvest           Crookham         Avenger         0.0         13.6         45.6         86.4         40.8           Crookham         Avenger         0.0         17.8         54.5         82.2         27.7           Salute         8.8         37.6         44.0         53.6         9.6           Nunherms         Montero         0.8         0.8         12.0         98.4         86.4           Nunherms         Montero         0.8         5.6         20.0         93.6         73.6           Seminis         Minister         3.2         33.6         57.6         63.2         5.6           Nzealand Onion         903S         2.0         52.0         46.0         46.0         0.0           Average         2.3         24.1         40.0         73.5         33.6           July 27 harvest           Crookham         Avenger         2.4         15.2         53.6         82.4         28.8         0.0           Salute         10.4         39.2         37.6         54.0         68.4         14.4         0.0           Salute         10.4         39.2 <t< td=""><td></td><td></td><td></td><td></td><td></td><td>Single ce</td><td>enter</td><td>_</td></t<>                                           |                    |            |       |      |          | Single ce  | enter | _       |
| July 13 harvest           Crookham         Avenger         0.0         13.6         45.6         86.4         40.8           Crookham         Avenger         0.0         17.8         54.5         82.2         27.7           Salute         8.8         37.6         44.0         53.6         9.6           Avalon         0.8         0.8         12.0         98.4         86.4           Nunherms         Montero         0.8         5.6         20.0         93.6         73.6           Seminis         Minister         3.2         33.6         57.6         63.2         5.6           Chancellor         0.0         8.0         38.0         92.0         54.1           SV0106NG         0.8         31.2         62.4         68.0         5.6           N. Zealand Onion         903S         2.0         52.0         46.0         46.0         0.0           Average         2.3         24.1         15.2         53.6         82.4         28.8         0.0           Salute         10.4         39.2         37.6         50.4         12.8         1.7           Avalon         .8         8.15.2         90.4                                                                                                                        | Company            | Variety    | large |      |          |            |       | Bolters |
| Crookham         Avenger         0.0         13.6         45.6         86.4         40.8           July 20 harvest           Crookham         Avenger         0.0         17.8         54.5         82.2         27.7           Salute         8.8         37.6         44.0         53.6         9.6           Avalon         0.8         0.8         12.0         98.4         86.4           Nunhems         Montero         0.8         5.6         20.0         93.6         73.6           Seminis         Minister         3.2         33.6         57.6         63.2         5.6           N. Zealand Onion         903S         2.0         52.0         46.0         46.0         0.0           Average         2.3         24.1         40.0         73.5         33.6           Crookham         Avenger         2.4         15.2         53.6         82.4         28.8         0.0           Salute         10.4         39.2         37.6         50.4         12.8         1.7           Avalon         0.8         4.8         8.0         94.4         86.4         4.3           Nunhems         Montero         0.8                                                                                                                        |                    |            |       |      |          | %          |       |         |
| July 20 harvest           Crookham         Avenger         0.0         17.8         54.5         82.2         27.7           Salute         8.8         37.6         44.0         53.6         9.6           Avalon         0.8         0.8         12.0         98.4         86.4           Nunhems         Montero         0.8         5.6         20.0         93.6         73.6           Seminis         Minister         3.2         33.6         57.6         63.2         5.6           Chancellor         0.0         8.0         38.0         92.0         54.1           SV0106NG         0.8         31.2         62.4         68.0         5.6           N. Zealand Onion         903S         2.0         52.0         46.0         46.0         0.0           Average         2.3         24.1         40.0         73.5         33.6           July 27 harvest         July 27 harvest         July 27 harvest         July 20.1         66.4         4.3           Crookham         Avenger         2.4         15.2         53.6         82.4         43.9         2.1           SV0106NG         2.4         31.2         52.8         66.4                                                                                                 |                    |            |       |      | July     | 13 harvest |       | -       |
| Crookham         Avenger         0.0         17.8         54.5         82.2         27.7           Salute         8.8         37.6         44.0         53.6         9.6           Avalon         0.8         0.8         12.0         98.4         86.4           Nunhems         Montero         0.8         5.6         20.0         93.6         73.6           Seminis         Minister         3.2         33.6         57.6         63.2         5.6           Chancellor         0.0         8.0         31.2         62.4         68.0         5.6           N. Zealand Onion         903S         2.0         52.0         46.0         46.0         0.0           Average         2.3         24.1         40.0         73.5         33.6           Tookham         Average         2.4         15.2         53.6         82.4         28.8         0.0           Salute         10.4         39.2         37.6         50.4         12.8         1.7           Avalon         0.8         8.8         15.2         90.4         75.2         0.6           Seminis         Minister         2.9         28.7         54.0         68.4                                                                                                             | Crookham           | Avenger    | 0.0   | 13.6 | 45.6     | 86.4       | 40.8  | -       |
| Salute         8.8         37.6         44.0         53.6         9.6           Nunhems         Montero         0.8         0.8         12.0         98.4         86.4           Nunhems         Montero         0.8         5.6         20.0         93.6         73.6           Seminis         Minister         3.2         33.6         57.6         63.2         5.6           N. Zealand Onion         903S         2.0         52.0         46.0         46.0         0.0           Average         2.3         24.1         40.0         73.5         33.6           Tookham         Average         2.3         24.1         40.0         73.5         33.6           Varrage         2.4         15.2         53.6         82.4         28.8         0.0           Salute         10.4         39.2         37.6         50.4         12.8         1.7           Avalon         0.8         4.8         8.0         94.4         86.4         4.3           Nunhems         Montero         0.8         8.8         15.2         90.4         75.2         0.6           Seminis         Minister         2.9         28.7         54.0                                                                                                              |                    |            |       | J    | uly 20 h | arvest     |       | _       |
| $\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Crookham           | Avenger    | 0.0   | 17.8 | 54.5     | 82.2       | 27.7  |         |
| Nunhems         Montero         0.8         5.6         20.0         93.6         73.6           Seminis         Minister         3.2         33.6         57.6         63.2         5.6           N. Zealand Onion         903S         2.0         52.0         46.0         46.0         0.0           Average         2.3         24.1         40.0         73.5         33.6           Crookham         Average         2.4         15.2         53.6         82.4         28.8         0.0           Avalon         0.8         4.8         8.0         94.4         86.4         4.3           Nunhems         Montero         0.8         8.8         15.2         90.4         75.2         0.6           Seminis         Minister         2.9         28.7         54.0         68.4         4.3           Nunhems         Montero         0.8         8.8         15.2         90.4         75.2         0.6           Seminis         Minister         2.9         28.7         54.0         68.4         14.4         0.0           Chacellor         0.0         17.6         43.2         82.4         39.2         1.1           SV0106NG <td></td> <td></td> <td></td> <td>37.6</td> <td>44.0</td> <td>53.6</td> <td>9.6</td> <td></td>       |                    |            |       | 37.6 | 44.0     | 53.6       | 9.6   |         |
| Seminis         Minister<br>Chancellor         0.0         8.0         38.0         92.0         5.6           N. Zealand Onion         903S         2.0         52.0         46.0         46.0         0.0           Average         2.3         24.1         40.0         73.5         33.6           V. Zealand Onion         903S         2.0         52.0         46.0         46.0         0.0           Average         2.3         24.1         40.0         73.5         33.6           Crookham         Average         2.4         15.2         53.6         82.4         28.8         0.0           Salute         10.4         39.2         37.6         50.4         12.8         1.7           Avalon         0.8         8.8         15.2         90.4         75.2         0.6           Seminis         Minister         2.9         28.7         54.0         68.4         13.6         0.1           N. Zealand Onion         903S         8.0         48.0         40.0         44.0         4.0         0.1           Average         3.6         25.6         35.8         70.9         35.1         1.1           SV0106NG         3.8                                                                                                 |                    | Avalon     | 0.8   | 0.8  | 12.0     | 98.4       | 86.4  | _       |
| $\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Nunhems            | Montero    | 0.8   | 5.6  | 20.0     | 93.6       | 73.6  | _       |
| $\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Seminis            | Minister   | 3.2   | 33.6 | 57.6     | 63.2       | 5.6   |         |
| $\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                    | Chancellor | 0.0   | 8.0  | 38.0     | 92.0       | 54.1  |         |
| Average         2.3         24.1         40.0         73.5         33.6           July 27 harvest           Crookham         Avenger         2.4         15.2         53.6         82.4         28.8         0.0           Salute         10.4         39.2         37.6         50.4         12.8         1.7           Avalon         0.8         4.8         8.0         94.4         86.4         4.3           Nunhems         Montero         0.8         8.8         15.2         90.4         75.2         0.6           Seminis         Minister         2.9         28.7         54.0         68.4         14.4         0.0           Chancellor         0.0         17.6         43.2         82.4         39.2         1.1           SV0106NG         2.4         31.2         52.8         66.4         13.6         0.1           Average         3.6         25.5         35.8         70.9         35.1         1.1           Average         3.6         25.6         40.0         14.4           Avalon         2.4         4.8         17.3         92.8         75.5           Nunhems         Montero         0.8 </td <td></td> <td>SV0106NG</td> <td>0.8</td> <td>31.2</td> <td>62.4</td> <td>68.0</td> <td>5.6</td> <td>_</td>         |                    | SV0106NG   | 0.8   | 31.2 | 62.4     | 68.0       | 5.6   | _       |
| July 27 harvest           Crookham         Avenger         2.4         15.2         53.6         82.4         28.8         0.0           Salute         10.4         39.2         37.6         50.4         12.8         1.7           Avalon         0.8         4.8         8.0         94.4         86.4         4.3           Nunhems         Montero         0.8         8.8         15.2         90.4         75.2         0.6           Seminis         Minister         2.9         28.7         54.0         68.4         14.4         0.0           Chancellor         0.0         17.6         43.2         82.4         39.2         1.1           SV0106NG         2.4         31.2         52.8         66.4         13.6         0.1           N. Zealand Onion         903S         8.0         48.0         40.0         44.0         0.0         11           Average         3.6         25.5         35.8         70.9         35.1         1.1           Avalon         2.4         4.8         17.3         92.8         75.5           Nunhems         Montero         0.8         8.8         26.4         90.4         64.0                                                                                                           | N. Zealand Onion   | 903S       | 2.0   | 52.0 | 46.0     | 46.0       | 0.0   | _       |
| Crookham         Avenger         2.4         15.2         53.6         82.4         28.8         0.0           Salute         10.4         39.2         37.6         50.4         12.8         1.7           Avalon         0.8         4.8         8.0         94.4         86.4         4.3           Nunhems         Montero         0.8         8.8         15.2         90.4         75.2         0.6           Seminis         Minister         2.9         28.7         54.0         68.4         14.4         0.0           Chancellor         0.0         17.6         43.2         82.4         39.2         1.1           SV0106NG         2.4         31.2         52.8         66.4         13.6         0.1           N. Zealand Onion         903S         8.0         48.0         40.0         44.0         4.0         0.1           Average         3.6         25.5         35.8         70.9         35.1         1.1           Munhems         Montero         0.8         8.8         26.4         90.4         64.0           Seminis         Minister         12.8         45.6         38.4         41.6         3.2                                                                                                                 |                    | Average    | 2.3   | 24.1 | 40.0     | 73.5       | 33.6  | _       |
| Salute         10.4         39.2         37.6         50.4         12.8         1.7           Avalon         0.8         4.8         8.0         94.4         86.4         4.3           Nunhems         Montero         0.8         8.8         15.2         90.4         75.2         0.6           Seminis         Minister         2.9         28.7         54.0         68.4         14.4         0.0           Chancellor         0.0         17.6         43.2         82.4         39.2         1.1           SV0106NG         2.4         31.2         52.8         66.4         13.6         0.1           N. Zealand Onion         903S         8.0         48.0         40.0         44.0         4.0         0.1           Average         3.6         25.5         35.8         70.9         35.1         1.1           Munhems         Montero         0.8         8.8         26.4         90.4         64.0           Seminis         Minister         12.8         45.6         38.4         41.6         3.2           Chancellor         3.2         19.2         36.8         77.6         40.8           SV0106NG         8.8                                                                                                            |                    |            |       | J    | uly 27 h | arvest     |       | -<br>   |
| $\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Crookham           | Avenger    | 2.4   | 15.2 | 53.6     | 82.4       | 28.8  | 0.0     |
| Nunhems         Montero         0.8         8.8         15.2         90.4         75.2         0.6           Seminis         Minister         2.9         28.7         54.0         68.4         14.4         0.0           Chancellor         0.0         17.6         43.2         82.4         39.2         1.1           SV0106NG         2.4         31.2         52.8         66.4         13.6         0.1           N. Zealand Onion         903S         8.0         48.0         40.0         44.0         4.0         0.1           Average         3.6         25.5         35.8         70.9         35.1         1.1           August 3 harvest         August 3 harvest                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                    | Salute     | 10.4  | 39.2 | 37.6     | 50.4       | 12.8  | 1.7     |
| Seminis         Minister         2.9         28.7         54.0         68.4         14.4         0.0           Chancellor         0.0         17.6         43.2         82.4         39.2         1.1           SV0106NG         2.4         31.2         52.8         66.4         13.6         0.1           N. Zealand Onion         903S         8.0         48.0         40.0         44.0         4.0         0.1           Average         3.6         25.5         35.8         70.9         35.1         1.1           Average         3.6         25.6         40.0         14.4         4.0         0.1           Average         3.6         25.6         40.0         14.4         4.4         17.3         92.8         75.5           Nunhems         Montero         0.8         8.8         26.4         90.4         64.0           Seminis         Minister         12.8         45.6         38.4         41.6         3.2           Chancellor         3.2         19.2         36.8         77.6         40.8           SV0106NG         8.8         56.0         35.2         35.2         0.0           N. Zealand Onion         903                                                                                                   |                    | Avalon     | 0.8   | 4.8  | 8.0      | 94.4       | 86.4  | 4.3     |
| Chancellor         0.0         17.6         43.2         82.4         39.2         1.1           N. Zealand Onion         903S         8.0         48.0         40.0         44.0         4.0         0.1           Average         3.6         25.5         35.8         70.9         35.1         1.1           Average         3.6         25.5         35.8         70.9         35.1         1.1           August 3 harvest         August 3 harvest         August 3 harvest         1.1         1.1         1.1           Avalon         2.4         4.8         17.3         92.8         75.5         1.1           Nunhems         Montero         0.8         8.8         26.4         90.4         64.0           Seminis         Minister         12.8         45.6         38.4         41.6         3.2           Chancellor         3.2         19.2         36.8         77.6         40.8           SV0106NG         8.8         56.0         35.2         0.0         0.1           N. Zealand Onion         903S         6.4         48.0         41.6         45.6         4.0           Average         8.3         31.2         31.6         6                                                                                          | Nunhems            | Montero    | 0.8   | 8.8  | 15.2     | 90.4       | 75.2  | 0.6     |
| SV0106NG         2.4         31.2         52.8         66.4         13.6         0.1           N. Zealand Onion         903S         8.0         48.0         40.0         44.0         4.0         0.1           Average         3.6         25.5         35.8         70.9         35.1         1.1           August 3 harvest         August 3 harvest                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Seminis            | Minister   | 2.9   | 28.7 | 54.0     | 68.4       | 14.4  | 0.0     |
| N. Zealand Onion         903S         8.0         48.0         40.0         44.0         4.0         0.1           Average         3.6         25.5         35.8         70.9         35.1         1.1           August 3 harvest           Crookham         Salute         24.0         36.0         25.6         40.0         14.4           Avalon         2.4         4.8         17.3         92.8         75.5           Nunhems         Montero         0.8         8.8         26.4         90.4         64.0           Seminis         Minister         12.8         45.6         38.4         41.6         3.2           Chancellor         3.2         19.2         36.8         77.6         40.8           SV0106NG         8.8         56.0         35.2         35.2         0.0           N. Zealand Onion         903S         6.4         48.0         41.6         45.6         4.0           Average         8.3         31.2         31.6         60.5         28.8           Crookham         Avenger         0.8         15.5         51.2         83.7         32.4           Salute         14.4         37.6         35                                                                                                              |                    | Chancellor | 0.0   | 17.6 | 43.2     | 82.4       | 39.2  | 1.1     |
| Average         3.6         25.5         35.8         70.9         35.1         1.1           August 3 harvest           Crookham         Salute         24.0         36.0         25.6         40.0         14.4           Avalon         2.4         4.8         17.3         92.8         75.5           Nunhems         Montero         0.8         8.8         26.4         90.4         64.0           Seminis         Minister         12.8         45.6         38.4         41.6         3.2           Chancellor         3.2         19.2         36.8         77.6         40.8           SV0106NG         8.8         56.0         35.2         35.2         0.0           N. Zealand Onion         903S         6.4         48.0         41.6         45.6         4.0           Average         8.3         31.2         31.6         60.5         28.8           Crookham         Average         0.8         15.5         51.2         83.7         32.4           Salute         14.4         37.6         35.7         48.0         12.3         4valon         1.3         3.5         12.4         95.2         82.8                                                                                                                       |                    | SV0106NG   | 2.4   | 31.2 | 52.8     | 66.4       | 13.6  | 0.1     |
| $\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | N. Zealand Onion   | 903S       | 8.0   | 48.0 | 40.0     | 44.0       | 4.0   | 0.1     |
| Crookham         Salute         24.0         36.0         25.6         40.0         14.4           Avalon         2.4         4.8         17.3         92.8         75.5           Nunhems         Montero         0.8         8.8         26.4         90.4         64.0           Seminis         Minister         12.8         45.6         38.4         41.6         3.2           Chancellor         3.2         19.2         36.8         77.6         40.8           SV0106NG         8.8         56.0         35.2         35.2         0.0           N. Zealand Onion         903S         6.4         48.0         41.6         45.6         4.0           Average         8.3         31.2         31.6         60.5         28.8           Moreage         8.3         31.2         31.6         60.5         28.8           Crookham         Average         0.8         15.5         51.2         83.7         32.4           Salute         14.4         37.6         35.7         48.0         12.3           Avalon         1.3         3.5         12.4         95.2         82.8           Nunhems         Montero         0.8 <td></td> <td>Average</td> <td>3.6</td> <td>25.5</td> <td>35.8</td> <td>70.9</td> <td>35.1</td> <td>1.1</td> |                    | Average    | 3.6   | 25.5 | 35.8     | 70.9       | 35.1  | 1.1     |
| $\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                    |            |       |      |          |            |       |         |
| Nunhems         Montero         0.8         8.8         26.4         90.4         64.0           Seminis         Minister         12.8         45.6         38.4         41.6         3.2           Chancellor         3.2         19.2         36.8         77.6         40.8           SV0106NG         8.8         56.0         35.2         35.2         0.0           N. Zealand Onion         903S         6.4         48.0         41.6         45.6         4.0           Average         8.3         31.2         31.6         60.5         28.8           Average         0.8         15.5         51.2         83.7         32.4           Salute         14.4         37.6         35.7         48.0         12.3           Avalon         1.3         3.5         12.4         95.2         82.8           Nunhems         Montero         0.8         7.7         20.5         91.5         70.9           Seminis         Minister         6.3         36.0         50.0         57.7         7.7           Choacellor         1.1         14.9         39.3         84.0         44.7           SV0106NG         4.0         39.5 <td>Crookham</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>                      | Crookham           |            |       |      |          |            |       |         |
| Seminis         Minister         12.8         45.6         38.4         41.6         3.2           Chancellor         3.2         19.2         36.8         77.6         40.8           SV0106NG         8.8         56.0         35.2         35.2         0.0           N. Zealand Onion         903S         6.4         48.0         41.6         45.6         4.0           Average         8.3         31.2         31.6         60.5         28.8           Average         0.8         15.5         51.2         83.7         32.4           Salute         14.4         37.6         35.7         48.0         12.3           Avalon         1.3         3.5         12.4         95.2         82.8           Nunhems         Montero         0.8         7.7         20.5         91.5         70.9           Seminis         Minister         6.3         36.0         50.0         57.7         7.7           Chancellor         1.1         14.9         39.3         84.0         44.7           SV0106NG         4.0         39.5         50.1         56.5         6.4           N. Zealand Onion         903S         5.7         4                                                                                                           |                    | Avalon     | 2.4   | 4.8  |          |            | 75.5  |         |
| Chancellor<br>SV0106NG         3.2         19.2         36.8         77.6         40.8           N. Zealand Onion         903S         6.4         48.0         41.6         45.6         4.0           Average         8.3         31.2         31.6         60.5         28.8           Average         0.8         15.5         51.2         83.7         32.4           Salute         14.4         37.6         35.7         48.0         12.3           Avalon         1.3         3.5         12.4         95.2         82.8           Nunhems         Montero         0.8         7.7         20.5         91.5         70.9           Seminis         Minister         6.3         36.0         50.0         57.7         7.7           Chancellor         1.1         14.9         39.3         84.0         44.7           SV0106NG         4.0         39.5         50.1         56.5         6.4           N. Zealand Onion         903S         5.7         49.1         42.3         45.1         2.9           LSD (0.05) Variety         4.3         7.6         6.5         7.7         6.6         2.0           LSD (0.05) Date         2.2<                                                                                               |                    | Montero    |       |      |          | 90.4       |       | -       |
| SV0106NG         8.8         56.0         35.2         35.2         0.0           N. Zealand Onion         903S         6.4         48.0         41.6         45.6         4.0           Average         8.3         31.2         31.6         60.5         28.8           Average         over harvest         dates           Crookham         Avenger         0.8         15.5         51.2         83.7         32.4           Salute         14.4         37.6         35.7         48.0         12.3           Avalon         1.3         3.5         12.4         95.2         82.8           Nunhems         Montero         0.8         7.7         20.5         91.5         70.9           Seminis         Minister         6.3         36.0         50.0         57.7         7.7           Chancellor         1.1         14.9         39.3         84.0         44.7           SV0106NG         4.0         39.5         50.1         56.5         6.4           N. Zealand Onion         903S         5.7         49.1         42.3         45.1         2.9           LSD (0.05) Variety         4.3         7.6         6.5         7.7                                                                                                       | Seminis            | Minister   |       |      |          |            |       |         |
| N. Zealand Onion         903S         6.4         48.0         41.6         45.6         4.0           Average         8.3         31.2         31.6         60.5         28.8           Average         over harvest         dates         Average         over harvest         dates           Crookham         Avenger         0.8         15.5         51.2         83.7         32.4           Salute         14.4         37.6         35.7         48.0         12.3           Avalon         1.3         3.5         12.4         95.2         82.8           Nunhems         Montero         0.8         7.7         20.5         91.5         70.9           Seminis         Minister         6.3         36.0         50.0         57.7         7.7           Chancellor         1.1         14.9         39.3         84.0         44.7           SV0106NG         4.0         39.5         50.1         56.5         6.4           N. Zealand Onion         903S         5.7         49.1         42.3         45.1         2.9           LSD (0.05) Variety         4.3         7.6         6.5         7.7         6.6         2.0           L                                                                                                  |                    |            |       |      |          |            |       |         |
| Average         8.3         31.2         31.6         60.5         28.8           Average over harvest dates           Crookham         Avenger         0.8         15.5         51.2         83.7         32.4           Salute         14.4         37.6         35.7         48.0         12.3           Avalon         1.3         3.5         12.4         95.2         82.8           Nunhems         Montero         0.8         7.7         20.5         91.5         70.9           Seminis         Minister         6.3         36.0         50.0         57.7         7.7           Chancellor         1.1         14.9         39.3         84.0         44.7           SV0106NG         4.0         39.5         50.1         56.5         6.4           N. Zealand Onion         903S         5.7         49.1         42.3         45.1         2.9           LSD (0.05) Variety         4.3         7.6         6.5         7.7         6.6         2.0           LSD (0.05) Date         2.2         NS         5.3         4.9         4.1                                                                                                                                                                                                   |                    |            |       |      |          |            |       | -       |
| Average over harvest dates           Crookham         Avenger         0.8         15.5         51.2         83.7         32.4           Salute         14.4         37.6         35.7         48.0         12.3           Avalon         1.3         3.5         12.4         95.2         82.8           Nunhems         Montero         0.8         7.7         20.5         91.5         70.9           Seminis         Minister         6.3         36.0         50.0         57.7         7.7           Chancellor         1.1         14.9         39.3         84.0         44.7           SV0106NG         4.0         39.5         50.1         56.5         6.4           N. Zealand Onion         903S         5.7         49.1         42.3         45.1         2.9           LSD (0.05) Variety         4.3         7.6         6.5         7.7         6.6         2.0           LSD (0.05) Date         2.2         NS         5.3         4.9         4.1                                                                                                                                                                                                                                                                                     | N. Zealand Onion   | 903S       | 6.4   |      |          |            |       | -       |
| Crookham         Avenger         0.8         15.5         51.2         83.7         32.4           Salute         14.4         37.6         35.7         48.0         12.3           Avalon         1.3         3.5         12.4         95.2         82.8           Nunhems         Montero         0.8         7.7         20.5         91.5         70.9           Seminis         Minister         6.3         36.0         50.0         57.7         7.7           Chancellor         1.1         14.9         39.3         84.0         44.7           SV0106NG         4.0         39.5         50.1         56.5         6.4           N. Zealand Onion         903S         5.7         49.1         42.3         45.1         2.9           LSD (0.05) Variety         4.3         7.6         6.5         7.7         6.6         2.0           LSD (0.05) Date         2.2         NS         5.3         4.9         4.1                                                                                                                                                                                                                                                                                                                          |                    | Average    | 8.3   |      |          |            | 28.8  | -       |
| Salute         14.4         37.6         35.7         48.0         12.3           Avalon         1.3         3.5         12.4         95.2         82.8           Nunhems         Montero         0.8         7.7         20.5         91.5         70.9           Seminis         Minister         6.3         36.0         50.0         57.7         7.7           Chancellor         1.1         14.9         39.3         84.0         44.7           SV0106NG         4.0         39.5         50.1         56.5         6.4           N. Zealand Onion         903S         5.7         49.1         42.3         45.1         2.9           LSD (0.05) Variety         4.3         7.6         6.5         7.7         6.6         2.0           LSD (0.05) Date         2.2         NS         5.3         4.9         4.1                                                                                                                                                                                                                                                                                                                                                                                                                             |                    |            |       |      |          |            |       | -       |
| Avalon         1.3         3.5         12.4         95.2         82.8           Nunhems         Montero         0.8         7.7         20.5         91.5         70.9           Seminis         Minister         6.3         36.0         50.0         57.7         7.7           Chancellor         1.1         14.9         39.3         84.0         44.7           SV0106NG         4.0         39.5         50.1         56.5         6.4           N. Zealand Onion         903S         5.7         49.1         42.3         45.1         2.9           LSD (0.05) Variety         4.3         7.6         6.5         7.7         6.6         2.0           LSD (0.05) Date         2.2         NS         5.3         4.9         4.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Crookham           |            |       |      |          |            |       |         |
| Nunhems         Montero         0.8         7.7         20.5         91.5         70.9           Seminis         Minister         6.3         36.0         50.0         57.7         7.7           Chancellor         1.1         14.9         39.3         84.0         44.7           SV0106NG         4.0         39.5         50.1         56.5         6.4           N. Zealand Onion         903S         5.7         49.1         42.3         45.1         2.9           LSD (0.05) Variety         4.3         7.6         6.5         7.7         6.6         2.0           LSD (0.05) Date         2.2         NS         5.3         4.9         4.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                    |            |       |      |          |            |       |         |
| Seminis         Minister         6.3         36.0         50.0         57.7         7.7           Chancellor         1.1         14.9         39.3         84.0         44.7           SV0106NG         4.0         39.5         50.1         56.5         6.4           N. Zealand Onion         903S         5.7         49.1         42.3         45.1         2.9           LSD (0.05) Variety         4.3         7.6         6.5         7.7         6.6         2.0           LSD (0.05) Date         2.2         NS         5.3         4.9         4.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |            |       |      |          |            |       | -       |
| Chancellor1.114.939.384.044.7SV0106NG4.039.550.156.56.4N. Zealand Onion903S5.749.142.345.12.9LSD (0.05) Variety4.37.66.57.76.62.0LSD (0.05) Date2.2NS5.34.94.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                    |            |       |      |          | 91.5       | 70.9  | -       |
| SV0106NG         4.0         39.5         50.1         56.5         6.4           N. Zealand Onion         903S         5.7         49.1         42.3         45.1         2.9           LSD (0.05) Variety         4.3         7.6         6.5         7.7         6.6         2.0           LSD (0.05) Date         2.2         NS         5.3         4.9         4.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Seminis            |            |       |      |          |            |       |         |
| N. Zealand Onion         903S         5.7         49.1         42.3         45.1         2.9           LSD (0.05) Variety         4.3         7.6         6.5         7.7         6.6         2.0           LSD (0.05) Date         2.2         NS         5.3         4.9         4.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                    |            |       |      |          |            |       |         |
| LSD (0.05) Variety4.37.66.57.76.62.0LSD (0.05) Date2.2NS5.34.94.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                    |            |       |      |          |            |       | -       |
| LSD (0.05) Date 2.2 NS 5.3 4.9 4.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                    | 903S       |       |      |          |            |       |         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |            |       |      |          |            |       | 2.0     |
| LSD (0.05) Variety X Date 5.8 13.0 14.0 13.1 NS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |            |       |      |          |            |       |         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | LSD (0.05) Variety | X Date     | 5.8   | 13.0 | 14.0     | 13.1       | NS    |         |

<sup>a</sup>Functional single centers are the small multiple centers plus the bullet single centers. <sup>b</sup>Bolted onions were counted in each plot on July 27. Table 3. Maturity at harvest and bulb quality 2 weeks after harvest for seven yellow onion varieties and one red variety (903S) grown from transplants over three harvest dates, Malheur Experiment Station, Oregon State University, Ontario, OR, 2017.

|                    |            | Maturity        | at harvest      |            | Bulb quality                 | 2 weeks after ha        | arvest                          |
|--------------------|------------|-----------------|-----------------|------------|------------------------------|-------------------------|---------------------------------|
| Company            | Variety    | tops<br>down    | leaf<br>dryness | sprouted   | decomposed                   | sprouted and decomposed | total sprouted<br>or decomposed |
|                    |            |                 |                 |            | %<br>July 13 harves          | •••                     |                                 |
| Crookham           | Avenger    | 99              | 16              | 0.7        | 1.3                          | 0.0                     | 2.1                             |
|                    | 5          |                 |                 |            | July 20 harves               |                         |                                 |
| Crookham           | Avenger    | 100             | 28              | 0.0        | 7.0                          | 0.0                     | 7.0                             |
|                    | Salute     | 46              | 10              | 3.4        | 3.3                          | 0.0                     | 6.7                             |
|                    | Avalon     | 30              | 8               | 0.0        | 7.2                          | 0.0                     | 7.2                             |
| Nunhems            | Montero    | 22              | 12              | 1.8        | 0.7                          | 0.0                     | 2.5                             |
| Seminis            | Minister   | 84              | 22              | 0.0        | 1.4                          | 0.0                     | 1.4                             |
|                    | Chancellor | 38              | 10              | 4.2        | 3.3                          | 0.0                     | 7.5                             |
| N. Zaalaad Oalaa   | SV0106NG   | 78              | 10              | 0.6        | 5.3                          | 0.0                     | 5.9                             |
| N. Zealand Onion   | 903S       | <u>58</u><br>51 | <u>32</u><br>15 | 0.5<br>1.5 | 0.9 3.2                      | 0.0                     | <u>1.3</u><br>4.7               |
|                    | Average    | 51              | 10              |            | July 27 harves               |                         | 4.7                             |
| Crookham           | Avenger    | 100             | 32              | 0.0        | 2.3                          | 0.0                     | 2.3                             |
| CIOOKIIdili        | Salute     | 64              | 22              | 1.3        | 0.0                          | 0.0                     | 1.3                             |
|                    | Avalon     | 66              | 14              | 8.6        | 6.5                          | 0.0                     | 15.1                            |
| Nunhems            | Montero    | 70              | 24              | 0.6        | 3.5                          | 0.0                     | 4.1                             |
| Seminis            | Minister   | 90              | 24              | 0.0        | 1.3                          | 0.0                     | 1.3                             |
|                    | Chancellor | 68              | 18              | 0.0        | 0.6                          | 0.0                     | 0.6                             |
|                    | SV0106NG   | 88              | 24              | 0.0        | 0.6                          | 0.0                     | 0.6                             |
| N. Zealand Onion   | 903S       | 84              | 38              | 0.0        | 0.3                          | 0.0                     | 0.3                             |
|                    | Average    | 76              | 23              | 1.5        | 1.8                          | 0.0                     | 3.4                             |
|                    |            |                 |                 | Α          | ugust 3 harve                | st                      |                                 |
| Crookham           | Salute     | 80              | 24              | 0.8        | 2.2                          | 0.0                     | 3.0                             |
|                    | Avalon     | 78              | 16              | 1.5        | 0.8                          | 0.0                     | 2.3                             |
| Nunhems            | Montero    | 80              | 30              | 0.0        | 1.1                          | 0.0                     | 1.1                             |
| Seminis            | Minister   | 98              | 28              | 0.0        | 0.0                          | 0.0                     | 0.0                             |
|                    | Chancellor | 74              | 24              | 0.0        | 0.7                          | 0.0                     | 0.7                             |
| ·····              | SV0106NG   | 93              | 26              | 0.0        | 0.7                          | 0.0                     | 0.7                             |
| N. Zealand Onion   | 903S       | 92              | 42              | 0.0        | 0.0                          | 0.0                     | 0.0                             |
|                    | Average    | 85              | 27              | 0.3        | 0.8                          | 0.0                     | 1.1                             |
| Crookham           | Avenger    | 100             | 25              | 0.2        | <b>ge over harves</b><br>3.5 | 0.0                     | 3.8                             |
| CIOOKIIaIII        | Salute     | 63              | 25<br>19        | 1.8        | 1.9                          | 0.0                     | 3.7                             |
| Crookham           | Avalon     | 58              | 13              | 3.4        | 4.8                          | 0.0                     | 8.2                             |
| Nunhems            | Montero    | 57              | 22              | 0.8        | 1.7                          | 0.0                     | 2.6                             |
| Seminis            | Minister   | 91              | 25              | 0.0        | 0.9                          | 0.0                     | 0.9                             |
|                    | Chancellor | 60              | 17              | 1.4        | 1.6                          | 0.0                     | 2.9                             |
|                    | SV0106NG   | 86              | 20              | 0.2        | 2.2                          | 0.0                     | 2.4                             |
| N. Zealand Onion   | 903S       | 78              | 37              | 0.1        | 0.4                          | 0.0                     | 0.5                             |
| LSD (0.05) Variety |            | 8               | 5               | NS         | NS                           | NS                      | 3.8                             |
| LSD (0.05) Date    |            | 4               | 2               | NS         | NS                           | NS                      | NS                              |
| LSD (0.05) Variety | X Date     | 10              | 5               | NS         | NS                           | NS                      | NS                              |

|               |       |     |      |      | Total      |
|---------------|-------|-----|------|------|------------|
| Year          | April | May | June | July | April-July |
| 2014          | 227   | 424 | 544  | 779  | 1974       |
| 2015          | 241   | 427 | 674  | 716  | 2059       |
| 2016          | 305   | 405 | 576  | 680  | 1967       |
| 2017          | 169   | 380 | 533  | 766  | 1848       |
| Avg 1993-2016 | 200   | 371 | 511  | 702  | 1785       |

Table 4. Monthly growing degree-days (50-86°F) in 2014-2017, and the 24-year average, Malheur Experiment Station, Oregon State University, Ontario, OR.

Table 5. Percentage of tops down, leaf dryness, and marketable yield at three harvest dates for onion varieties Avalon and Montero grown from transplants in 2014, 2015, 2016, and 2017. Malheur Experiment Station, Oregon State University, Ontario, OR.

| •                |      |        | 0      |        |       |   |        |        |        |       |
|------------------|------|--------|--------|--------|-------|---|--------|--------|--------|-------|
|                  |      |        | Ava    | alon   |       | _ |        | Mor    | itero  |       |
|                  | Year | Jul 14 | Jul 21 | Jul 28 | Aug 4 |   | Jul 14 | Jul 21 | Jul 28 | Aug 4 |
| % tops down      | 2014 | _      | 16     | 30     | 64    |   | _      | 12     | 40     | 76    |
|                  | 2015 | 36     | 46     | 68     | _     |   | 18     | 54     | 80     | _     |
|                  | 2016 | 0      | 8      | 28     |       |   | 0      | 16     | 58     |       |
|                  | 2017 |        | 30     | 66     | 78    |   |        | 22     | 70     | 80    |
| % dry leaves     | 2014 | _      | 14     | 20     | 76    |   | _      | 16     | 28     | 32    |
|                  | 2015 | 18     | 10     | 20     | _     |   | 0      | 20     | 32     | _     |
|                  | 2016 | 0      | 3      | 16     |       |   | 0      | 12     | 20     |       |
|                  | 2017 |        | 8      | 14     | 16    |   |        | 12     | 24     | 30    |
| Marketable yield | 2014 | _      | 1287   | 1387   | 1488  |   | _      | 826    | 911    | 1024  |
| cwt/acre         | 2015 | 1058   | 1124   | 1443   | _     |   | 730    | 847    | 898    | _     |
|                  | 2016 | 692    | 870    | 1115   |       |   | 731    | 931    | 1154   |       |
|                  | 2017 |        | 919    | 1111   | 1278  |   |        | 768    | 841    | 947   |

# ONION INTERNAL QUALITY IN RESPONSE TO ARTIFICIAL HEAT AND HEAT MITIGATION DURING BULB DEVELOPMENT

Clinton C. Shock, Erik B. G. Feibert, Alicia Rivera, Kyle D. Wieland, and Lamont D. Saunders, Malheur Experiment Station, Oregon State University, Ontario, OR, 2017

## Introduction

In 2014 and 2015 there was an increase in internal onion bulb decomposition of one or more scales in onion bulbs grown in the Treasure Valley. Unlike neck rot or plate rot, this internal decomposition is difficult to detect externally, and can result in quality issues in marketing. We have thought that the internal decomposition is associated with one or more scales that do not finish forming completely into the neck, resulting in small gaps close to the neck. The 2014 and 2015 growing seasons were unusually warm, suggesting that excessive heat could be associated with the problems of internal decomposition. This trial sought to determine whether heat is a factor in bulb decomposition and whether or not treatments that increase or reduce the heat load in the soil and onion bulbs would affect the expression of internal bulb decomposition.

# **Materials and Methods**

Onions were grown in 2017 on an Owyhee silt loam previously planted to wheat. A soil analysis taken in the fall of 2016 showed that the top foot of soil had a pH of 8.1, 3.0% organic matter, 9 ppm nitrate, 3 ppm ammonium, 50 ppm phosphorus (P), 341 ppm potassium (K), 16 ppm sulfur (S), 2927 ppm calcium (Ca), 502 ppm magnesium (Mg), 269 ppm sodium, 2.2 ppm zinc (Zn), 5 ppm manganese (Mn), 0.6 ppm copper (Cu), 4 ppm iron, and 0.5 ppm boron (B). In the fall of 2016, the wheat stubble was shredded and the field was irrigated. The field was then disked, moldboard plowed, and groundhogged. Based on a soil analysis, 22 lb P/acre, 42 lb K/acre, 200 lb S/acre, 2 lb Zn/acre, 2 lb Mn/acre, and 1 lb B/acre were broadcast before plowing. After plowing, the field was fumigated with K-Pam<sup>®</sup> at 15 gal/acre and bedded at 22 inches.

Onion seed was planted on April 5 in double rows spaced 3 inches apart at 9 seeds/ft of single row. Each double row was planted on beds spaced 22 inches apart. Planting was done in rows running east to west with customized John Deere Flexi Planter units equipped with disc openers. Immediately after planting, the field received a narrow band of Lorsban 15G<sup>®</sup> at 3.7 oz/1000 ft of row (0.82 lb ai/acre) over the seed rows and the soil surface was rolled. Onion emergence started on April 20. On May 9, alleys 4 ft wide were cut between split plots, leaving split plots 23 ft long. On May 25, the seedlings were hand thinned to a spacing of 4.75 inches between individual onion plants in each single row, or 120,000 plants/acre.

The experimental design was a split-plot randomized complete block with six replicates. There were four treatments to affect temperature as the main plots and two varieties as split plots within

each main plot. Each split plot was planted with 4 double rows wide and 27 ft long. The two varieties were 'Joaquin' and 'Granero' (Nunhems, Parma, ID). The four treatments were: 1) untreated check, 2) artificial heat, 3) kaolinite, and 4) straw mulch. Kaolinite and straw mulch were treatments intended to reduce the heat load on the onions. The artificial heat was applied using one heat cable (self-regulating heat cable, maximum temperature 185°F, Chromalox, Pittsburgh, PA) laid next to each of the middle 2 double rows in the center of each heated plot. The heat cables were turned on and run continuously starting on June 26 and ending September 5. Kaolinite clay (Surround WP, Novasource, Phoenix, AZ) was applied at 45 lb/acre in a solution of 0.45 lb kaolinite/gal of water. The kaolinite was applied with a backpack sprayer by aiming the nozzle at the base of the onion plants on the south side of each double row. The kaolinite was applied on June 26 and July 18. The straw was applied between the onion double rows at 243 ft<sup>3</sup>/acre (32 7.5-ft<sup>3</sup> bales/acre) on May 30.

The field had drip tape laid at 4-inch depth between pairs of beds during planting. The drip tape had emitters spaced 12 inches apart and an emitter flow rate of 0.22 gal/min/100 ft (Toro Aqua-Traxx, Toro Co., El Cajon, CA). The distance between the tape and the center of each double row of onions was 11 inches.

The onions were managed to minimize yield reductions from weeds, pests, diseases, water stress, and nutrient deficiencies. For weed control, the following herbicides were broadcast: Prowl<sup>®</sup> H<sub>2</sub>O at 0.83 lb ai/acre (2 pt/acre) and Poast<sup>®</sup> at 0.25 lb ai/acre (16 oz/acre) on May 4; GoalTender<sup>®</sup> at 0.09 lb ai/acre (4 oz/acre) and Buctril<sup>®</sup> at 16 oz/acre on May 15; and Prowl H<sub>2</sub>O at 0.31 lb ai/acre (0.75 pt/acre) and Poast at 0.5 lb ai/acre (32 oz/acre) on June 4.

For thrips control, the following insecticides were applied by ground: Movento<sup>®</sup> at 5 oz/acre on May 26; Movento at 5 oz/acre and Aza-Direct<sup>®</sup> at 12 oz/acre on June 2; Agri-Mek<sup>®</sup> SC at 3.5 oz/acre on June 15 and 23. The following insecticides were applied by air: Radiant<sup>®</sup> at 10 oz/acre on July 1, 8, and 30; Lannate<sup>®</sup> at 3 pt/acre on July 17 and 23.

Urea ammonium nitrate solution (URAN) was applied through the drip tape five times from May 26 to June 28, supplying a total of 105 lb N/acre. Starting on June 19, root tissue and soil solution samples were taken every week from borders of check treatment plots and analyzed for nutrients by Western Laboratories, Inc., Parma Idaho (Tables 1 and 2). Nutrients were applied through the drip tape only if both the root tissue and soil solution analyses concurrently indicated a deficiency (Table 3). Nitrogen was applied only at the fixed amount previously mentioned, because the soil solution tests indicated the soil was supplying ample amounts of N (Table 4). Potassium was deficient in both the soil and the roots on several sampling dates. A total of 197 lb K/acre was applied in 26- to 31-lb increments during the growing season based on the soil and tissue analyses.

| N lo stal a sa t |                   | 40 1   | 4 1.1 | 44 1.1 | 47     | 04     | 04 1.1 | 7     |
|------------------|-------------------|--------|-------|--------|--------|--------|--------|-------|
| Nutrient         |                   | 19-Jun | 4-Jul | 11-Jul | 17-Jul | 24-Jul | 31-Jul | 7-Aug |
| NO₃-N (ppm)      | Sufficiency range | 7667   | 7200  | 6833   | 5000   | 3500   | 1834   | 1000  |
| NO₃-N (ppm)      |                   | 7325   | 6868  | 5773   | 4847   | 4903   | 6090   | 5218  |
| P (%)            | 0.32 - 0.7        | 0.45   | 0.52  | 0.44   | 0.52   | 0.34   | 0.27   | 0.33  |
| K (%)            | 2.7 - 6.0         | 2.20   | 2.58  | 2.40   | 1.97   | 1.48   | 1.88   | 0.96  |
| S (%)            | 0.24 - 0.85       | 0.84   | 0.96  | 1.09   | 0.98   | 0.76   | 0.90   | 0.99  |
| Ca (%)           | 0.4 - 1.2         | 0.61   | 0.67  | 0.74   | 0.85   | 1.10   | 0.94   | 1.18  |
| Mg (%)           | 0.3 - 0.6         | 0.39   | 0.38  | 0.37   | 0.36   | 0.41   | 0.40   | 0.41  |
| Zn (ppm)         | 25 - 50           | 55     | 52    | 48     | 39     | 32     | 32     | 31    |
| Mn (ppm)         | 35 - 100          | 193    | 183   | 160    | 144    | 139    | 118    | 83    |
| Cu (ppm)         | 6 - 20            | 24     | 18    | 14     | 12     | 10     | 10     | 12    |
| B (ppm)          | 19 - 60           | 30     | 29    | 33     | 41     | 32     | 23     | 25    |

Table 1. Onion root tissue sufficiency levels and nutrient content, Malheur Experiment Station, Oregon State University, Ontario, OR, 2017.

Table 2. Weekly soil solution analyses. Data represent the amount of each plant nutrient per day that the soil can potentially supply to the crop. Malheur Experiment Station, Oregon State University, Ontario, OR, 2017.

|          | Critical level, |        |       |        |        |        |        |       |
|----------|-----------------|--------|-------|--------|--------|--------|--------|-------|
| Nutrient | lb/ac or g/ac   | 19-Jun | 4-Jul | 11-Jul | 17-Jul | 24-Jul | 31-Jul | 7-Aug |
| Ν        | Critical levels | 7.8    | 5.5   | 4.6    | 4      | 3      | 2      | 1.5   |
| N        |                 | 7.7    | 10.9  | 14.3   | 17.1   | 16.6   | 18.6   | 23.7  |
| Р        | 0.7 lb/acre     | 0.3    | 0.5   | 0.6    | 0.7    | 1.0    | 1.4    | 0.9   |
| K        | 5 lb/acre       | 1.5    | 1.8   | 2.1    | 2.6    | 3.0    | 3.7    | 4.5   |
| S        | 1 lb/acre       | 1.6    | 2.1   | 2.6    | 3.2    | 3.8    | 3.9    | 2.5   |
| Ca       | 3 lb/acre       | 10.0   | 8.8   | 8.6    | 6.9    | 5.6    | 5.8    | 4.7   |
| Mg       | 2 lb/acre       | 6.4    | 7.3   | 6.6    | 7.7    | 8.3    | 9.2    | 7.2   |
| Zn       | 28 g/acre       | 6      | 15    | 18     | 24     | 30     | 39     | 39    |
| Mn       | 28 g/acre       | 9      | 27    | 21     | 27     | 30     | 36     | 42    |
| Cu       | 12 g/acre       | 3      | 9     | 15     | 18     | 21     | 24     | 24    |

Table 3. Nutrients applied through the drip irrigation system, Malheur Experiment Station, Oregon State University, Ontario, OR, 2017.

| Date   | Ν    | K    |
|--------|------|------|
|        | lb/a | acre |
| 26-May | 30   |      |
| 5-Jun  | 15   |      |
| 15-Jun | 15   |      |
| 20-Jun | 30   | 31   |
| 28-Jun | 15   |      |
| 6-Jul  |      | 31   |
| 11-Jul |      | 26   |
| 18-Jul |      | 31   |
| 26-Jul |      | 26   |
| 1-Aug  |      | 26   |
| 9-Aug  |      | 26   |
| total  | 105  | 197  |

| Date   | Available soil N, lb/acre |
|--------|---------------------------|
| 19-Jun | 54                        |
| 4-Jul  | 76                        |
| 11-Jul | 100                       |
| 17-Jul | 120                       |
| 24-Jul | 116                       |
| 31-Jul | 130                       |
| 7-Aug  | 166                       |

Table 4. Soil available N (NO $_3$  + NH $_4$ ) in the top foot of soil, Malheur Experiment Station, Oregon State University, Ontario, OR, 2017.

Onions were irrigated automatically to maintain the soil water tension (SWT) in the onion root zone below 20 cb (Shock et al. 2000). Soil water tension in each treatment plot was measured with two granular matrix sensors (GMS, Watermark Soil Moisture Sensors Model 200SS, Irrometer Co., Inc., Riverside, CA) installed at 8-inch depth in the center of the double row. Sensors had been calibrated to SWT (Shock et al. 1998). The GMS were connected to the datalogger via multiplexers (AM 16/32, Campbell Scientific, Logan, UT). The datalogger (CR10X, Campbell Scientific) read the sensors and recorded the SWT every hour. The datalogger automatically made irrigation decisions every 12 hours. The field was irrigated if the average of the 24 sensors in the check and kaolinite treatments was a SWT of 20 cb or higher. The irrigations were controlled by the datalogger using a controller (SDM CD16AC, Campbell Scientific) connected to a solenoid valve. Irrigation durations were 8 hours, 19 min to apply 0.48 inch of water. The water was supplied from a well and pump that maintained a continuous and constant water pressure of 35 psi. The pressure in the drip lines was maintained at 10 psi by a pressure regulating valve. The automated irrigation system was started on June 5 and irrigations ended September 5.

Onion bulb temperatures and soil surface temperatures were measured weekly in the midafternoon using an infrared thermometer (Close Focus IR, ThermoWorks, Salt Lake City, UT) starting on June 26 and ending August 18. After August 18 the leaves shaded the soil and bulbs and walking among the onions to obtain temperature data would have substantially injured the plants. Bulb and soil temperature measurements were made as close as practical to 2 p.m. (12:30 p.m. to 3:30 p.m.) on clear days. The bulb temperatures were measured on the south side of the bulbs furthest from the drip tape and approximately 0.5 inches above the soil surface. The soil surface temperature measurements for the bulbs and the soil were taken weekly in each plot. Soil temperature at 4-inch depth was measured in each plot using digital thermometers (Hanna Instruments, Limena, Italy) read twice weekly at 4 p.m. from July through August.

Onions were evaluated for maturity, severity of symptoms of iris yellow spot virus (IYSV), and bolting on August 8. Onions in each plot were evaluated subjectively for maturity by visually rating the percentage of onions with the tops down and the percent dry leaves. For IYSV, onions in each plot were given a subjective rating on a scale of 0 to 5 of increasing severity of IYSV symptoms. The rating was 0 if there were no symptoms, 1 if 1-25% of foliage was diseased, 2 if 26-50% of foliage was diseased, 3 if 51-75% of foliage was diseased, 4 if 76-99% of foliage was diseased, and 5 if 100% of foliage was diseased. The number of bolted onion plants was counted in each plot.

The onions were lifted on September 25 to cure in the field. Onions from the middle two double rows in each split plot were topped by hand and bagged on October 2. The bags were put into storage on October 11. The storage shed was ventilated and the temperature was slowly decreased to maintain air temperature as close to 34°F as possible. Onions were graded out of storage on November 1.

During grading, bulbs were separated according to quality: bulbs without blemishes (No. 1s), split bulbs (No. 2s), bulbs infected with the fungus *Botrytis allii* in the neck or side, bulbs infected with the fungus *Fusarium oxysporum* (plate rot), bulbs infected with the fungus *Aspergillus niger* (black mold), and bulbs infected with unidentified bacteria in the external scales. The No. 1 bulbs were graded according to diameter: small (<2¼ inches), medium (2¼-3 inches), jumbo (3-4 inches), colossal (4-4¼ inches), and supercolossal (>4¼ inches). Bulb counts per 50 lb of supercolossal onions were determined for each split plot by weighing and counting all supercolossal bulbs during grading. Marketable yield consisted of No.1 bulbs larger than 2¼ inches.

During grading, two bags of No. 1 bulbs (with no observable external decomposition) from each plot were saved for evaluations of internal bulb quality. On November 15, 2017 and January 29, 2018, 25 bulbs from each plot were cut longitudinally and evaluated for the presence of incomplete scales, dry scales, internal bacterial rot, and internal rot caused by *Fusarium proliferatum* or other fungi. Incomplete scales were defined as scales that had either more than 0.25 inch from the center of the neck missing or any part missing lower down in the bulb. Dry scales were defined as scales that had dry parts at the top of the bulb or any place lower down on one or more scale.

Treatment differences were determined using analysis of variance. Means separation was determined using a protected Fisher's least significant difference test at the 5% probability level, LSD (0.05). The least significant difference LSD (0.05) values in each table should be considered when comparisons are made between treatments. A statistically significant difference in a characteristic between two treatments exists if the difference between the two treatments for that characteristic is equal to or greater than the LSD value for that characteristic. The effects of mid-day bulb temperature or soil temperature on bulb yield, yield components, or internal decomposition were determined by regression.

### **Results and Discussion**

The rate of accumulation and total number of growing degree-days (50-86°F) in 2017 were close to the 24-year average, until July (Fig. 1). July had higher than average growing degree-days (Fig. 2).

Surface soil and bulb temperatures for the check treatment onions were on average 35°F and 13°F higher, respectively, than ambient air temperature for the corresponding measurements (Table 5). On average, the artificial heat treatment resulted in the highest and straw mulch resulted in the lowest surface soil temperatures. On average, the artificial heat treatment resulted in the highest 4-inch depth soil temperature and the highest bulb temperatures, with the other treatments having relatively similar 4-inch soil and bulb temperatures as the check.

There was a statistically significant interaction between treatment and variety only for colossal bulb yield. For Joaquin, straw mulch and kaolinite treatments resulted in the highest colossal

bulb yield and artificial heat resulted in the lowest colossal bulb yield. The differences in colossal yield among treatments for Granero were not statistically significant. Averaged over heat treatments, Joaquin had higher yields than Granero. Averaged over the two varieties, artificial heat resulted in the lowest total, marketable, and colossal bulb yield. Total and marketable bulb yields for the other treatments were not statistically different. Averaged over the two varieties, straw mulch and kaolinite treatments resulted in the highest colossal bulb yield, and artificial heat resulted in the lowest colossal bulb yield.

For Joaquin, marketable and colossal bulb yields decreased with increasing bulb and soil temperature (Fig. 4 and 6). For Granero, marketable yield decreased with increasing bulb and soil temperature (Fig. 5 and 7).

Straw mulch and kaolinite resulted in among the lowest percentage of tops down on August 16 (Table 6). Artificial heat resulted in the highest percentage of leaf dryness and straw mulch resulted in the lowest percentage of leaf dryness on August 16.

Improved yields with the use of straw mulch with drip irrigation can be a result of more optimum temperatures and also of modification of the soil moisture by a reduction of evaporation from the soil surface. The average SWT in June and July in the check and kaolinite treatments were similar (16.6 cb and 16.4 cb, respectively) since they were irrigated based on the average of all their sensors (Fig. 3). The average SWT in June and July in the heat treatment (17.8 cb) was slightly higher than the check and kaolinite treatments. The average SWT in June and July in the straw mulch treatment (15.5 cb) was slightly lower than the check and kaolinite treatments. These small differences in SWT were unlikely to have a significant effect on onion yield based on previously published work (Shock et al. 2000).

Most of the internal decomposition was found in bulbs having incomplete scales, regardless of the presence or absence of dry scales (Table 7). The total amount of internal decomposition in this trial in November ranged from 0% for Granero with straw mulch to 10% for Granero submitted to artificial heat (Table 7). In January, the total amount of internal decomposition ranged from 0.8% for Granero with straw mulch to 13.9% for Joaquin submitted to artificial heat. Averaged over treatments and varieties, the total amount of internal decomposition in January (5.1%) was higher than in November (3.3%). In November, most of the internal decomposition was due to neck rot and black mold, averaging 1.4 and 1.5%, respectively (Table 8). In January most of the internal decomposition was due to neck rot, which increased to 3.9% while black mold decreased slightly to 1.3%. There was very little internal decomposition caused by bacterial rot and *Fusarium proliferatum* in this trial.

Averaged over varieties and dates, bulbs submitted to artificial heat had the highest percentage of bulbs with internal rot. The kaolinite and straw mulch treatments were among the treatments with the lowest percentage of bulbs with internal rot. Averaged over varieties and dates, bulbs submitted to artificial heat had the highest percentage of bulbs with black mold. The kaolinite and straw mulch treatments were among the treatments with the lowest percentage of bulbs with black mold. There was no statistically significant difference in percentage of bulbs with neck rot between treatments, but there was a trend for the heat treatment to result in higher neck rot and for the straw mulch and kaolinite treatments to result in lower neck rot. Averaged over the two varieties, bulb internal decomposition increased with increasing bulb and soil temperature (Figs. 8 and 9).

The results of this trial in 2017 are similar to the results of the 2016 trial (Shock et al. 2017), when straw mulch resulted in the highest supercolossal and colossal bulb yields. In 2016, artificial heat was among the treatments with the lowest colossal bulb yield. In contrast to 2017, bulb yield and size for the kaolinite treatment were not different from the check treatment in 2016. In 2016, internal decomposition was lower, averaging 1.4% over all treatments compared to 3.3% in 2017. In 2016, there were no statistically significant differences in internal decomposition between treatments, but the heat treatments had a later start and a much shorter duration in 2016.

## Acknowledgements

This project was funded by the Idaho-Eastern Oregon Onion Committee, cooperating onion seed companies, Oregon State University, the Malheur County Education Service District, and supported by Formula Grant nos. 2017-31100-06041 and 2017-31200-06041 from the USDA National Institute of Food and Agriculture.

### References

- Shock, C.C., J. Barnum, and M. Seddigh. 1998. Calibration of Watermark soil moisture sensors for irrigation management. Irrigation Association. Proceedings of the International Irrigation Show. Pages 139-146. San Diego, CA.
- Shock, C.C., E.B.G. Feibert, and L.D. Saunders. 2000. Irrigation criteria for drip-irrigated onions. HortScience 35:63-66.
- Shock, C.C., E.B.G. Feibert, A. Rivera and L.D. Saunders. 2017. Onion internal quality in response to artificial heat and heat mitigation during bulb development. Malheur Experiment Station Annual Report 2016, Ext/CrS 157:43-53.

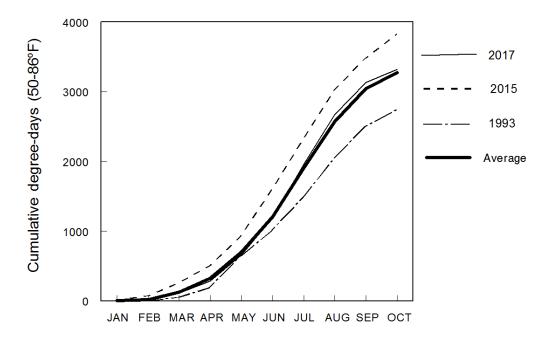



Figure 1. Cumulative growing degree-days (50-86°F) for 2015-2017 and 24-year average, Malheur Experiment Station, Oregon State University, Ontario, OR, 2017.

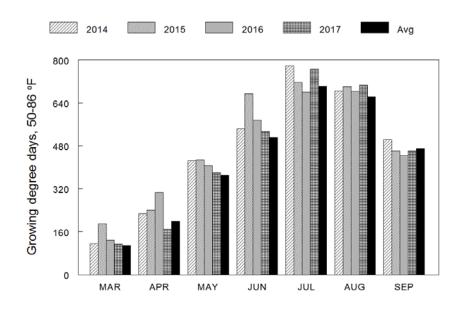



Figure 2. Monthly growing degree-days (50-86°F) for 2014-2017 and 24-year average, Malheur Experiment Station, Oregon State University, Ontario, OR, 2017.

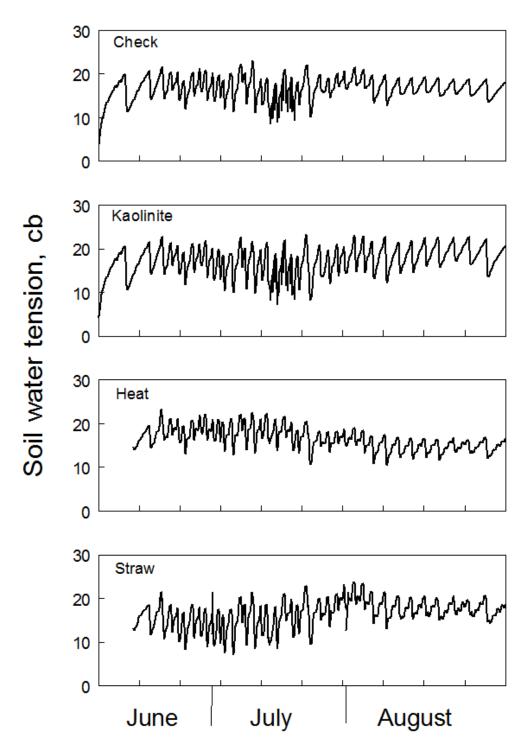



Figure 3. Soil water tension over time for four treatments. Average soil water tension in June and July was 16.6 cb, 16.4 cb, 17.8 cb, and 15.5 cb for the check, kaolinite, artificial heat, and straw mulch treatments, respectively. Malheur Experiment Station, Oregon State University, Ontario, OR, 2017.

Table 5. Soil and onion bulb temperature (°F) measurements for four management treatments to affect bulb and soil surface temperatures. Measurements were made between 12:30 and 3:30 p.m. on the south side of the onion bulbs one half inch above the soil surface and one half inch south of the same onion bulbs. Ambient air temperature was recorded at 2 p.m. Solar noon was close to 2 p.m. Malheur Experiment Station, Oregon State University, Ontario, OR, 2017.

|            |          |       |                   |        | Ambier | nt air |        |        |         |         |
|------------|----------|-------|-------------------|--------|--------|--------|--------|--------|---------|---------|
|            | 26-Jun   | 6-Jul | 14-Jul            | 20-Jul | 28-Jul | 4-Aug  | 11-Aug | 18-Aug | Average |         |
|            | 89       | 93    | 92                | 89     | 89     | 91     | 89     | 86     | 91      |         |
|            |          |       | Soil 4-inch depth |        |        |        |        |        |         |         |
|            | 26-Jun   | 6-Jul | 14-Jul            | 20-Jul | 28-Jul | 4-Aug  | 11-Aug | 18-Aug | Average | Average |
| Check      | 101.0    | 128.6 | 132.3             | 134.7  | 125.4  | 129.6  | 124.1  | 135.3  | 126.4   | 76.6    |
| Heat       | 103.4    | 149.0 | 142.5             | 136.0  | 135.6  | 142.7  | 138.7  | 143.7  | 136.5   | 82.5    |
| Kaolinite  | 103.2    | 128.3 | 127.6             | 125.9  | 124.4  | 123.2  | 118.5  | 130.9  | 122.7   | 76.6    |
| Straw      | 100.6    | 118.8 | 119.7             | 125.7  | 117.5  | 125.8  | 115.4  | 117.7  | 117.6   | 74.9    |
| LSD (0.05) | NS       | 14.0  | 6.9               | 7.0    | 7.4    | 7.7    | 8.9    | 7.0    | 4.0     | 2.2     |
|            |          |       |                   |        | Bulk   | )      |        |        |         |         |
|            | 26-Jun   | 6-Jul | 14-Jul            | 20-Jul | 28-Jul | 4-Aug  | 11-Aug | 18-Aug | Average |         |
| Check      | 91.2     | 105.1 | 108.6             | 103.7  | 104.2  | 105.2  | 105.0  | 109.2  | 104.0   |         |
| Heat       | 95.0     | 111.4 | 116.3             | 109.4  | 112.9  | 112.7  | 115.4  | 117.2  | 111.3   |         |
| Kaolinite  | 91.9     | 104.6 | 103.4             | 101.1  | 102.3  | 101.7  | 102.8  | 109.1  | 102.1   |         |
| Straw      | 92.6     | 101.7 | 99.8              | 100.8  | 101.9  | 105.9  | 105.9  | 111.4  | 102.5   |         |
| LSD (0.05) | $NS^{a}$ | 3.2   | 8.6               | 4.1    | 4.4    | 3.7    | 2.7    | 4.3    | 2.5     |         |

<sup>a</sup>Not significant.

Table 6. Yield and grade of two varieties of onions submitted to four temperature treatments, Malheur Experiment Station, Oregon State University, Ontario, OR, 2017.

|                           |           |                 |        | Marketal | ble yield l | by grad | е       | _     |        |                          |              |             |           |            |              |                 |
|---------------------------|-----------|-----------------|--------|----------|-------------|---------|---------|-------|--------|--------------------------|--------------|-------------|-----------|------------|--------------|-----------------|
| Variety                   | Treatment | Total<br>yield  | Total  | >4¼ in   | 4-4¼ in     | 3-4 in  | 2¼-3 in | Small | No. 2s | Bulb<br>counts<br>>4¼ in | Total<br>rot | Neck<br>rot | Plate rot | Split root | Tops<br>down | Leaf<br>dryness |
|                           |           |                 |        |          | cwt/ac      | re      |         |       |        | #/50 lb                  |              |             |           | %          |              | -               |
| Joaquin                   | Check     | 1065.2          | 1056.6 | 38.5     | 217.0       | 768.5   | 32.5    | 7.0   | 0.0    | 30.6                     | 0.0          | 0.0         | 0.0       | 0.0        | 46.0         | 9.0             |
|                           | Heat      | 862.3           | 841.1  | 32.5     | 140.1       | 612.1   | 56.3    | 9.2   | 0.7    | 27.9                     | 0.9          | 0.0         | 0.9       | 0.1        | 60.0         | 12.0            |
|                           | Kaolinite | 1088.2          | 1074.2 | 35.3     | 290.8       | 727.1   | 21.0    | 7.1   | 0.0    | 31.4                     | 0.4          | 0.0         | 0.4       | 0.0        | 26.0         | 8.0             |
|                           | Straw     | 1110.3          | 1103.5 | 44.8     | 297.3       | 738.8   | 22.6    | 4.0   | 0.0    | 32.2                     | 0.1          | 0.0         | 0.1       | 0.0        | 28.0         | 6.0             |
|                           | average   | 1031.5          | 1018.8 | 37.8     | 236.3       | 711.6   | 33.1    | 6.8   | 0.2    | 30.5                     | 0.4          | 0.0         | 0.4       | 0.0        | 40.0         | 8.8             |
| Granero                   | Check     | 988.8           | 974.7  | 17.5     | 168.5       | 755.1   | 33.5    | 7.7   | 0.0    | 31.1                     | 0.3          | 0.0         | 0.3       | 0.1        | 82.0         | 12.0            |
|                           | Heat      | 871.8           | 852.9  | 12.7     | 169.2       | 645.6   | 25.4    | 4.9   | 0.0    | 31.1                     | 1.1          | 0.0         | 1.1       | 0.1        | 78.0         | 16.0            |
|                           | Kaolinite | 1034.8          | 1021.6 | 14.8     | 162.7       | 811.7   | 32.3    | 7.4   | 0.0    | 29.2                     | 0.1          | 0.0         | 0.1       | 0.1        | 70.0         | 12.0            |
|                           | Straw     | 1053.4          | 1041.6 | 16.4     | 185.5       | 809.7   | 30.1    | 7.0   | 0.0    | 32.9                     | 0.3          | 0.0         | 0.3       | 0.0        | 72.0         | 9.0             |
|                           | average   | 987.2           | 972.7  | 15.4     | 171.5       | 755.5   | 30.3    | 6.7   | 0.0    | 31.1                     | 0.4          | 0.0         | 0.4       | 0.1        | 75.5         | 12.3            |
| Average                   | Check     | 1027.0          | 1015.6 | 28.0     | 192.8       | 761.8   | 33.0    | 7.3   | 0.0    | 30.8                     | 0.2          | 0.0         | 0.2       | 0.0        | 64.0         | 10.5            |
|                           | Heat      | 866.1           | 845.8  | 24.6     | 151.7       | 625.5   | 44.0    | 7.5   | 0.4    | 29.2                     | 1.0          | 0.0         | 1.0       | 0.1        | 69.0         | 14.0            |
|                           | Kaolinite | 1059.1          | 1045.5 | 24.1     | 220.9       | 773.3   | 27.2    | 7.3   | 0.0    | 30.3                     | 0.2          | 0.0         | 0.2       | 0.1        | 48.0         | 10.0            |
|                           | Straw     | 1081.9          | 1072.6 | 30.6     | 241.4       | 774.2   | 26.3    | 5.5   | 0.0    | 32.5                     | 0.2          | 0.0         | 0.2       | 0.0        | 50.0         | 7.5             |
|                           | average   | 1008.5          | 994.9  | 26.8     | 201.7       | 733.7   | 32.6    | 6.9   | 0.1    | 30.7                     | 0.4          | 0.0         | 0.4       | 0.1        | 57.8         | 10.5            |
| LSD (0.05)                |           |                 |        |          |             |         |         |       |        |                          |              |             |           |            |              |                 |
| Treatment                 |           | 81.0            | 81.0   | NS       | 27.0        | 78.7    | NS      | NS    | NS     | NS                       | 0.4          | NS          | 0.4       | 0.1        | 18.0         | 2.9             |
| Variety                   |           | 27.6            | 29.0   | 10.6     | 28.6        | 34.1    | NS      | NS    | NS     | NS                       | NS           | NS          | NS        | NS         | 8.6          | 1.5             |
| Treatment                 |           | NS <sup>a</sup> | NS     | NS       | 57.2        | NS      | NS      | NS    | NS     | NS                       | NS           | NS          | NS        | NS         | NS           | NS              |
| <sup>a</sup> Not signific | ant.      |                 |        |          |             |         |         |       |        |                          |              |             |           |            |              |                 |

Onion Internal Quality in Response to Artificial Heat and Heat Mitigation During Bulb Development 52

Table 7. Internal defects on November 15, 2017 and January 29, 2018 for two varieties of onions submitted to four treatments, Malheur Experiment Station, Oregon State University, Ontario, OR, 2017. Continued on next page.

| November |           |              |            |       |              |             |       |       |                |            |       |              |             |       |       |
|----------|-----------|--------------|------------|-------|--------------|-------------|-------|-------|----------------|------------|-------|--------------|-------------|-------|-------|
|          |           |              |            | All b | oulbs        |             |       |       | Diseased bulbs |            |       |              |             |       |       |
|          |           | Comple       | ete scales |       | Incomp       | lete scales | 5     | Total | Comple         | ete scales |       | Incomp       | lete scales | 5     | Total |
| Variety  | Treatment | no dry scale | dry scale  | total | no dry scale | dry scale   | total |       | no dry scale   | dry scale  | total | no dry scale | dry scale   | total |       |
|          |           |              |            |       |              |             |       | %     |                |            |       |              |             |       |       |
| Joaquin  | Check     | 63.3         | 0.0        | 63.3  | 28.7         | 8.0         | 36.7  | 100   | 0.0            | 0.0        | 0.0   | 2.0          | 0.7         | 2.7   | 2.7   |
|          | Heat      | 59.3         | 0.0        | 59.3  | 21.3         | 19.3        | 40.7  | 100   | 0.7            | 0.0        | 0.7   | 4.7          | 3.3         | 8.0   | 8.7   |
|          | Kaolinite | 66.0         | 1.3        | 67.3  | 30.0         | 2.7         | 32.7  | 100   | 0.0            | 0.0        | 0.0   | 0.7          | 0.0         | 0.7   | 0.7   |
|          | Straw     | 60.7         | 0.7        | 61.3  | 29.2         | 9.9         | 39.1  | 100   | 0.0            | 0.0        | 0.0   | 0.0          | 1.3         | 1.3   | 1.3   |
|          | average   | 62.3         | 0.5        | 62.8  | 27.3         | 10.0        | 37.3  | 100   | 0.2            | 0.0        | 0.2   | 1.8          | 1.3         | 3.2   | 3.3   |
| Granero  | Check     | 31.3         | 0.0        | 31.3  | 53.9         | 16.3        | 70.1  | 100   | 0.0            | 0.0        | 0.0   | 0.0          | 1.9         | 1.9   | 1.9   |
|          | Heat      | 38.0         | 0.0        | 38.0  | 43.9         | 18.0        | 61.9  | 100   | 0.0            | 0.0        | 0.0   | 5.5          | 4.7         | 10.1  | 10.1  |
|          | Kaolinite | 35.3         | 0.0        | 35.3  | 56.2         | 8.6         | 64.9  | 100   | 0.0            | 0.0        | 0.0   | 0.7          | 0.0         | 0.7   | 0.7   |
|          | Straw     | 39.3         | 0.7        | 40.0  | 54.0         | 6.0         | 60.0  | 100   | 0.0            | 0.0        | 0.0   | 0.0          | 0.0         | 0.0   | 0.0   |
|          | average   | 36.0         | 0.2        | 36.2  | 52.0         | 12.2        | 64.2  | 100   | 0.0            | 0.0        | 0.0   | 1.5          | 1.7         | 3.2   | 3.2   |
| Average  | Check     | 47.3         | 0.0        | 47.3  | 41.3         | 12.1        | 53.4  | 100   | 0.0            | 0.0        | 0.0   | 1.0          | 1.3         | 2.3   | 2.3   |
|          | Heat      | 48.7         | 0.0        | 48.7  | 32.6         | 18.7        | 51.3  | 100   | 0.3            | 0.0        | 0.3   | 5.1          | 4.0         | 9.1   | 9.4   |
|          | Kaolinite | 50.7         | 0.7        | 51.3  | 43.1         | 5.7         | 48.8  | 100   | 0.0            | 0.0        | 0.0   | 0.7          | 0.0         | 0.7   | 0.7   |
|          | Straw     | 50.0         | 0.7        | 50.7  | 41.6         | 7.9         | 49.6  | 100   | 0.0            | 0.0        | 0.0   | 0.0          | 0.7         | 0.7   | 0.7   |
|          | average   | 49.2         | 0.3        | 49.5  | 39.7         | 11.1        | 50.8  | 100   | 0.1            | 0.0        | 0.1   | 1.7          | 1.5         | 3.2   | 3.3   |
| January  |           |              |            |       |              |             |       |       |                |            |       |              |             |       |       |

|         |           |              | All bulbs  |       |              |             |       |       |              | Diseased bulbs |       |              |            |       |       |  |
|---------|-----------|--------------|------------|-------|--------------|-------------|-------|-------|--------------|----------------|-------|--------------|------------|-------|-------|--|
|         |           | Comple       | ete scales |       | Incomp       | lete scales | 6     | Total | Comple       | ete scales     |       | Incomp       | ete scales |       | Total |  |
| Variety | Treatment | no dry scale | dry scale  | total | no dry scale | dry scale   | total |       | no dry scale | dry scale      | total | no dry scale | dry scale  | total |       |  |
|         |           |              |            |       |              |             |       | % -   |              |                |       |              |            |       |       |  |
| Joaquin | Check     | 36.0         | 0.0        | 36.0  | 32.8         | 31.2        | 64.0  | 100.0 | 0.0          | 0.0            | 0.0   | 2.4          | 2.4        | 4.8   | 4.8   |  |
|         | Heat      | 24.8         | 0.8        | 25.6  | 40.7         | 33.7        | 74.4  | 100.0 | 0.0          | 0.0            | 0.0   | 12.3         | 1.6        | 13.9  | 13.9  |  |
|         | Kaolinite | 36.0         | 0.8        | 36.8  | 34.4         | 28.8        | 63.2  | 100.0 | 0.0          | 0.0            | 0.0   | 2.4          | 0.0        | 2.4   | 2.4   |  |
|         | Straw     | 41.6         | 1.6        | 43.2  | 27.2         | 29.6        | 56.8  | 100.0 | 0.0          | 0.0            | 0.0   | 0.8          | 0.8        | 1.6   | 1.6   |  |
|         | average   | 34.6         | 0.8        | 35.4  | 33.8         | 30.8        | 64.6  | 100.0 | 0.0          | 0.0            | 0.0   | 4.5          | 1.2        | 5.7   | 5.7   |  |
| Granero | Check     | 6.4          | 0.0        | 6.4   | 32.0         | 61.6        | 93.6  | 100.0 | 0.0          | 0.0            | 0.0   | 3.2          | 2.4        | 5.6   | 5.6   |  |
|         | Heat      | 8.0          | 0.0        | 8.0   | 24.0         | 68.0        | 92.0  | 100.0 | 0.0          | 0.0            | 0.0   | 7.2          | 2.4        | 9.6   | 9.6   |  |
|         | Kaolinite | 8.0          | 0.0        | 8.0   | 17.0         | 74.9        | 91.9  | 100.0 | 0.0          | 0.0            | 0.0   | 0.8          | 1.7        | 2.5   | 2.5   |  |
|         | Straw     | 4.8          | 0.0        | 4.8   | 36.3         | 58.7        | 95.0  | 100.0 | 0.0          | 0.0            | 0.0   | 0.8          | 0.0        | 0.8   | 0.8   |  |
|         | average   | 6.8          | 0.0        | 6.8   | 27.3         | 65.8        | 93.1  | 100.0 | 0.0          | 0.0            | 0.0   | 3.0          | 1.6        | 4.6   | 4.6   |  |
| Average | Check     | 21.2         | 0.0        | 21.2  | 32.4         | 46.4        | 78.8  | 100.0 | 0.0          | 0.0            | 0.0   | 2.8          | 2.4        | 5.2   | 5.2   |  |
|         | Heat      | 16.4         | 0.4        | 16.8  | 32.3         | 50.9        | 83.2  | 100.0 | 0.0          | 0.0            | 0.0   | 9.8          | 2.0        | 11.8  | 11.8  |  |
|         | Kaolinite | 22.0         | 0.4        | 22.4  | 25.7         | 51.8        | 77.5  | 100.0 | 0.0          | 0.0            | 0.0   | 1.6          | 0.8        | 2.4   | 2.4   |  |
|         | Straw     | 23.2         | 0.8        | 24.0  | 31.8         | 44.2        | 75.9  | 100.0 | 0.0          | 0.0            | 0.0   | 0.8          | 0.4        | 1.2   | 1.2   |  |
|         | average   | 20.7         | 0.4        | 21.1  | 30.5         | 48.3        | 78.9  | 100.0 | 0.0          | 0.0            | 0.0   | 3.7          | 1.4        | 5.1   | 5.1   |  |

Onion Internal Quality in Response to Artificial Heat and Heat Mitigation During Bulb Development 53

Table 7. (Continued) Internal defects averaged over two dates for two varieties of onions submitted to four treatments, Malheur Experiment Station, Oregon State University, Ontario, OR, 2017.

Average

|             |                                                                                                                                         |                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Diseased bulbs                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |
|-------------|-----------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
|             |                                                                                                                                         |                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |
|             | Compl                                                                                                                                   | ete scales                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Incomp                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | lete scale                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | es                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Iotal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | plete scale                                                                                                                                                                                                           | S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | plete scale                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | es                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Total                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |
| <b>T</b>    |                                                                                                                                         | 1                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |
| Treatment   |                                                                                                                                         | •                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | e total                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |
|             |                                                                                                                                         |                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |
|             |                                                                                                                                         |                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |
|             |                                                                                                                                         |                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 11.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |
|             |                                                                                                                                         |                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |
| Straw       |                                                                                                                                         |                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |
| average     | 48.5                                                                                                                                    | 0.6                                                                                                                                                                                                | 49.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 30.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 21.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 51.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 100.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.0                                                                                                                                                                                                                   | 0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 4.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 4.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |
| Check       | 21.2                                                                                                                                    | 0.0                                                                                                                                                                                                | 21.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 41.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 37.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 79.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 100.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.0                                                                                                                                                                                                                   | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 4.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 4.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |
| Heat        | 23.6                                                                                                                                    | 0.0                                                                                                                                                                                                | 23.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 33.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 43.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 76.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 100.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.0                                                                                                                                                                                                                   | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 6.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 4.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 10.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 10.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |
| Kaolinite   | 20.4                                                                                                                                    | 0.0                                                                                                                                                                                                | 20.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 38.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 41.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 79.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 100.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.0                                                                                                                                                                                                                   | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |
| Straw       | 22.8                                                                                                                                    | 0.4                                                                                                                                                                                                | 23.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 43.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 33.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 76.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 100.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.0                                                                                                                                                                                                                   | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |
| average     | 22.0                                                                                                                                    | 0.1                                                                                                                                                                                                | 22.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 39.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 38.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 78.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 100.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.0                                                                                                                                                                                                                   | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 4.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 4.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |
| Check       | 35.4                                                                                                                                    | 0.0                                                                                                                                                                                                | 35.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 36.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 28.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 65.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 100.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.0                                                                                                                                                                                                                   | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 3.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 3.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |
| Heat        | 32.8                                                                                                                                    | 0.2                                                                                                                                                                                                | 33.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 31.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 35.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 67.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 100.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.0                                                                                                                                                                                                                   | 0.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 7.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 3.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 11.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 11.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |
| Kaolinite   | 35.6                                                                                                                                    | 0.6                                                                                                                                                                                                | 36.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 35.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 28.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 63.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 100.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.0                                                                                                                                                                                                                   | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |
| Straw       | 37.2                                                                                                                                    | 0.6                                                                                                                                                                                                | 37.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 35.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 26.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 62.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 100.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.0                                                                                                                                                                                                                   | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |
|             |                                                                                                                                         |                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |
| t           | NS <sup>a</sup>                                                                                                                         | NS                                                                                                                                                                                                 | NS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | NS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | NS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | NS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | NS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | NS                                                                                                                                                                                                                    | NS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | NS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 6.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 6.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |
|             |                                                                                                                                         | NS                                                                                                                                                                                                 | 9.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 8.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 7.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 6.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | NS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | NS                                                                                                                                                                                                                    | NS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | NS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | NS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | NS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | NS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |
|             |                                                                                                                                         | NS                                                                                                                                                                                                 | 7.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 5.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 6.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | NS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | NS                                                                                                                                                                                                                    | NS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | NS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |
| t X variety | NS                                                                                                                                      | NS                                                                                                                                                                                                 | NS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | NS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | NS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | NS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | NS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | NS                                                                                                                                                                                                                    | NS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | NS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | NS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | NS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |
| t X date    | NS                                                                                                                                      | NS                                                                                                                                                                                                 | NS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | NS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | NS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | NS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | NS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | NS                                                                                                                                                                                                                    | NS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | NS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | NS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | NS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |
| X date      |                                                                                                                                         |                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | NS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |
|             |                                                                                                                                         |                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | NS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |
|             | Check<br>Heat<br>Kaolinite<br>Straw<br>average<br>Check<br>Heat<br>Kaolinite<br>Straw<br>average<br>Check<br>Heat<br>Kaolinite<br>Straw | Treatmentno dry scaleCheck49.6Heat42.0Kaolinite50.8Straw51.6average48.5Check21.2Heat23.6Kaolinite20.4Straw22.8average22.0Check35.4Heat32.8Kaolinite35.6Straw37.2NSa9.98.0X varietyX dateNSX dateNS | Treatment         no dry scale         dry scale           Check         49.6         0.0           Heat         42.0         0.4           Kaolinite         50.8         1.2           Straw         51.6         0.8           average         48.5         0.6           Check         21.2         0.0           Heat         23.6         0.0           Kaolinite         20.4         0.0           Straw         22.8         0.4           average         22.0         0.1           Check         35.4         0.0           Straw         22.8         0.4           average         22.0         0.1           Check         35.4         0.0           Heat         32.8         0.2           Kaolinite         35.6         0.6           Straw         37.2         0.6           Value         NS         NS           9.9         NS         8.0           Straw         37.2         0.6           X variety         NS         NS           X date         NS         NS           X date         NS <td< td=""><td>Complete scales           Treatment         no dry scale         dry scale         total           Check         49.6         0.0         49.6           Heat         42.0         0.4         42.4           Kaolinite         50.8         1.2         52.0           Straw         51.6         0.8         52.4           average         48.5         0.6         49.1           Check         21.2         0.0         21.2           Heat         23.6         0.0         23.6           Kaolinite         20.4         0.0         20.4           Straw         22.8         0.4         23.2           average         22.0         0.1         22.1           Check         35.4         0.0         35.4           Heat         32.8         0.2         33.0           Kaolinite         35.6         0.6         36.2           Straw         37.2         0.6         37.8           9.9         NS         9.9         8.0         NS           Straw         37.2         0.6         37.8           Straw         37.2         NS         NS</td><td>Treatment         no dry scale         dry scale         total         no dry scale           Check         49.6         0.0         49.6         30.4           Heat         42.0         0.4         42.4         29.5           Kaolinite         50.8         1.2         52.0         32.0           Straw         51.6         0.8         52.4         27.9           average         48.5         0.6         49.1         30.0           Check         21.2         0.0         21.2         41.9           Heat         23.6         0.0         23.6         33.2           Kaolinite         20.4         0.0         20.4         38.6           Straw         22.8         0.4         23.2         43.8           average         22.0         0.1         22.1         39.4           Check         35.4         0.0         35.4         36.2           Heat         32.8         0.2         33.0         31.3           Kaolinite         35.6         0.6         36.2         35.3           Straw         37.2         0.6         37.8         35.8           Vale         NS         NS</td></td<> <td>Complete scales         Incomplete scale           Treatment         no dry scale         dry scale         total         no dry scale         dry scale           Check         49.6         0.0         49.6         30.4         20.0           Heat         42.0         0.4         42.4         29.5         28.1           Kaolinite         50.8         1.2         52.0         32.0         16.0           Straw         51.6         0.8         52.4         27.9         19.9           average         48.5         0.6         49.1         30.0         21.0           Check         21.2         0.0         21.2         41.9         37.8           Heat         23.6         0.0         23.6         33.2         43.2           Kaolinite         20.4         0.0         20.4         38.6         41.0           Straw         22.8         0.4         23.2         43.8         33.0           average         22.0         0.1         22.1         39.4         38.7           Check         35.4         0.0         35.4         36.2         28.9           Heat         32.8         0.2         33.0</td> <td>Complete scales         Incomplete scales           Treatment no dry scale dry scale total         no dry scale dry scale total           Check         49.6         0.0         49.6         30.4         20.0         50.4           Heat         42.0         0.4         42.4         29.5         28.1         57.6           Kaolinite         50.8         1.2         52.0         32.0         16.0         48.0           Straw         51.6         0.8         52.4         27.9         19.9         47.9           average         48.5         0.6         49.1         30.0         21.0         51.0           Check         21.2         0.0         21.2         41.9         37.8         79.7           Heat         23.6         0.0         23.6         33.2         43.2         76.4           Kaolinite         20.4         0.0         20.4         38.6         41.0         79.7           Straw         22.8         0.4         23.2         43.8         33.0         76.7           average         22.0         0.1         22.1         39.4         38.7         78.1           Check         35.4         0.0         35.4</td> <td>Complete scales         Incomplete scales         Total           Treatment no dry scale dry scale total         no dry scale dry scale total         no dry scale dry scale total         9           Check         49.6         0.0         49.6         30.4         20.0         50.4         100.0           Heat         42.0         0.4         42.4         29.5         28.1         57.6         100.0           Kaolinite         50.8         1.2         52.0         32.0         16.0         48.0         100.0           Straw         51.6         0.8         52.4         27.9         19.9         47.9         100.0           average         48.5         0.6         49.1         30.0         21.0         51.0         100.0           Check         21.2         0.0         21.2         41.9         37.8         79.7         100.0           Kaolinite         20.4         0.0         20.4         38.6         41.0         79.7         100.0           Kraw         22.8         0.4         23.2         43.8         33.0         76.7         100.0           Straw         22.8         0.4         23.2         28.9         65.0         100.0     <td>Complete scales         Incomplete scales         Total         Com<br/>no dry<br/>scale           Treatment no dry scale dry scale total         no dry scale dry scale total         no dry scale total         scale          </td><td>Complete scales         Incomplete scales         Total         Complete scale           Treatment         no dry scale         dry scale         total         no dry scale         dry scale         dry scale           Check         49.6         0.0         49.6         30.4         20.0         50.4         100.0         0.0         0.0           Heat         42.0         0.4         42.4         29.5         28.1         57.6         100.0         0.4         0.0           Kaolinite         50.8         1.2         52.0         32.0         16.0         48.0         100.0         0.0         0.0           Straw         51.6         0.8         52.4         27.9         19.9         47.9         100.0         0.0         0.0           Average         48.5         0.6         49.1         30.0         21.0         51.0         100.0         0.0         0.0           Kaolinite         20.4         0.0         23.6         33.2         43.2         76.4         100.0         0.0         0.0           Kaolinite         20.4         0.0         23.6         33.2         43.2         76.4         100.0         0.0         0.0</td><td>Complete scales         Incomplete scales         Total         Complete scales         Total         Complete scales           Treatment no dry scale dry scale total         no dry scale dry scale total         no dry scale dry scale total         scale dry scale total         no dry scale total           Check         49.6         0.0         49.6         30.4         20.0         50.4         100.0         0.0         0.0         0.0           Heat         42.0         0.4         42.4         29.5         28.1         57.6         100.0         0.0         0.0         0.0         0.0           Straw         51.6         0.8         52.4         27.9         19.9         47.9         100.0         0.1         0.0         0.0           Average         48.5         0.6         49.1         30.0         21.0         51.0         100.0         0.1         0.0         0.0         0.0           Average         48.5         0.6         49.1         30.0         21.0         51.0         100.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0</td><td>Complete scales         Incomplete scales         Total         Complete scales         Incom           Treatment no dry scale dry scale total         no dry scale dry scale total         scale         dry scale total         scale         scale         dry scale total         scale         scale         scale         scale         dry scale total         scale         scals</td><td>Complete scales         Incomplete scales         Total         Complete scales         Incomplete scales         Incomplete scale         Incomplete scale</td><td>Complete scales         Incomplete scales         Total         Complete scales         Incomplete scales         No dry         Incomplete scales         No dry           Treatment no dry scale dry scale total         no dry scale dry scale dry scale dry scale total         scale dry scale total         no dry         sc</td></td> | Complete scales           Treatment         no dry scale         dry scale         total           Check         49.6         0.0         49.6           Heat         42.0         0.4         42.4           Kaolinite         50.8         1.2         52.0           Straw         51.6         0.8         52.4           average         48.5         0.6         49.1           Check         21.2         0.0         21.2           Heat         23.6         0.0         23.6           Kaolinite         20.4         0.0         20.4           Straw         22.8         0.4         23.2           average         22.0         0.1         22.1           Check         35.4         0.0         35.4           Heat         32.8         0.2         33.0           Kaolinite         35.6         0.6         36.2           Straw         37.2         0.6         37.8           9.9         NS         9.9         8.0         NS           Straw         37.2         0.6         37.8           Straw         37.2         NS         NS | Treatment         no dry scale         dry scale         total         no dry scale           Check         49.6         0.0         49.6         30.4           Heat         42.0         0.4         42.4         29.5           Kaolinite         50.8         1.2         52.0         32.0           Straw         51.6         0.8         52.4         27.9           average         48.5         0.6         49.1         30.0           Check         21.2         0.0         21.2         41.9           Heat         23.6         0.0         23.6         33.2           Kaolinite         20.4         0.0         20.4         38.6           Straw         22.8         0.4         23.2         43.8           average         22.0         0.1         22.1         39.4           Check         35.4         0.0         35.4         36.2           Heat         32.8         0.2         33.0         31.3           Kaolinite         35.6         0.6         36.2         35.3           Straw         37.2         0.6         37.8         35.8           Vale         NS         NS | Complete scales         Incomplete scale           Treatment         no dry scale         dry scale         total         no dry scale         dry scale           Check         49.6         0.0         49.6         30.4         20.0           Heat         42.0         0.4         42.4         29.5         28.1           Kaolinite         50.8         1.2         52.0         32.0         16.0           Straw         51.6         0.8         52.4         27.9         19.9           average         48.5         0.6         49.1         30.0         21.0           Check         21.2         0.0         21.2         41.9         37.8           Heat         23.6         0.0         23.6         33.2         43.2           Kaolinite         20.4         0.0         20.4         38.6         41.0           Straw         22.8         0.4         23.2         43.8         33.0           average         22.0         0.1         22.1         39.4         38.7           Check         35.4         0.0         35.4         36.2         28.9           Heat         32.8         0.2         33.0 | Complete scales         Incomplete scales           Treatment no dry scale dry scale total         no dry scale dry scale total           Check         49.6         0.0         49.6         30.4         20.0         50.4           Heat         42.0         0.4         42.4         29.5         28.1         57.6           Kaolinite         50.8         1.2         52.0         32.0         16.0         48.0           Straw         51.6         0.8         52.4         27.9         19.9         47.9           average         48.5         0.6         49.1         30.0         21.0         51.0           Check         21.2         0.0         21.2         41.9         37.8         79.7           Heat         23.6         0.0         23.6         33.2         43.2         76.4           Kaolinite         20.4         0.0         20.4         38.6         41.0         79.7           Straw         22.8         0.4         23.2         43.8         33.0         76.7           average         22.0         0.1         22.1         39.4         38.7         78.1           Check         35.4         0.0         35.4 | Complete scales         Incomplete scales         Total           Treatment no dry scale dry scale total         no dry scale dry scale total         no dry scale dry scale total         9           Check         49.6         0.0         49.6         30.4         20.0         50.4         100.0           Heat         42.0         0.4         42.4         29.5         28.1         57.6         100.0           Kaolinite         50.8         1.2         52.0         32.0         16.0         48.0         100.0           Straw         51.6         0.8         52.4         27.9         19.9         47.9         100.0           average         48.5         0.6         49.1         30.0         21.0         51.0         100.0           Check         21.2         0.0         21.2         41.9         37.8         79.7         100.0           Kaolinite         20.4         0.0         20.4         38.6         41.0         79.7         100.0           Kraw         22.8         0.4         23.2         43.8         33.0         76.7         100.0           Straw         22.8         0.4         23.2         28.9         65.0         100.0 <td>Complete scales         Incomplete scales         Total         Com<br/>no dry<br/>scale           Treatment no dry scale dry scale total         no dry scale dry scale total         no dry scale total         scale          </td> <td>Complete scales         Incomplete scales         Total         Complete scale           Treatment         no dry scale         dry scale         total         no dry scale         dry scale         dry scale           Check         49.6         0.0         49.6         30.4         20.0         50.4         100.0         0.0         0.0           Heat         42.0         0.4         42.4         29.5         28.1         57.6         100.0         0.4         0.0           Kaolinite         50.8         1.2         52.0         32.0         16.0         48.0         100.0         0.0         0.0           Straw         51.6         0.8         52.4         27.9         19.9         47.9         100.0         0.0         0.0           Average         48.5         0.6         49.1         30.0         21.0         51.0         100.0         0.0         0.0           Kaolinite         20.4         0.0         23.6         33.2         43.2         76.4         100.0         0.0         0.0           Kaolinite         20.4         0.0         23.6         33.2         43.2         76.4         100.0         0.0         0.0</td> <td>Complete scales         Incomplete scales         Total         Complete scales         Total         Complete scales           Treatment no dry scale dry scale total         no dry scale dry scale total         no dry scale dry scale total         scale dry scale total         no dry scale total           Check         49.6         0.0         49.6         30.4         20.0         50.4         100.0         0.0         0.0         0.0           Heat         42.0         0.4         42.4         29.5         28.1         57.6         100.0         0.0         0.0         0.0         0.0           Straw         51.6         0.8         52.4         27.9         19.9         47.9         100.0         0.1         0.0         0.0           Average         48.5         0.6         49.1         30.0         21.0         51.0         100.0         0.1         0.0         0.0         0.0           Average         48.5         0.6         49.1         30.0         21.0         51.0         100.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0</td> <td>Complete scales         Incomplete scales         Total         Complete scales         Incom           Treatment no dry scale dry scale total         no dry scale dry scale total         scale         dry scale total         scale         scale         dry scale total         scale         scale         scale         scale         dry scale total         scale         scals</td> <td>Complete scales         Incomplete scales         Total         Complete scales         Incomplete scales         Incomplete scale         Incomplete scale</td> <td>Complete scales         Incomplete scales         Total         Complete scales         Incomplete scales         No dry         Incomplete scales         No dry           Treatment no dry scale dry scale total         no dry scale dry scale dry scale dry scale total         scale dry scale total         no dry         sc</td> | Complete scales         Incomplete scales         Total         Com<br>no dry<br>scale           Treatment no dry scale dry scale total         no dry scale dry scale total         no dry scale total         scale | Complete scales         Incomplete scales         Total         Complete scale           Treatment         no dry scale         dry scale         total         no dry scale         dry scale         dry scale           Check         49.6         0.0         49.6         30.4         20.0         50.4         100.0         0.0         0.0           Heat         42.0         0.4         42.4         29.5         28.1         57.6         100.0         0.4         0.0           Kaolinite         50.8         1.2         52.0         32.0         16.0         48.0         100.0         0.0         0.0           Straw         51.6         0.8         52.4         27.9         19.9         47.9         100.0         0.0         0.0           Average         48.5         0.6         49.1         30.0         21.0         51.0         100.0         0.0         0.0           Kaolinite         20.4         0.0         23.6         33.2         43.2         76.4         100.0         0.0         0.0           Kaolinite         20.4         0.0         23.6         33.2         43.2         76.4         100.0         0.0         0.0 | Complete scales         Incomplete scales         Total         Complete scales         Total         Complete scales           Treatment no dry scale dry scale total         no dry scale dry scale total         no dry scale dry scale total         scale dry scale total         no dry scale total           Check         49.6         0.0         49.6         30.4         20.0         50.4         100.0         0.0         0.0         0.0           Heat         42.0         0.4         42.4         29.5         28.1         57.6         100.0         0.0         0.0         0.0         0.0           Straw         51.6         0.8         52.4         27.9         19.9         47.9         100.0         0.1         0.0         0.0           Average         48.5         0.6         49.1         30.0         21.0         51.0         100.0         0.1         0.0         0.0         0.0           Average         48.5         0.6         49.1         30.0         21.0         51.0         100.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0 | Complete scales         Incomplete scales         Total         Complete scales         Incom           Treatment no dry scale dry scale total         no dry scale dry scale total         scale         dry scale total         scale         scale         dry scale total         scale         scale         scale         scale         dry scale total         scale         scals | Complete scales         Incomplete scales         Total         Complete scales         Incomplete scales         Incomplete scale         Incomplete scale | Complete scales         Incomplete scales         Total         Complete scales         Incomplete scales         No dry         Incomplete scales         No dry           Treatment no dry scale dry scale total         no dry scale dry scale dry scale dry scale total         scale dry scale total         no dry         sc |  |

<sup>a</sup>Not significant.

Table 8. Internal decomposition by disease type on November 15, 2017 and January 29, 2018 for two varieties of onions submitted to four treatments, Malheur Experiment Station, Oregon State University, Ontario, OR, 2017. Continued on next page.

| November           |                                                                                                                   |                                                                    |                                                                         |                                                                                          |                                                                                  |
|--------------------|-------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|-------------------------------------------------------------------------|------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|
|                    |                                                                                                                   | Bacterial                                                          | Fusarium                                                                |                                                                                          |                                                                                  |
| Variety            | Treatment                                                                                                         | rot                                                                | proliferatum                                                            | Neck rot                                                                                 | Black mold                                                                       |
|                    |                                                                                                                   |                                                                    | %                                                                       |                                                                                          |                                                                                  |
| Joaquin            | Check                                                                                                             | 0.0                                                                | 0.0                                                                     | 0.0                                                                                      | 0.7                                                                              |
|                    | Heat                                                                                                              | 0.0                                                                | 0.0                                                                     | 6.4                                                                                      | 2.7                                                                              |
|                    | Kaolinite                                                                                                         | 0.0                                                                | 0.0                                                                     | 0.8                                                                                      | 0.0                                                                              |
|                    | Straw                                                                                                             | 0.0                                                                | 0.0                                                                     | 0.0                                                                                      | 0.6                                                                              |
|                    | average                                                                                                           | 0.0                                                                | 0.0                                                                     | 1.8                                                                                      | 1.0                                                                              |
| Granero            | Check                                                                                                             | 0.0                                                                | 0.0                                                                     | 0.0                                                                                      | 1.9                                                                              |
|                    | Heat                                                                                                              | 1.6                                                                | 0.0                                                                     | 4.2                                                                                      | 5.3                                                                              |
|                    | Kaolinite                                                                                                         | 0.0                                                                | 0.0                                                                     | 0.0                                                                                      | 0.7                                                                              |
|                    | Straw                                                                                                             | 0.0                                                                | 0.0                                                                     | 0.0                                                                                      | 0.0                                                                              |
|                    | average                                                                                                           | 0.4                                                                | 0.0                                                                     | 1.0                                                                                      | 2.0                                                                              |
| Average            | Check                                                                                                             | 0.0                                                                | 0.0                                                                     | 0.0                                                                                      | 1.3                                                                              |
|                    | Heat                                                                                                              | 0.8                                                                | 0.0                                                                     | 5.3                                                                                      | 4.0                                                                              |
|                    | Kaolinite                                                                                                         | 0.0                                                                | 0.0                                                                     | 0.4                                                                                      | 0.3                                                                              |
|                    | Straw                                                                                                             | 0.0                                                                | 0.0                                                                     | 0.0                                                                                      | 0.3                                                                              |
|                    | average                                                                                                           | 0.2                                                                | 0.0                                                                     | 1.4                                                                                      | 1.5                                                                              |
| January            |                                                                                                                   |                                                                    |                                                                         |                                                                                          |                                                                                  |
|                    |                                                                                                                   | Bacterial                                                          | Fusarium                                                                |                                                                                          |                                                                                  |
| Variety            |                                                                                                                   |                                                                    |                                                                         | Nook rot                                                                                 | DIA 1                                                                            |
| vanety             | Treatment                                                                                                         | rot                                                                | proliferatum                                                            |                                                                                          | Black mold                                                                       |
| vanety             | Treatment                                                                                                         | rot                                                                | proliteratum<br>%                                                       |                                                                                          | Black mold                                                                       |
| Joaquin            | Treatment<br>Check                                                                                                | rot                                                                |                                                                         |                                                                                          | 2.0                                                                              |
|                    |                                                                                                                   |                                                                    | %                                                                       |                                                                                          |                                                                                  |
|                    | Check                                                                                                             | 0.0                                                                | %<br>0.0                                                                | 2.4                                                                                      | 2.0                                                                              |
|                    | Check<br>Heat                                                                                                     | 0.0<br>0.0                                                         | %<br>0.0<br>0.0                                                         | 2.4<br>12.3                                                                              | 2.0<br>2.9                                                                       |
|                    | Check<br>Heat<br>Kaolinite                                                                                        | 0.0<br>0.0<br>0.0                                                  | %<br>0.0<br>0.0<br>0.0                                                  | 2.4<br>12.3<br>2.4                                                                       | 2.0<br>2.9<br>0.0                                                                |
|                    | Check<br>Heat<br>Kaolinite<br>Straw                                                                               | 0.0<br>0.0<br>0.0<br>0.0                                           | %<br>0.0<br>0.0<br>0.0<br>0.0                                           | 2.4<br>12.3<br>2.4<br>0.8                                                                | 2.0<br>2.9<br>0.0<br>0.7                                                         |
| Joaquin            | Check<br>Heat<br>Kaolinite<br>Straw<br>average                                                                    | 0.0<br>0.0<br>0.0<br>0.0<br>0.0                                    | %<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0                                    | 2.4<br>12.3<br>2.4<br>0.8<br>4.5                                                         | 2.0<br>2.9<br>0.0<br>0.7<br>1.4                                                  |
| Joaquin            | Check<br>Heat<br>Kaolinite<br>Straw<br>average<br>Check                                                           | 0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0                             | %<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.8                             | 2.4<br>12.3<br>2.4<br>0.8<br>4.5<br>4.8                                                  | 2.0<br>2.9<br>0.0<br>0.7<br>1.4<br>0.0                                           |
| Joaquin            | Check<br>Heat<br>Kaolinite<br>Straw<br>average<br>Check<br>Heat                                                   | 0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0               | %<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.8<br>0.0                      | 2.4<br>12.3<br>2.4<br>0.8<br>4.5<br>4.8<br>7.2                                           | 2.0<br>2.9<br>0.0<br>0.7<br>1.4<br>0.0<br>3.3                                    |
| Joaquin            | Check<br>Heat<br>Kaolinite<br>Straw<br>average<br>Check<br>Heat<br>Kaolinite                                      | 0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0        | %<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.8<br>0.0<br>0.0<br>0.0        | 2.4<br>12.3<br>2.4<br>0.8<br>4.5<br>4.8<br>7.2<br>0.8                                    | 2.0<br>2.9<br>0.0<br>0.7<br>1.4<br>0.0<br>3.3<br>1.4                             |
| Joaquin            | Check<br>Heat<br>Kaolinite<br>Straw<br>average<br>Check<br>Heat<br>Kaolinite<br>Straw                             | 0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0 | %<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.8<br>0.0<br>0.0<br>0.0<br>0.0 | 2.4<br>12.3<br>2.4<br>0.8<br>4.5<br>4.8<br>7.2<br>0.8<br>0.8                             | 2.0<br>2.9<br>0.0<br>0.7<br>1.4<br>0.0<br>3.3<br>1.4<br>0.0                      |
| Joaquin<br>Granero | Check<br>Heat<br>Kaolinite<br>Straw<br>average<br>Check<br>Heat<br>Kaolinite<br>Straw<br>average                  | 0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0 | %<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.8<br>0.0<br>0.0               | 2.4<br>12.3<br>2.4<br>0.8<br>4.5<br>4.8<br>7.2<br>0.8<br>0.8<br>0.8<br>3.4               | 2.0<br>2.9<br>0.0<br>0.7<br>1.4<br>0.0<br>3.3<br>1.4<br>0.0<br>1.2               |
| Joaquin<br>Granero | Check<br>Heat<br>Kaolinite<br>Straw<br>average<br>Check<br>Heat<br>Kaolinite<br>Straw<br>average<br>Check         | 0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0 | %<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.8<br>0.0<br>0.0               | 2.4<br>12.3<br>2.4<br>0.8<br>4.5<br>4.8<br>7.2<br>0.8<br>0.8<br>0.8<br>3.4<br>3.6        | 2.0<br>2.9<br>0.0<br>0.7<br>1.4<br>0.0<br>3.3<br>1.4<br>0.0<br>1.2<br>1.0        |
| Joaquin<br>Granero | Check<br>Heat<br>Kaolinite<br>Straw<br>average<br>Check<br>Heat<br>Kaolinite<br>Straw<br>average<br>Check<br>Heat | 0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0 | %<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.                | 2.4<br>12.3<br>2.4<br>0.8<br>4.5<br>4.8<br>7.2<br>0.8<br>0.8<br>0.8<br>3.4<br>3.6<br>9.8 | 2.0<br>2.9<br>0.0<br>0.7<br>1.4<br>0.0<br>3.3<br>1.4<br>0.0<br>1.2<br>1.0<br>3.1 |

Table 8. (Continued) Internal decomposition by disease type averaged over two dates for two varieties of onions submitted to four treatments, Malheur Experiment Station, Oregon State University, Ontario, OR, 2017.

| 0             |           | <b>.</b> . |              |          |            |
|---------------|-----------|------------|--------------|----------|------------|
| Average       |           |            |              |          |            |
|               |           | Bacterial  | Fusarium     |          |            |
| Variety       | Treatment | rot        | proliferatum | Neck rot | Black mold |
|               |           |            | %            | ,<br>D   |            |
| Joaquin       | Check     | 0.0        | 0.0          | 1.2      | 1.3        |
|               | Heat      | 0.0        | 0.0          | 9.4      | 2.8        |
|               | Kaolinite | 0.0        | 0.0          | 1.6      | 0.0        |
|               | Straw     | 0.0        | 0.0          | 0.4      | 0.7        |
|               | average   | 0.0        | 0.0          | 3.1      | 1.2        |
| Granero       | Check     | 0.0        | 0.4          | 2.4      | 1.0        |
|               | Heat      | 0.8        | 0.0          | 5.7      | 4.3        |
|               | Kaolinite | 0.0        | 0.0          | 0.4      | 1.0        |
|               | Straw     | 0.0        | 0.0          | 0.4      | 0.0        |
|               | average   | 0.2        | 0.1          | 2.2      | 1.6        |
| Average       | Check     | 0.0        | 0.2          | 1.8      | 1.2        |
|               | Heat      | 0.4        | 0.0          | 7.5      | 3.6        |
|               | Kaolinite | 0.0        | 0.0          | 1.0      | 0.5        |
|               | Straw     | 0.0        | 0.0          | 0.4      | 0.3        |
| LSD(0.05)     |           |            |              |          |            |
| Treatment     |           | NS         | NS           | NS       | 1.9        |
| Variety       |           | NS         | NS           | NS       | NS         |
| Date          |           | NS         | NS           | 1.3      | NS         |
| Treatment     | X variety | NS         | NS           | NS       | NS         |
| Treatment     | X date    | NS         | NS           | NS       | NS         |
| Trt. X var. 2 | X date    | NS         | NS           | NS       | NS         |
| Variety X d   | ate       | NS         | NS           | NS       | NS         |

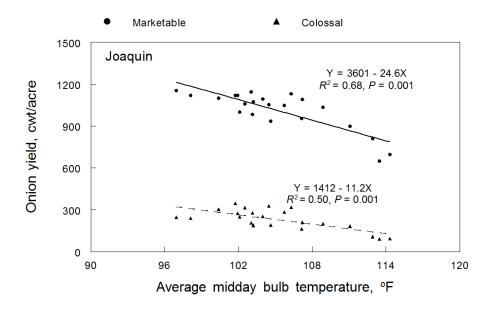
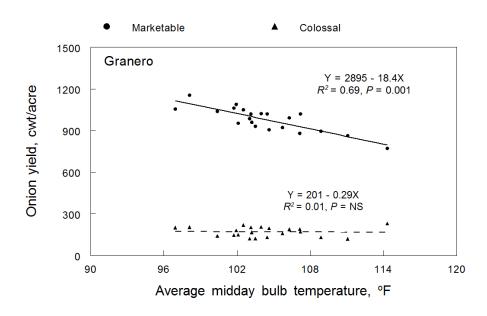




Figure 4. Onion yield response to average midday bulb temperature for Joaquin. Malheur Experiment Station, Oregon State University, Ontario, OR, 2017.



*Figure 5. Onion yield response to average midday bulb temperature for Granero. Malheur Experiment Station, Oregon State University, Ontario, OR, 2017.* 

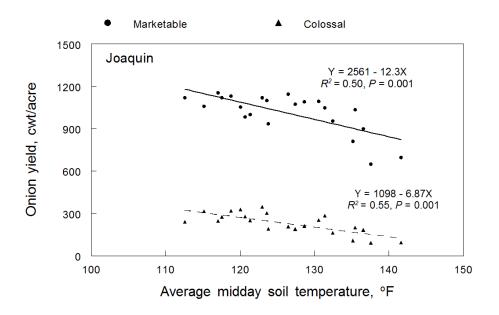



Figure 6. Onion yield response to average midday soil temperature for Joaquin. Malheur Experiment Station, Oregon State University, Ontario, OR, 2017.

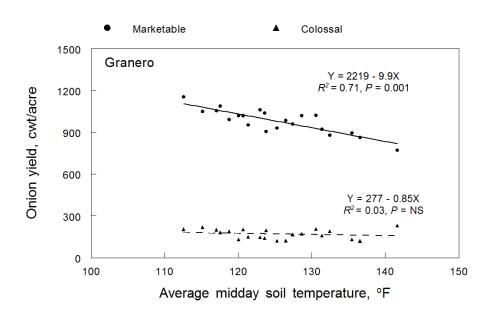



Figure 7. Onion yield response to average midday soil temperature for Granero. Malheur Experiment Station, Oregon State University, Ontario, OR, 2017.

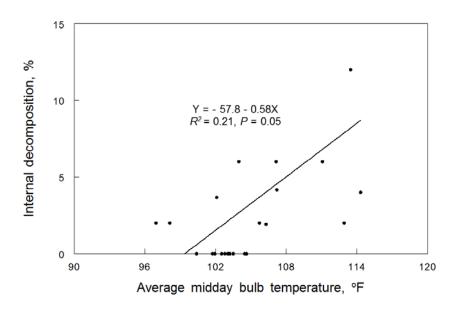



Figure 8. Onion internal decomposition out of storage on November 15 in response to average midday bulb temperature averaged over two varieties. Malheur Experiment Station, Oregon State University, Ontario, OR, 2017.

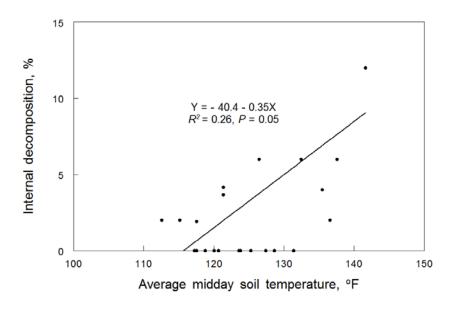



Figure 9. Onion internal decomposition out of storage on November 15 in response to average midday soil temperature averaged over two varieties. Malheur Experiment Station, Oregon State University, Ontario, OR, 2017.

# TIMING OF THE OCCURRENCE OF INTERNAL QUALITY PROBLEMS IN ONION BULBS

Clinton C. Shock, Erik B. G. Feibert, Alicia Rivera, and Lamont D. Saunders, Malheur Experiment Station, Oregon State University, Ontario, OR, 2017

# Introduction

In the past few years in the Pacific Northwest, there has been an increase in internal onion bulb decomposition of one or more scales. Unlike neck rot or plate rot, this internal decomposition is difficult to detect externally, resulting in quality control issues in marketing. We have suggested that the internal decomposition is often associated with one or more scales that do not finish forming completely the neck or become dehydrated, resulting in small gaps close to the neck, which we have called "incomplete scale". Another suggestion is that internal decomposition is favored by the occurrence of dry scales in the neck or in the neck extending down into the bulb, providing a path for pathogen entry. To learn more about bulb internal quality problems, this trial sought to determine when incomplete scale, dry scale, and internal decomposition can be observed and how quickly they increase.

# **Materials and Methods**

Onions were grown in 2017 on an Owyhee silt loam previously planted to wheat. A soil analysis taken in the fall of 2016 showed that the top foot of soil had a pH of 8.1, 3.0% organic matter, 9 ppm nitrate, 3 ppm ammonium, 50 ppm phosphorus (P), 341 ppm potassium (K), 16 ppm sulfur (S), 2927 ppm calcium (Ca), 502 ppm magnesium (Mg), 269 ppm sodium, 2.2 ppm zinc (Zn), 5 ppm manganese (Mn), 0.6 ppm copper (Cu), 4 ppm iron, and 0.5 ppm boron (B). In the fall of 2016, the wheat stubble was shredded and the field was irrigated. The field was then disked, moldboard plowed, and groundhogged. Based on a soil analysis, 22 lb P/acre, 42 lb K/acre, 200 lb S/acre, 2 lb Zn/acre, 2 lb Mn/acre, and 1 lb B/acre were broadcast before plowing. After plowing, the field was fumigated with K-Pam<sup>®</sup> at 15 gal/acre and bedded at 22 inches.

The experimental design was a randomized complete block with five replicates. Seed of two varieties ('Joaquin' and 'Granero', Nunhems, Parma, ID) was planted on April 5 in double rows spaced 3 inches apart at 9 seeds/ft of single row. Each double row was planted on beds spaced 22 inches apart. Planting was done with customized John Deere Flexi Planter units equipped with disc openers. Immediately after planting, the field received a narrow band of Lorsban 15G<sup>®</sup> at 3.7 oz/1000 ft of row (0.82 lb ai/acre) over the seed rows and the soil surface was rolled. Onion emergence started on April 20. On May 9, alleys 4 ft wide were cut between plots, leaving plots 23 ft long. On May 25, the seedlings were hand thinned to a spacing of 4.75 inches between individual onion plants in each single row, or 120,000 plants/acre.

The field had drip tape laid at 4-inch depth between pairs of beds during planting. The drip tape had emitters spaced 12 inches apart and an emitter flow rate of 0.22 gal/min/100 ft (Toro Aqua-Traxx, Toro Co., El Cajon, CA). The distance between the tape and the center of each double row of onions was 11 inches.

The onions were managed to minimize yield reductions from weeds, pests, diseases, water stress, and nutrient deficiencies. For weed control, the following herbicides were broadcast:  $Prowl^{\mbox{\sc Prowl}^{\mbox{\sc Prowl}^{\$ 

For thrips control, the following insecticides were applied by ground: Movento<sup>®</sup> at 5 oz/acre on May 26; Movento at 5 oz/acre and Aza-Direct<sup>®</sup> at 12 oz/acre on June 2; Agri-Mek<sup>®</sup> SC at 3.5 oz/acre on June 15 and 23. The following insecticides were applied by air: Radiant<sup>®</sup> at 10 oz/acre on July 1, 8, and 30; Lannate<sup>®</sup> at 3 pt/acre on July 17 and 23.

Urea ammonium nitrate solution (URAN) was applied through the drip tape five times from May 26 to June 28, totaling 105 lb N/acre. Starting on June 19, root tissue and soil solution samples were taken every week from field borders and analyzed for nutrients by Western Laboratories, Inc., Parma Idaho (Tables 1 and 2). Nutrients were applied through the drip tape only if both the root tissue and soil solution analyses concurrently indicated a deficiency (Table 3). Nitrogen was applied at the fixed amount previously mentioned, but was limited to 105 lb/acre, because the soil solution test indicated the soil was supplying the crop with ample amounts of N. Ample supplies of soil N are also indicated by the amounts of total available soil N during the season (Table 4). Potassium was deficient in both the soil and the roots on several sampling dates. A total of 197 lb K/acre was applied in 25-lb increments during the season based on the soil and tissue analyses.

Onions were irrigated automatically to maintain the soil water tension (SWT) in the onion root zone below 20 cb (Shock et al. 2000). Soil water tension in each treatment plot was measured with two granular matrix sensors (GMS, Watermark Soil Moisture Sensors Model 200SS, Irrometer Co., Inc., Riverside, CA) installed at 8-inch depth in the center of the double row. Sensors had been calibrated to SWT (Shock et al. 1998). The GMS were connected to the datalogger via multiplexers (AM 16/32, Campbell Scientific, Logan, UT). The datalogger (CR10X, Campbell Scientific) read the sensors and recorded the SWT every hour. The datalogger automatically made irrigation decisions every 12 hours. The field was irrigated if the average of the 24 sensors in the check and kaolinite treatments was a SWT of 20 cb or higher. The irrigations were controlled by the datalogger using a controller (SDM CD16AC, Campbell Scientific) connected to a solenoid valve. Irrigation durations were 8 hours, 19 min to apply 0.48 inch of water. The water was supplied from a well and pump that maintained a continuous and constant water pressure of 35 psi. The pressure in the drip lines was maintained at 10 psi by a pressure regulating valve. The automated irrigation system was started on June 5 and irrigations ended September 5.

Onions in each plot were evaluated weekly in the field starting July 7 and ending September 15. After harvest, the onions from each plot were evaluated out of storage monthly starting in mid-November. Five consecutive bulbs from each single row in the four-double-row plot were cut longitudinally and rated for the presence of incomplete scales, dry scales, and internal decay caused by, bacteria, neck rot, black mold, or *Fusarium proliferatum*. Incomplete scales were defined as scales that had more than 0.25 inch from the center of the neck missing or any part missing lower down on the scale. Dry scales were defined as scales with a small dry section inside the bulb either near the top of the neck or lower down on the scale. Bulbs from the first two single rows in each plot had the number of leaves counted and the diameter measured.

| · 0                      |                   |        | •     | •      |        |        |        |       |
|--------------------------|-------------------|--------|-------|--------|--------|--------|--------|-------|
| Nutrient                 |                   | 19-Jun | 4-Jul | 11-Jul | 17-Jul | 24-Jul | 31-Jul | 7-Aug |
| NO <sub>3</sub> -N (ppm) | Sufficiency range | 7667   | 7200  | 6833   | 5000   | 3500   | 1834   | 1000  |
| NO₃-N (ppm)              |                   | 7325   | 6868  | 5773   | 4847   | 4903   | 6090   | 5218  |
| P (%)                    | 0.32 - 0.7        | 0.45   | 0.52  | 0.44   | 0.52   | 0.34   | 0.27   | 0.33  |
| K (%)                    | 2.7 - 6.0         | 2.20   | 2.58  | 2.40   | 1.97   | 1.48   | 1.88   | 0.96  |
| S (%)                    | 0.24 - 0.85       | 0.84   | 0.96  | 1.09   | 0.98   | 0.76   | 0.90   | 0.99  |
| Ca (%)                   | 0.4 - 1.2         | 0.61   | 0.67  | 0.74   | 0.85   | 1.10   | 0.94   | 1.18  |
| Mg (%)                   | 0.3 - 0.6         | 0.39   | 0.38  | 0.37   | 0.36   | 0.41   | 0.40   | 0.41  |
| Zn (ppm)                 | 25 - 50           | 55     | 52    | 48     | 39     | 32     | 32     | 31    |
| Mn (ppm)                 | 35 - 100          | 193    | 183   | 160    | 144    | 139    | 118    | 83    |
| Cu (ppm)                 | 6 - 20            | 24     | 18    | 14     | 12     | 10     | 10     | 12    |
| B (ppm)                  | 19 - 60           | 30     | 29    | 33     | 41     | 32     | 23     | 25    |

Table 1. Onion root tissue sufficiency levels and nutrient content, Malheur Experiment Station, Oregon State University, Ontario, OR, 2017.

Table 2. Soil solution critical levels and weekly analyses. Data represent the amount of each plant nutrient per day that the soil can potentially supply to the crop. Numbers following each nutrient are the critical levels. Malheur Experiment Station, Oregon State University, Ontario, OR, 2017.

| Nutrient | Critical level,<br>lb/ac or g/ac | 19-Jun | 4-Jul | 11-Jul | 17-Jul | 24-Jul | 31-Jul | 7-Aug |
|----------|----------------------------------|--------|-------|--------|--------|--------|--------|-------|
| Ν        | Critical level                   | 7.8    | 5.5   | 4.6    | 4      | 3      | 2      | 1.5   |
| Ν        |                                  | 7.7    | 10.9  | 14.3   | 17.1   | 16.6   | 18.6   | 23.7  |
| Р        | 0.7 lb/acre                      | 0.3    | 0.5   | 0.6    | 0.7    | 1.0    | 1.4    | 0.9   |
| K        | 5 lb/acre                        | 1.5    | 1.8   | 2.1    | 2.6    | 3.0    | 3.7    | 4.5   |
| S        | 1 lb/acre                        | 1.6    | 2.1   | 2.6    | 3.2    | 3.8    | 3.9    | 2.5   |
| Ca       | 3 lb/acre                        | 10.0   | 8.8   | 8.6    | 6.9    | 5.6    | 5.8    | 4.7   |
| Mg       | 2 lb/acre                        | 6.4    | 7.3   | 6.6    | 7.7    | 8.3    | 9.2    | 7.2   |
| Zn       | 28 g/acre                        | 6      | 15    | 18     | 24     | 30     | 39     | 39    |
| Mn       | 28 g/acre                        | 9      | 27    | 21     | 27     | 30     | 36     | 42    |
| Cu       | 12 g/acre                        | 3      | 9     | 15     | 18     | 21     | 24     | 24    |

| Date   | Ν    | K    |
|--------|------|------|
|        | lb/a | acre |
| 26-May | 30   |      |
| 5-Jun  | 15   |      |
| 15-Jun | 15   |      |
| 20-Jun | 30   | 31   |
| 28-Jun | 15   |      |
| 6-Jul  |      | 31   |
| 11-Jul |      | 26   |
| 18-Jul |      | 31   |
| 26-Jul |      | 26   |
| 1-Aug  |      | 26   |
| 9-Aug  |      | 26   |
| total  | 105  | 197  |

Table 3. Nutrients applied through the drip irrigation system to the onion variety trial, Malheur Experiment Station, Oregon State University, Ontario, OR, 2017.

Table 4. Soil available N (NO<sub>3</sub> + NH<sub>4</sub>) in the top foot of soil, Malheur Experiment Station, Oregon State University, Ontario, OR, 2017.

| Date   | Available soil N, lb/acre |
|--------|---------------------------|
| 19-Jun | 54                        |
| 4-Jul  | 76                        |
| 11-Jul | 100                       |
| 17-Jul | 120                       |
| 24-Jul | 116                       |
| 31-Jul | 130                       |
| 7-Aug  | 166                       |

The onions were lifted on September 25 to cure in the field. Onions from each plot were topped by hand and bagged on October 2. The bags were moved into storage on October 11. The storage shed was ventilated and the temperature was slowly decreased to maintain air temperature as close to 34°F as possible.

The effects of variety and evaluation date were determined using repeated measures analysis of variance. Means separation was determined using a protected Fisher's least significant difference test at the 5% probability level, LSD (0.05). The least significant difference LSD (0.05) values in each table should be considered when comparisons are made between treatments. A statistically significant difference in a characteristic between two treatments exists if the difference between the two treatments for that characteristic is equal to or greater than the LSD value for that characteristic.

# **Results and Discussion**

The rate of accumulation and total number of growing degree-days (50-86°F) in 2017 were close to the 24-year average, until July (Fig. 1), which had higher than average growing degree-days (Fig. 2).

On July 7, 2017 the bulbs had an average of 12 leaves, were 1.8 inches in diameter (Table 5), and had no symptoms of incomplete scale or decomposition (Table 6). The average number of leaves peaked at 17 and the average diameter peaked at close to 4 inches.

Both dry scales and incomplete scales were detected starting in late July (Table 6). The percentage of bulbs with incomplete scales or dry scales increased over time until the November evaluation for both varieties. Between the November and the January evaluations, the percentage of bulbs with incomplete scales and dry scales did not increase. Bulbs with internal decomposition were first found on August 25. Averaged over the two varieties, the percentage of bulbs with internal decomposition increased over time until September 15, reaching 9.5%. Evaluated out of storage in November and January, bulbs with internal decomposition decreased to 3.3 and 3.8%, respectively. Most of the internal decomposition was found in bulbs with incomplete scales. Of the bulbs with internal decomposition, 94.7% had incomplete or dry scales and only 5.3% had neither. Averaged over dates, Granero had a higher percentage of bulbs with incomplete scales and internal decomposition.

Most of the internal decomposition in this trial in 2017 was caused by black mold (Table 7). There was very little internal decomposition caused by bacteria, *Fusarium proliferatum*, or botrytis neck rot. For both varieties, black mold was first detected in late August and increased until September 15, just before harvest. At the November and January evaluations, the internal decomposition caused by black mold decreased. The internal decomposition caused by black mold decreased from 7% in September to 1% in January for Joaquin and from 10% in September to 5.5% in January for Granero.

In 2016, incomplete scales were first detected in early September and internal decomposition was first detected in December, later than in 2017 (Table 8). In 2016, most of the internal decomposition was due to bacterial rot and neck rot, with very little *Fusarium proliferatum* (Table 9). No internal decomposition due to black mold was detected in 2016.

## Acknowledgements

This project was funded by the Idaho-Eastern Oregon Onion Committee, cooperating onion seed companies, Oregon State University, the Malheur County Education Service District, and supported by Formula Grant nos. 2017-31100-06041 and 2017-31200-06041 from the USDA National Institute of Food and Agriculture.

#### References

- Shock, C.C., J. Barnum, and M. Seddigh. 1998. Calibration of Watermark soil moisture sensors for irrigation management. Irrigation Association. Proceedings of the International Irrigation Show. Pages 139-146. San Diego, CA.
- Shock, C.C., E.B.G. Feibert, and L.D. Saunders. 2000. Irrigation criteria for drip-irrigated onions. HortScience 35:63-66.

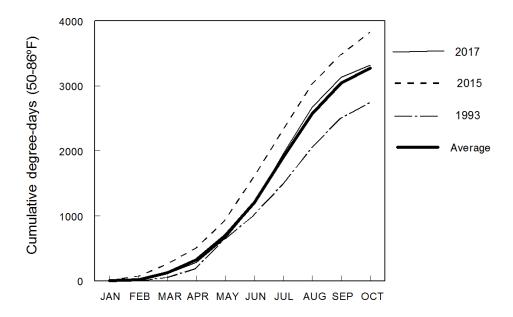



Figure 1. Cumulative growing degree-days (50-86°F) for 2015-2017 and 24-year average, Malheur Experiment Station, Oregon State University, Ontario, OR, 2017.

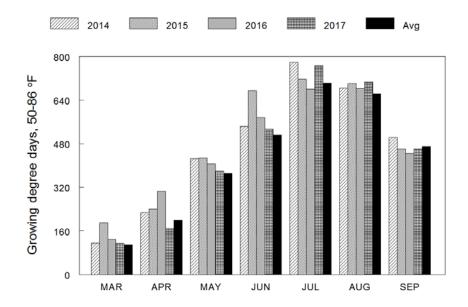



Figure 2. Monthly growing degree-days (50-86°F) for 2014-2017 and 24-year average, Malheur Experiment Station, Oregon State University, Ontario, OR, 2017.

| Table 5. Number of leaves and bulb diameter over time for onion bulbs evaluated for |
|-------------------------------------------------------------------------------------|
| internal defects, Malheur Experiment Station, Oregon State University, Ontario, OR, |
| 2017.                                                                               |

| Variety    | Date           | No. of leaves | Bulb diameter, inch |
|------------|----------------|---------------|---------------------|
| Joaquin    | 7-Jul          | 12.0          | 1.8                 |
|            | 14-Jul         | 13.3          | 2.8                 |
|            | 21-Jul         | 13.1          | 2.5                 |
|            | 28-Jul         | 14.2          | 3.0                 |
|            | 11-Aug         | 15.1          | 3.4                 |
|            | 18-Aug         | 14.9          | 3.4                 |
|            | 25-Aug         | 15.7          | 3.5                 |
|            | 1-Sep          | 16.0          | 3.5                 |
|            | 8-Sep          | 17.2          | 3.7                 |
|            | 15-Sep         |               | 3.6                 |
| Granero    | 7-Jul          | 11.9          | 1.8                 |
|            | 14-Jul         | 12.6          | 2.9                 |
|            | 21-Jul         | 13.2          | 2.4                 |
|            | 28-Jul         | 15.2          | 3.2                 |
|            | 11-Aug         | 14.7          | 3.3                 |
|            | 18-Aug         | 14.6          | 3.3                 |
|            | 25-Aug         | 15.4          | 3.4                 |
|            | 1-Sep          | 15.9          | 3.5                 |
|            | 8-Sep          | 16.5          | 3.4                 |
|            | 15-Sep         |               | 3.4                 |
| Average    | 7-Jul          | 12.0          | 1.8                 |
|            | 14-Jul         | 13.0          | 2.8                 |
|            | 21-Jul         | 13.2          | 2.4                 |
|            | 28-Jul         | 14.7          | 3.1                 |
|            | 11-Aug         | 14.9          | 3.3                 |
|            | 18-Aug         | 14.8          | 3.3                 |
|            | 25-Aug         | 15.5          | 3.4                 |
|            | 1-Sep          | 15.9          | 3.5                 |
|            | 8-Sep          | 16.8          | 3.6                 |
|            | 15-Sep         |               | 3.5                 |
| _SD (0.05) | Variety        | NS            | NS                  |
|            | Date           | 0.94          | 0.2                 |
|            | Variety X date | NS            | NS                  |

Table 6. Internal defects over time for two onion varieties, Malheur Experiment Station, Oregon State University, Ontario, OR, 2017. Continued on next page.

|         |         |              |             | All b | ulbs         |             |       |       |              |            | Dis   | eased bulbs  |             |       |       |
|---------|---------|--------------|-------------|-------|--------------|-------------|-------|-------|--------------|------------|-------|--------------|-------------|-------|-------|
|         |         | Comp         | lete scales |       | Incomp       | lete scales | \$    | Total | Compl        | ete scales |       | Incompl      | lete scales | 6     | Total |
| Variety | Date    | no dry scale | dry scale   | total | no dry scale | dry scale   | total |       | no dry scale | dry scale  | total | no dry scale | dry scale   | total |       |
|         |         |              |             |       |              |             |       | %     | 6            |            |       |              |             |       |       |
| Joaquin | 7-Jul   | 100.0        | 0.0         | 100.0 | 0.0          | 0.0         | 0.0   | 100   | 0.0          | 0.0        | 0.0   | 0.0          | 0.0         | 0.0   | 0.0   |
|         | 14-Jul  | 99.0         | 0.0         | 99.0  | 0.0          | 1.0         | 1.0   | 100   | 0.0          | 0.0        | 0.0   | 0.0          | 0.0         | 0.0   | 0.0   |
|         | 21-Jul  | 98.0         | 0.0         | 98.0  | 2.0          | 0.0         | 2.0   | 100   | 0.0          | 0.0        | 0.0   | 0.0          | 0.0         | 0.0   | 0.0   |
|         | 28-Jul  | 97.5         | 2.5         | 100.0 | 0.0          | 0.0         | 0.0   | 100   | 0.0          | 0.0        | 0.0   | 0.0          | 0.0         | 0.0   | 0.0   |
|         | 11-Aug  | 88.5         | 6.0         | 94.5  | 1.0          | 4.5         | 5.5   | 100   | 0.0          | 0.0        | 0.0   | 0.0          | 0.0         | 0.0   | 0.0   |
|         | 18-Aug  | 86.5         | 6.0         | 92.5  | 0.0          | 7.5         | 7.5   | 100   | 0.0          | 0.0        | 0.0   | 0.0          | 0.0         | 0.0   | 0.0   |
|         | 25-Aug  | 77.5         | 4.0         | 81.5  | 1.0          | 17.5        | 18.5  | 100   | 0.0          | 0.0        | 0.0   | 0.0          | 2.5         | 2.5   | 2.5   |
|         | 1-Sep   | 56.0         | 21.0        | 77.0  | 2.0          | 21.0        | 23.0  | 100   | 0.0          | 0.0        | 0.0   | 0.0          | 2.0         | 2.0   | 2.0   |
|         | 8-Sep   | 61.5         | 22.5        | 84.0  | 0.0          | 16.0        | 16.0  | 100   | 1.0          | 0.5        | 1.5   | 0.0          | 3.0         | 3.0   | 4.5   |
|         | 15-Sep  | 65.5         | 15.5        | 81.0  | 0.0          | 19.0        | 19.0  | 100   | 0.5          | 0.5        | 1.0   | 0.0          | 7.0         | 7.0   | 8.0   |
|         | 21-Nov  | 36.8         | 2.0         | 38.8  | 32.0         | 29.2        | 61.2  | 100   | 0.0          | 0.0        | 0.0   | 0.0          | 1.2         | 1.2   | 1.2   |
|         | 29-Jan  | 33.5         | 8.0         | 41.5  | 21.5         | 37.0        | 58.5  | 100   | 0.0          | 0.0        | 0.0   | 0.5          | 0.5         | 1.0   | 1.0   |
|         | Average | 75.0         | 7.3         | 82.3  | 5.0          | 12.7        | 17.7  | 100   | 0.1          | 0.1        | 0.2   | 0.0          | 1.3         | 1.4   | 1.6   |
| Granero | 7-Jul   | 100.0        | 0.0         | 100.0 | 0.0          | 0.0         | 0.0   | 100   | 0.0          | 0.0        | 0.0   | 0.0          | 0.0         | 0.0   | 0.0   |
|         | 14-Jul  | 98.0         | 0.0         | 98.0  | 0.0          | 2.0         | 2.0   | 100   | 0.0          | 0.0        | 0.0   | 0.0          | 0.0         | 0.0   | 0.0   |
|         | 21-Jul  | 96.5         | 0.5         | 97.0  | 2.5          | 0.5         | 3.0   | 100   | 0.0          | 0.0        | 0.0   | 0.0          | 0.0         | 0.0   | 0.0   |
|         | 28-Jul  | 92.0         | 7.0         | 99.0  | 1.0          | 0.0         | 1.0   | 100   | 0.0          | 0.0        | 0.0   | 1.0          | 0.0         | 1.0   | 1.0   |
|         | 11-Aug  | 49.0         | 12.5        | 61.5  | 5.0          | 33.5        | 38.5  | 100   | 0.0          | 0.0        | 0.0   | 0.0          | 0.0         | 0.0   | 0.0   |
|         | 18-Aug  | 59.0         | 9.5         | 68.5  | 2.0          | 29.5        | 31.5  | 100   | 0.0          | 0.0        | 0.0   | 0.0          | 0.0         | 0.0   | 0.0   |
|         | 25-Aug  | 46.5         | 15.5        | 62.0  | 0.5          | 37.5        | 38.0  | 100   | 0.0          | 0.0        | 0.0   | 0.0          | 2.5         | 2.5   | 2.5   |
|         | 1-Sep   | 32.0         | 17.0        | 49.0  | 1.5          | 49.5        | 51.0  | 100   | 0.0          | 0.0        | 0.0   | 0.0          | 4.5         | 4.5   | 4.5   |
|         | 8-Sep   | 23.0         | 27.0        | 50.0  | 0.5          | 49.5        | 50.0  | 100   | 0.0          | 0.0        | 0.0   | 0.5          | 9.5         | 10.0  | 10.0  |
|         | 15-Sep  | 29.5         | 9.0         | 38.5  | 1.0          | 60.5        | 61.5  | 100   | 0.0          | 0.0        | 0.0   | 0.0          | 11.0        | 11.0  | 11.0  |
|         | 21-Nov  | 15.5         | 1.0         | 16.5  | 36.5         | 47.0        | 83.5  | 100   | 0.0          | 0.0        | 0.0   | 0.0          | 5.5         | 5.5   | 5.5   |
|         | 29-Jan  | 3.0          | 6.0         | 9.0   | 22.5         | 68.5        | 91.0  | 100   | 0.0          | 0.5        | 0.5   | 0.5          | 5.5         | 6.0   | 6.5   |
|         | Average | 53.7         | 8.8         | 62.4  | 6.1          | 31.5        | 37.6  | 100   | 0.0          | 0.0        | 0.0   | 0.2          | 3.2         | 3.4   | 3.4   |

|           |        |              |             | All b | ulbs         |             |       |       |              |            | Dis     | eased bulbs  |           |         |       |
|-----------|--------|--------------|-------------|-------|--------------|-------------|-------|-------|--------------|------------|---------|--------------|-----------|---------|-------|
|           |        | Comp         | lete scales |       | Incomp       | lete scales | 6     | Total | Compl        | ete scales | S       | Incompl      | ete scale | S       | Total |
| Variety   | Date   | no dry scale | dry scale   | total | no dry scale | dry scale   | total |       | no dry scale | dry scale  | e total | no dry scale | dry scale | e total |       |
|           |        |              |             |       |              |             |       | %     | ,<br>p       |            |         |              |           |         |       |
| Average   | 7-Jul  | 100.0        | 0.0         | 100.0 | 0.0          | 0.0         | 0.0   | 100   | 0.0          | 0.0        | 0.0     | 0.0          | 0.0       | 0.0     | 0.0   |
|           | 14-Jul | 98.5         | 0.0         | 98.5  | 0.0          | 1.5         | 1.5   | 100   | 0.0          | 0.0        | 0.0     | 0.0          | 0.0       | 0.0     | 0.0   |
|           | 21-Jul | 97.3         | 0.3         | 97.5  | 2.3          | 0.3         | 2.5   | 100   | 0.0          | 0.0        | 0.0     | 0.0          | 0.0       | 0.0     | 0.0   |
|           | 28-Jul | 94.8         | 4.8         | 99.5  | 0.5          | 0.0         | 0.5   | 100   | 0.0          | 0.0        | 0.0     | 0.5          | 0.0       | 0.5     | 0.5   |
|           | 11-Aug | 68.8         | 9.3         | 78.0  | 3.0          | 19.0        | 22.0  | 100   | 0.0          | 0.0        | 0.0     | 0.0          | 0.0       | 0.0     | 0.0   |
|           | 18-Aug | 72.8         | 7.8         | 80.5  | 1.0          | 18.5        | 19.5  | 100   | 0.0          | 0.0        | 0.0     | 0.0          | 0.0       | 0.0     | 0.0   |
|           | 25-Aug | 62.0         | 9.8         | 71.8  | 0.8          | 27.5        | 28.3  | 100   | 0.0          | 0.0        | 0.0     | 0.0          | 2.5       | 2.5     | 2.5   |
|           | 1-Sep  | 44.0         | 19.0        | 63.0  | 1.8          | 35.3        | 37.0  | 100   | 0.0          | 0.0        | 0.0     | 0.0          | 3.3       | 3.3     | 3.3   |
|           | 8-Sep  | 42.3         | 24.8        | 67.0  | 0.3          | 32.8        | 33.0  | 100   | 0.5          | 0.3        | 0.8     | 0.3          | 6.3       | 6.5     | 7.3   |
|           | 15-Sep | 47.5         | 12.3        | 59.8  | 0.5          | 39.8        | 40.3  | 100   | 0.3          | 0.3        | 0.5     | 0.0          | 9.0       | 9.0     | 9.5   |
|           | 21-Nov | 26.2         | 1.5         | 27.7  | 34.3         | 38.1        | 72.3  | 100   | 0.0          | 0.0        | 0.0     | 0.0          | 3.3       | 3.3     | 3.3   |
|           | 29-Jan | 18.3         | 7.0         | 25.3  | 22.0         | 52.8        | 74.8  | 100   | 0.0          | 0.3        | 0.3     | 0.5          | 3.0       | 3.5     | 3.8   |
| LSD (0.0  | )5)    |              |             |       |              |             |       |       |              |            |         |              |           |         |       |
| Variety   | -      | 4.7          | NS          | 5.3   | NS           | 3.7         | 5.3   |       | NS           | NS         | NS      | 0.9          | 0.7       | 0.9     | 1.0   |
| Date      |        | 6.3          | 5.2         | 6.6   | 3.8          | 6.1         | 6.5   |       | NS           | NS         | NS      | 2            | 2.2       | 2.4     | 2.3   |
| Var. X da | ate    | 8.9          | NS          | 9.4   | NS           | 8.6         | 9.4   |       | NS           | NS         | NS      | NS           | 3.1       | 3.4     | NS    |

Table 6. (Continued) Internal defects over time averaged over two onion varieties, Malheur Experiment Station, Oregon State University, Ontario, OR, 2017.

| Variety     | Date    | Bacterial rot | Fusarium proliferatum | Neck rot | Black mold |
|-------------|---------|---------------|-----------------------|----------|------------|
|             |         |               | %                     |          |            |
| Joaquin     | 7-Jul   | 0.0           | 0.0                   | 0.0      | 0.0        |
|             | 14-Jul  | 0.0           | 0.0                   | 0.0      | 0.0        |
|             | 21-Jul  | 0.0           | 0.0                   | 0.0      | 0.0        |
|             | 28-Jul  | 0.0           | 0.0                   | 0.0      | 0.0        |
|             | 11-Aug  | 0.0           | 0.0                   | 0.0      | 0.0        |
|             | 18-Aug  | 0.0           | 0.0                   | 0.0      | 0.0        |
|             | 25-Aug  | 0.0           | 0.0                   | 0.0      | 2.5        |
|             | 1-Sep   | 0.0           | 0.0                   | 0.0      | 2.0        |
|             | 8-Sep   | 0.5           | 0.0                   | 0.5      | 3.5        |
|             | 15-Sep  | 0.5           | 0.5                   | 0.0      | 7.0        |
|             | 21-Nov  | 0.0           | 0.0                   | 0.0      | 1.2        |
|             | 29-Jan  | 0.0           | 0.0                   | 0.0      | 1.0        |
|             | Average | 0.1           | 0.0                   | 0.0      | 1.4        |
| Granero     | 7-Jul   | 0.0           | 0.0                   | 0.0      | 0.0        |
|             | 14-Jul  | 0.0           | 0.0                   | 0.0      | 0.0        |
|             | 21-Jul  | 0.0           | 0.0                   | 0.0      | 0.0        |
|             | 28-Jul  | 1.0           | 0.0                   | 0.0      | 0.0        |
|             | 11-Aug  | 0.0           | 0.0                   | 0.0      | 0.0        |
|             | 18-Aug  | 0.0           | 0.0                   | 0.0      | 0.0        |
|             | 25-Aug  | 0.0           | 0.0                   | 0.0      | 2.5        |
|             | 1-Sep   | 0.0           | 0.0                   | 0.0      | 4.5        |
|             | 8-Sep   | 0.0           | 1.0                   | 0.0      | 9.0        |
|             | 15-Sep  | 0.0           | 1.0                   | 0.0      | 10.0       |
|             | 21-Nov  | 0.0           | 0.0                   | 0.0      | 5.5        |
|             | 29-Jan  | 1.0           | 0.0                   | 0.0      | 5.5        |
|             | Average | 0.2           | 0.2                   | 0.0      | 3.1        |
| Average     | 7-Jul   | 0.0           | 0.0                   | 0.0      | 0.0        |
|             | 14-Jul  | 0.0           | 0.0                   | 0.0      | 0.0        |
|             | 21-Jul  | 0.0           | 0.0                   | 0.0      | 0.0        |
|             | 28-Jul  | 0.5           | 0.0                   | 0.0      | 0.0        |
|             | 11-Aug  | 0.0           | 0.0                   | 0.0      | 0.0        |
|             | 18-Aug  | 0.0           | 0.0                   | 0.0      | 0.0        |
|             | 25-Aug  | 0.0           | 0.0                   | 0.0      | 2.5        |
|             | 1-Sep   | 0.0           | 0.0                   | 0.0      | 3.3        |
|             | 8-Sep   | 0.3           | 0.5                   | 0.3      | 6.3        |
|             | 15-Sep  | 0.3           | 0.8                   | 0.0      | 8.5        |
|             | 21-Nov  | 0.0           | 0.0                   | 0.0      | 3.3        |
|             | 29-Jan  | 0.5           | 0.0                   | 0.0      | 3.3        |
| LSD (0.05)  |         |               |                       |          |            |
| Variety     |         | NS            | NS                    | NS       | 0.9        |
| Date        |         | NS            | NS                    | NS       | 2.1        |
| Var. X date |         | NS            | NS                    | NS       | 3.0        |

Table 7. Internal decomposition over time by disease for two onion varieties, Malheur Experiment Station, Oregon State University, Ontario, OR, 2017.

Table 8. Internal defects over time for two onion varieties in 2016, Malheur Experiment Station, Oregon State University, Ontario, OR, 2016. Continued on next page.

|         |         |              |             | All b | ulbs         |             |       |       |              |            | Dis   | eased bulbs  |             |       |       |
|---------|---------|--------------|-------------|-------|--------------|-------------|-------|-------|--------------|------------|-------|--------------|-------------|-------|-------|
|         |         | Comp         | lete scales |       | Incomp       | lete scales |       | Total | Comple       | ete scales |       | Incomp       | lete scales | 6     | Total |
| Variety | Date    | no dry scale | dry scale   | total | no dry scale | dry scale   | total |       | no dry scale | dry scale  | total | no dry scale | dry scale   | total |       |
|         |         |              |             |       |              |             |       | %     |              |            |       |              |             |       |       |
| Joaquin | 7-Jul   | 100.0        | 0.0         | 100.0 | 0.0          | 0.0         | 0.0   | 100.0 | 0.0          | 0.0        | 0.0   | 0.0          | 0.0         | 0.0   | 0.0   |
|         | 13-Jul  | 100.0        | 0.0         | 100.0 | 0.0          | 0.0         | 0.0   | 100.0 | 0.0          | 0.0        | 0.0   | 0.0          | 0.0         | 0.0   | 0.0   |
|         | 21-Jul  | 100.0        | 0.0         | 100.0 | 0.0          | 0.0         | 0.0   | 100.0 | 0.0          | 0.0        | 0.0   | 0.0          | 0.0         | 0.0   | 0.0   |
|         | 28-Jul  | 100.0        | 0.0         | 100.0 | 0.0          | 0.0         | 0.0   | 100.0 | 0.0          | 0.0        | 0.0   | 0.0          | 0.0         | 0.0   | 0.0   |
|         | 3-Aug   | 100.0        | 0.0         | 100.0 | 0.0          | 0.0         | 0.0   | 100.0 | 0.0          | 0.0        | 0.0   | 0.0          | 0.0         | 0.0   | 0.0   |
|         | 11-Aug  | 100.0        | 0.0         | 100.0 | 0.0          | 0.0         | 0.0   | 100.0 | 0.0          | 0.0        | 0.0   | 0.0          | 0.0         | 0.0   | 0.0   |
|         | 17-Aug  | 100.0        | 0.0         | 100.0 | 0.0          | 0.0         | 0.0   | 100.0 | 0.0          | 0.0        | 0.0   | 0.0          | 0.0         | 0.0   | 0.0   |
|         | 26-Aug  | 100.0        | 0.0         | 100.0 | 0.0          | 0.0         | 0.0   | 100.0 | 0.0          | 0.0        | 0.0   | 0.0          | 0.0         | 0.0   | 0.0   |
|         | 1-Sep   | 100.0        | 0.0         | 100.0 | 0.0          | 0.0         | 0.0   | 100.0 | 0.0          | 0.0        | 0.0   | 0.0          | 0.0         | 0.0   | 0.0   |
|         | 9-Sep   | 94.0         | 0.0         | 94.0  | 6.0          | 0.0         | 6.0   | 100.0 | 0.0          | 0.0        | 0.0   | 0.0          | 0.0         | 0.0   | 0.0   |
|         | 3-Nov   | 32.5         | 5.0         | 37.5  | 29.5         | 33.0        | 62.5  | 100.0 | 0.0          | 0.0        | 0.0   | 0.0          | 0.0         | 0.0   | 0.0   |
|         | 16-Dec  | 38.0         | 0.0         | 38.0  | 38.0         | 24.0        | 62.0  | 100.0 | 0.0          | 0.0        | 0.0   | 0.5          | 0.0         | 0.5   | 0.5   |
|         | 15-Feb  | 47.0         | 0.0         | 47.0  | 46.5         | 6.5         | 53.0  | 100.0 | 0.0          | 0.0        | 0.0   | 2.5          | 0.0         | 2.5   | 2.5   |
|         | Average | 85.5         | 0.4         | 85.9  | 9.2          | 4.9         | 14.1  | 100.0 | 0.0          | 0.0        | 0.0   | 0.2          | 0.0         | 0.2   | 0.2   |
| Granero | 7-Jul   | 100.0        | 0.0         | 100.0 | 0.0          | 0.0         | 0.0   | 100.0 | 0.0          | 0.0        | 0.0   | 0.0          | 0.0         | 0.0   | 0.0   |
|         | 13-Jul  | 100.0        | 0.0         | 100.0 | 0.0          | 0.0         | 0.0   | 100.0 | 0.0          | 0.0        | 0.0   | 0.0          | 0.0         | 0.0   | 0.0   |
|         | 21-Jul  | 100.0        | 0.0         | 100.0 | 0.0          | 0.0         | 0.0   | 100.0 | 0.0          | 0.0        | 0.0   | 0.0          | 0.0         | 0.0   | 0.0   |
|         | 28-Jul  | 100.0        | 0.0         | 100.0 | 0.0          | 0.0         | 0.0   | 100.0 | 0.0          | 0.0        | 0.0   | 0.0          | 0.0         | 0.0   | 0.0   |
|         | 3-Aug   | 100.0        | 0.0         | 100.0 | 0.0          | 0.0         | 0.0   | 100.0 | 0.0          | 0.0        | 0.0   | 0.0          | 0.0         | 0.0   | 0.0   |
|         | 11-Aug  | 99.5         | 0.0         | 99.5  | 0.5          | 0.0         | 0.5   | 100.0 | 0.0          | 0.0        | 0.0   | 0.0          | 0.0         | 0.0   | 0.0   |
|         | 17-Aug  | 100.0        | 0.0         | 100.0 | 0.0          | 0.0         | 0.0   | 100.0 | 0.0          | 0.0        | 0.0   | 0.0          | 0.0         | 0.0   | 0.0   |
|         | 26-Aug  | 100.0        | 0.0         | 100.0 | 0.0          | 0.0         | 0.0   | 100.0 | 0.0          | 0.0        | 0.0   | 0.0          | 0.0         | 0.0   | 0.0   |
|         | 1-Sep   | 100.0        | 0.0         | 100.0 | 0.0          | 0.0         | 0.0   | 100.0 | 0.0          | 0.0        | 0.0   | 0.0          | 0.0         | 0.0   | 0.0   |
|         | 9-Sep   | 70.0         | 0.0         | 70.0  | 30.0         | 0.0         | 30.0  | 100.0 | 0.0          | 0.0        | 0.0   | 0.0          | 0.0         | 0.0   | 0.0   |
|         | 3-Nov   | 27.0         | 7.0         | 34.0  | 26.0         | 40.0        | 66.0  | 100.0 | 0.0          | 0.0        | 0.0   | 0.0          | 0.0         | 0.0   | 0.0   |
|         | 16-Dec  | 31.0         | 0.0         | 31.0  | 32.5         | 36.0        | 68.5  | 100.0 | 0.0          | 0.0        | 0.0   | 0.0          | 0.0         | 0.0   | 0.0   |
|         | 15-Feb  | 32.5         | 0.5         | 33.0  | 52.0         | 14.0        | 66.0  | 100.0 | 0.0          | 0.0        | 0.0   | 1.5          | 0.0         | 1.5   | 1.5   |
|         | Average | 81.5         | 0.6         | 82.1  | 10.8         | 6.9         | 17.8  | 100.0 | 0.0          | 0.0        | 0.0   | 0.1          | 0.0         | 0.1   | 0.1   |

Table 8. (Continued) Internal defects over time averaged over two onion varieties in 2016, Malheur Experiment Station, Oregon State University, Ontario, OR, 2016.

|           |        |              |             | All b | ulbs         |             |       |       |              |            | Dis   | eased bulbs  |             |       |       |
|-----------|--------|--------------|-------------|-------|--------------|-------------|-------|-------|--------------|------------|-------|--------------|-------------|-------|-------|
|           |        | Comp         | lete scales |       | Incomp       | lete scales | S     | Total | Compl        | ete scales |       | Incomp       | lete scales | 5     | Total |
| Variety   | Date   | no dry scale | dry scale   | total | no dry scale | dry scale   | total |       | no dry scale | dry scale  | total | no dry scale | dry scale   | total |       |
|           |        |              |             |       |              |             |       | %     |              |            |       |              |             |       |       |
| Average   | 7-Jul  | 100.0        | 0.0         | 100.0 | 0.0          | 0.0         | 0.0   | 100.0 | 0.0          | 0.0        | 0.0   | 0.0          | 0.0         | 0.0   | 0.0   |
|           | 13-Jul | 100.0        | 0.0         | 100.0 | 0.0          | 0.0         | 0.0   | 100.0 | 0.0          | 0.0        | 0.0   | 0.0          | 0.0         | 0.0   | 0.0   |
|           | 21-Jul | 100.0        | 0.0         | 100.0 | 0.0          | 0.0         | 0.0   | 100.0 | 0.0          | 0.0        | 0.0   | 0.0          | 0.0         | 0.0   | 0.0   |
|           | 28-Jul | 100.0        | 0.0         | 100.0 | 0.0          | 0.0         | 0.0   | 100.0 | 0.0          | 0.0        | 0.0   | 0.0          | 0.0         | 0.0   | 0.0   |
|           | 3-Aug  | 100.0        | 0.0         | 100.0 | 0.0          | 0.0         | 0.0   | 100.0 | 0.0          | 0.0        | 0.0   | 0.0          | 0.0         | 0.0   | 0.0   |
|           | 11-Aug | 99.8         | 0.0         | 99.8  | 0.3          | 0.0         | 0.3   | 100.0 | 0.0          | 0.0        | 0.0   | 0.0          | 0.0         | 0.0   | 0.0   |
|           | 17-Aug | 100.0        | 0.0         | 100.0 | 0.0          | 0.0         | 0.0   | 100.0 | 0.0          | 0.0        | 0.0   | 0.0          | 0.0         | 0.0   | 0.0   |
|           | 26-Aug | 100.0        | 0.0         | 100.0 | 0.0          | 0.0         | 0.0   | 100.0 | 0.0          | 0.0        | 0.0   | 0.0          | 0.0         | 0.0   | 0.0   |
|           | 1-Sep  | 100.0        | 0.0         | 100.0 | 0.0          | 0.0         | 0.0   | 100.0 | 0.0          | 0.0        | 0.0   | 0.0          | 0.0         | 0.0   | 0.0   |
|           | 9-Sep  | 82.0         | 0.0         | 82.0  | 18.0         | 0.0         | 18.0  | 100.0 | 0.0          | 0.0        | 0.0   | 0.0          | 0.0         | 0.0   | 0.0   |
|           | 3-Nov  | 29.8         | 6.0         | 35.8  | 27.8         | 36.5        | 64.3  | 100.0 | 0.0          | 0.0        | 0.0   | 0.0          | 0.0         | 0.0   | 0.0   |
|           | 16-Dec | 34.5         | 0.0         | 34.5  | 35.3         | 30.0        | 65.3  | 100.0 | 0.0          | 0.0        | 0.0   | 0.3          | 0.0         | 0.3   | 0.3   |
|           | 15-Feb | 39.8         | 0.3         | 40.0  | 49.3         | 10.3        | 59.5  | 100.0 | 0.0          | 0.0        | 0.0   | 2.0          | 0.0         | 2.0   | 2.0   |
| LSD (0.0  | 5)     |              |             |       |              |             |       |       |              |            |       |              |             |       |       |
| Variety   |        | NS           | NS          | NS    | NS           | 1.7         | NS    |       | NS           | NS         | NS    | NS           | NS          | NS    | NS    |
| Date      |        | 4.1          | 0.9         | 3.8   | 3.0          | 2.9         | 3.6   |       | NS           | NS         | NS    | 0.4          | NS          | 0.4   | 0.4   |
| Var. X da | ate    | 5.8          | NS          | 5.3   | 4.3          | 4.0         | 5.1   |       | NS           | NS         | NS    | NS           | NS          | NS    | NS    |

| Variety              | Date             | Bacterial rot | Fusarium proliferatum | Neck rot   |
|----------------------|------------------|---------------|-----------------------|------------|
|                      |                  |               | %                     |            |
| Joaquin              | 7-Jul            | 0.0           | 0.0                   | 0.0        |
|                      | 13-Jul           | 0.0           | 0.0                   | 0.0        |
|                      | 21-Jul           | 0.0           | 0.0                   | 0.0        |
|                      | 28-Jul           | 0.0           | 0.0                   | 0.0        |
|                      | 3-Aug            | 0.0<br>0.0    | 0.0<br>0.0            | 0.0<br>0.0 |
|                      | 11-Aug<br>17-Aug | 0.0           | 0.0                   | 0.0        |
|                      | 26-Aug           | 0.0           | 0.0                   | 0.0        |
|                      | 1-Sep            | 0.0           | 0.0                   | 0.0        |
|                      | 9-Sep            | 0.0           | 0.0                   | 0.0        |
|                      | 3-Nov            | 0.0           | 0.0                   | 0.0        |
|                      | 16-Dec           | 0.0           | 0.0                   | 0.5        |
|                      | 15-Feb           | 1.5           | 0.0                   | 1.0        |
|                      | Average          | 0.1           | 0.0                   | 0.1        |
| Granero              | 7-Jul            | 0.0           | 0.0                   | 0.0        |
|                      | 13-Jul           | 0.0           | 0.0                   | 0.0        |
|                      | 21-Jul           | 0.0           | 0.0                   | 0.0        |
|                      | 28-Jul           | 0.0           | 0.0                   | 0.0        |
|                      | 3-Aug            | 0.0           | 0.0                   | 0.0        |
|                      | 11-Aug           | 0.0           | 0.0                   | 0.0        |
|                      | 17-Aug           | 0.0           | 0.0                   | 0.0        |
|                      | 26-Aug           | 0.0           | 0.0                   | 0.0        |
|                      | 1-Sep            | 0.0           | 0.0                   | 0.0        |
|                      | 9-Sep            | 0.0           | 0.0                   | 0.0        |
|                      | 3-Nov            | 0.0           | 0.5                   | 0.0        |
|                      | 16-Dec           | 0.5           | 0.5                   | 0.0        |
|                      | 15-Feb           | 1.0           | 0.0                   | 0.5        |
|                      | Average          | 0.1           | 0.1                   | 0.0        |
| Average              | 7-Jul            | 0.0           | 0.0                   | 0.0        |
|                      | 13-Jul           | 0.0           | 0.0                   | 0.0        |
|                      | 21-Jul           | 0.0           | 0.0                   | 0.0        |
|                      | 28-Jul           | 0.0           | 0.0                   | 0.0        |
|                      | 3-Aug            | 0.0           | 0.0                   | 0.0        |
|                      | 11-Aug           | 0.0           | 0.0                   | 0.0        |
|                      | 17-Aug           | 0.0           | 0.0                   | 0.0        |
|                      | 26-Aug           | 0.0           | 0.0                   | 0.0        |
|                      | 1-Sep            | 0.0           | 0.0                   | 0.0        |
|                      | 9-Sep            | 0.0           | 0.0                   | 0.0        |
|                      | 3-Nov            | 0.0           | 0.3                   | 0.0        |
|                      | 16-Dec           | 0.3           | 0.3                   | 0.3        |
|                      | 15-Feb           | 1.3           | 0.0                   | 0.8        |
| LSD (0.05<br>Variety | )                | NC            | NC                    | NC         |
| Variety<br>Date      |                  | NS<br>0.4     | NS<br>NS              | NS<br>NS   |
| Var. X da            | to               | 0.4<br>NS     | NS                    | NS         |
|                      | 10               | 110           | 671                   | NO         |

Table 9. Internal decomposition over time for two onion varieties in 2016, Malheur Experiment Station, Oregon State University, Ontario, OR, 2016.

# EVALUATION OF CHLORINE AND DIATOMACEOUS EARTH FOR CONTROL OF INTERNAL DECAY IN ONION BULBS

Clinton C. Shock, Erik B. G. Feibert, Alicia Rivera, and Lamont D. Saunders, Malheur Experiment Station, Oregon State University, Ontario, OR, 2017

### Introduction

In the past few years in the Pacific Northwest, there has been an increase in internal onion bulb decomposition of one or more scales, especially by bacterial diseases and *Fusarium proliferatum*. Unlike neck rot or plate rot, this internal decomposition is difficult to detect externally, resulting in onion bulb quality control issues in marketing. The internal decomposition is thought to possibly be associated with one or more scales that do not finish forming completely into the neck, resulting in small gaps close to the neck that may be associated with dry scales extending into the bulb from the neck. Incomplete scales could provide an opening for pathogenic organisms to infect the bulb interior in the field prior to harvest. Dry scales could provide a path for pathogenic organisms into the bulb in the field prior to harvest. Another potential route of entry for pathogenic organisms could be on bulb mites entering the bulb during bulb maturation and curing, prior to harvest. Dry bulb mites have been found to cause damage to and induce *Fusarium proliferatum* decay of stored garlic (Jepson and Putnam 2008). Dry bulb mites can infect cultivated members of the genus *Allium*, including onion, garlic, and leeks.

Chlorine has been found to be effective in controlling pathogenic microorganisms that infect horticultural produce after harvest (Praeger et al. 2016). Diatomaceous earth has been found to be effective in controlling stored grain mites (Wakil et al. 2010). This trial tested chlorine and diatomaceous earth for control of internal decay of onion.

# **Materials and Methods**

Onions were grown in 2017 on an Owyhee silt loam previously planted to wheat. A soil analysis taken in the fall of 2016 showed that the top foot of soil had a pH of 8.2, 3.7% organic matter, 4 ppm nitrate, 3 ppm ammonium, 15 ppm phosphorus (P), 395 ppm potassium (K), 9 ppm sulfur (S), 3774 ppm calcium, 549 ppm magnesium (Mg), 208 ppm sodium, 0.6 ppm zinc (Zn), 17 ppm manganese (Mn), 0.4 ppm copper (Cu), 47 ppm iron, and 0.5 ppm boron (B). In the fall of 2016, the wheat stubble was shredded and the field was irrigated. The field was then disked, moldboard plowed, and groundhogged. Based on a soil analysis, 55 lb of P/acre, 200 lb of S/acre, 9 lb of Zn/acre, 1 lb Cu/acre, and 1 lb of B/acre were broadcast before plowing. After plowing, the field was fumigated with K-Pam<sup>®</sup> at 15 gal/acre and bedded at 22 inches.

Seed of variety Vaquero (Nunhems Seed Co., Parma, ID) was planted on April 4 in double rows spaced 3 inches apart at 150,000 seeds/acre. Each double row was planted on beds spaced 22 inches apart. Immediately after planting, the field received a narrow band of Lorsban 15G<sup>®</sup> at 3.7 oz/1000 ft of row (0.82 lb ai/acre) over the seed rows and the soil surface was rolled. Onion emergence started on April 20. On May 2, alleys 4 ft wide were cut between plots, leaving plots 23 ft long.

The field had drip tape laid at 4-inch depth between pairs of beds during planting. The drip tape had emitters spaced 12 inches apart and an emitter flow rate of 0.22 gal/min/100 ft (Toro Aqua-Traxx, Toro Co., El Cajon, CA). The distance between the tape and the center of each double row of onions was 11 inches.

The onions were managed to minimize yield reductions from weeds, pests, diseases, water stress, and nutrient deficiencies. For weed control, the following herbicides were broadcast: Prowl<sup>®</sup> H<sub>2</sub>O at 0.83 lb ai/acre (2 pt/acre) and Poast<sup>®</sup> at 0.25 lb ai/acre (16 oz/acre) on May 4; GoalTender<sup>®</sup> at 0.09 lb ai/acre (4 oz/acre) and Buctril<sup>®</sup> at 16 oz/acre on May 15; and Prowl H<sub>2</sub>O at 0.31 lb ai/acre (0.75 pt/acre) and Poast at 0.5 lb ai/acre (32 oz/acre) on June 4.

For thrips control, the following insecticides were applied by ground: Movento<sup>®</sup> at 5 oz/acre on May 26; Movento at 5 oz/acre and Aza-Direct<sup>®</sup> at 12 oz/acre on June 2; Agri-Mek<sup>®</sup> SC at 3.5 oz/acre on June 15 and 23. The following insecticides were applied by air: Radiant<sup>®</sup> at 10 oz/acre on July 1, 8, and 30; Lannate<sup>®</sup> at 3 pt/acre on July 17 and 23.

Urea ammonium nitrate solution (URAN) was applied through the drip tape weekly starting May 1 and ending June 28, totaling 120 lb nitrogen (N)/acre. Starting on May 26, root tissue and soil solution samples were taken every week and analyzed for nutrients by Western Laboratories, Inc., Parma Idaho (Tables 1 and 2). Nutrients were applied through the drip tape only if both the root tissue and soil solution analyses concurrently indicated a deficiency (Table 3). Nitrogen was applied at the fixed amount previously mentioned, but was limited to 120 lb/acre, because the soil solution test indicated the soil was supplying the crop with adequate amounts of N after June 27. The amounts of total available soil N went above the critical level of 80 lb N/acre (Sullivan et al. 2001) starting July 11 (Table 4).

| Nutrient                 |                   | 26-May | 12-Jun | 19-Jun | 27-Jun | 4-Jul | 11-Jul | 17-Jul | 24-Jul | 31-Jul | 7-Aug |
|--------------------------|-------------------|--------|--------|--------|--------|-------|--------|--------|--------|--------|-------|
| NO <sub>3</sub> -N (ppm) | Sufficiency range | 8500   | 7667   | 7000   | 6000   | 5000  | 4338   | 3000   | 2000   | 1834   | 1000  |
| NO₃-N (ppm)              |                   | 3743   | 4431   | 3988   | 4378   | 5472  | 6782   | 5746   | 5134   | 3944   | 3704  |
| P (%)                    | 0.32 - 0.7        | 0.34   | 0.27   | 0.39   | 0.47   | 0.52  | 0.58   | 0.5    | 0.48   | 0.43   | 0.62  |
| K (%)                    | 2.7 - 6.0         | 2.81   | 3.11   | 3.74   | 4.44   | 4.37  | 4.09   | 3.18   | 2.93   | 2.03   | 2.32  |
| S (%)                    | 0.24 - 0.85       | 0.72   | 0.7    | 0.95   | 0.99   | 0.81  | 0.96   | 0.77   | 0.74   | 0.72   | 0.91  |
| Ca (%)                   | 0.4 - 1.2         | 1.03   | 0.92   | 0.72   | 0.83   | 1     | 1.15   | 1.03   | 0.84   | 1.01   | 1.12  |
| Mg (%)                   | 0.3 - 0.6         | 0.4    | 0.35   | 0.33   | 0.33   | 0.3   | 0.37   | 0.34   | 0.38   | 0.4    | 0.47  |
| Zn (ppm)                 | 25 - 50           | 44     | 33     | 41     | 31     | 37    | 34     | 35     | 32     | 31     | 27    |
| Mn (ppm)                 | 35 - 100          | 124    | 114    | 131    | 109    | 116   | 120    | 115    | 97     | 76     | 90    |
| Cu (ppm)                 | 6 - 20            | 17     | 14     | 20     | 15     | 14    | 11     | 9      | 8      | 9      | 7     |
| B (ppm)                  | 19 - 60           | 22     | 20     | 25     | 19     | 22    | 25     | 31     | 35     | 42     | 33    |

Table 1. Onion root tissue sufficiency ranges and nutrient content in the onion variety trial, Malheur Experiment Station, Oregon State University, Ontario, OR, 2017.

Table 2. Soil solution weekly analyses and critical levels. Data represent the amount of each plant nutrient per day that the soil can potentially supply to the crop. Numbers following each nutrient are the critical levels. Malheur Experiment Station, Oregon State University, Ontario, OR, 2017.

|          | Critical level |        |        |        | Sam    | ple da | te     |        |        |        |       |
|----------|----------------|--------|--------|--------|--------|--------|--------|--------|--------|--------|-------|
| Nutrient | lb/ac or g/ac  | 26-May | 12-Jun | 19-Jun | 27-Jun | 4-Jul  | 11-Jul | 17-Jul | 24-Jul | 31-Jul | 7-Aug |
| Ν        | Critical level | 8.6    | 7.8    | 7      | 6      | 5      | 4.6    | 4      | 3      | 2      | 2     |
| Ν        |                | 5.4    | 4.6    | 4      | 6.6    | 10.9   | 12.9   | 13.1   | 16     | 16     | 14.6  |
| Р        | 0.7 lb/acre    | 1      | 1.3    | 0.7    | 0.8    | 1.1    | 1.3    | 1.5    | 1.1    | 1.2    | 1     |
| K        | 5 lb/acre      | 5      | 5.1    | 4.3    | 5.3    | 4.3    | 5.3    | 6      | 6.9    | 5.2    | 6.5   |
| S        | 1 lb/acre      | 4.1    | 3.1    | 2.1    | 2      | 2.4    | 3      | 3.7    | 4.4    | 5.1    | 3.9   |
| Ca       | 3 lb/acre      | 9.5    | 7.8    | 10.5   | 8.8    | 7.8    | 6.9    | 6.8    | 5.9    | 5.2    | 5.1   |
| Mg       | 2 lb/acre      | 17.9   | 14     | 8.3    | 8      | 6.8    | 7.5    | 7.8    | 8.3    | 8.8    | 7.5   |
| Zn       | 28 g/acre      | 27     | 33     | 27     | 33     | 42     | 51     | 63     | 72     | 75     | 66    |
| Mn       | 28 g/acre      | 24     | 18     | 9      | 15     | 27     | 30     | 33     | 30     | 36     | 39    |
| Cu       | 12 g/acre      | 6      | 9      | 6      | 12     | 15     | 18     | 15     | 18     | 21     | 24    |

Table 3. Nutrients applied through the drip irrigation system, Malheur Experiment Station, Oregon State University, Ontario, OR, 2017.

| Date   | Ν   | Р       | Κ  |
|--------|-----|---------|----|
|        |     | lb/acre |    |
| 1-May  | 30  |         |    |
| 26-May | 15  |         | 11 |
| 2-Jun  | 15  | 5       |    |
| 9-Jun  | 15  |         |    |
| 13-Jun | 15  |         |    |
| 22-Jun | 15  |         |    |
| 28-Jun | 15  |         |    |
| Total  | 120 | 5       | 11 |

| Date   | Available soil N, lb/acre |
|--------|---------------------------|
| 26-May | 38                        |
| 12-Jun | 32                        |
| 19-Jun | 28                        |
| 27-Jun | 46                        |
| 4-Jul  | 76                        |
| 11-Jul | 90                        |
| 17-Jul | 92                        |
| 24-Jul | 112                       |
| 31-Jul | 112                       |
| 7-Aug  | 102                       |

Table 4. Soil available N (NO<sub>3</sub> + NH<sub>4</sub>) in the top foot of soil, Malheur Experiment Station, Oregon State University, Ontario, OR, 2017.

Onions were irrigated automatically to maintain the soil water tension (SWT) in the onion root zone below 20 cb (Shock et al. 2000). Soil water tension was measured with eight granular matrix sensors (GMS, Watermark Soil Moisture Sensors Model 200SS, Irrometer Co. Inc., Riverside, CA) installed at 8-inch depth in the center of the double row. Sensors had been calibrated to SWT (Shock et al. 1998). The GMS were connected to the datalogger via multiplexers (AM 16/32, Campbell Scientific, Logan, UT). The datalogger (CR1000, Campbell Scientific) read the sensors and recorded the SWT every hour. The datalogger automatically made irrigation decisions every 12 hours. The field was irrigated if the average of the eight sensors was a SWT of 20 cb or higher. The irrigations were controlled by the datalogger using a controller (SDM CD16AC, Campbell Scientific) connected to a solenoid valve. Irrigation durations were 8 hours, 19 min to apply 0.48 inch of water. The water was supplied from a well and pump that maintained a continuous and constant water pressure of 35 psi. The pressure in the drip lines was maintained at 10 psi by a pressure-regulating valve. The automated irrigation system was started on May 10 and irrigations ended on September 5.

A field of onions was divided into plots that were 23 ft long by 4 double rows wide with 4-ft alleys between plots. The experimental design was a randomized complete block with four treatments (Table 5) and six replicates. A bleach solution was made by dissolving granular calcium hypochlorite (Ca(ClO)<sub>2</sub>,49% Cl) in water to make a 100-ppm Cl concentration. The solution was broadcast at 44.5 gal/acre. The diatomaceous earth was broadcast at 37 lb/acre in 148 gal water/acre. Both solutions were broadcast over the four onion double rows on September 5, 15, and October 3. For treatment 3, which received both solutions, the bleach was applied prior to the diatomaceous earth.

The onions were lifted to cure in the field on September 22, prior to the last diatomaceous earth and bleach applications. Onions from the middle two rows in each plot were topped by hand and bagged on October 5. The bags were put in storage on October 11. The storage shed was ventilated and the temperature was slowly decreased to maintain air temperature as close to 34°F as possible. Onions were evaluated out of storage on December 12, 2017.

Two hundred bulbs from each plot were cut longitudinally and each bulb was evaluated for the presence of incomplete scales, dry scales, and internal decay from bacteria, *Fusarium proliferatum*, black mold, or neck rot. Incomplete scales were defined as scales that had more

than 0.25 inch from the center of the neck missing or any part missing lower down on the scale. Dry scales were defined as a small dry scale inside the bulb either near the top of the neck or lower down on the scale.

| Treatment | Bleach (Ca(ClO) <sub>2</sub> ) | Diatomaceous earth |
|-----------|--------------------------------|--------------------|
| 1         | no                             | no                 |
| 2         | yes                            | no                 |
| 3         | yes                            | yes                |
| <br>4     | no                             | yes                |

Table 5. Treatments applied to onions for reduction of internal decay.

#### **Results and Discussion**

Averaged over all treatments, total yield was 1040 cwt/acre.

The percentage of bulbs with complete scales averaged 29.6% (Table 6); 70.4% of bulbs had incomplete scales. The total percentage of bulbs with internal decay averaged only 1.5% on December 12. The percentage of bulbs with both internal rot and complete scales averaged 0.1%. The percentage of bulbs with internal rot and incomplete scales averaged 1.4%. Averaged over all treatments, the percentages of bulbs with bacterial rot, *Fusarium proliferatum*, black mold, and neck rot were 0.4, 0.05, 0.8, and 0.3%, respectively.

The treatment of bulbs with both chlorine and diatomaceous earth resulted in a significantly higher percentage of bulbs with complete scales and in the lowest percentage of bulbs with incomplete scales (Table 2). The treatment with diatomaceous earth increased the total amount of internal rot, increased the total amount of internal rot caused by black mold (data not shown), and was among the treatments having the highest percentage of bulbs with incomplete scales. Chlorine had no significant effect in this trial.

This trial was a repeat of a similar trial in 2016 trial (Shock et al. 2017). In 2016 the incidence of internal decay was low and the results were inconclusive. The chlorine and diatomaceous earth treatments were designed to help control *Fusarium proliferatum*, which was not a factor in either 2016 or 2017.

## Conclusions

Most of the internal decay occurred in bulbs with incomplete scales. The amount of internal decay was very low in this trial. Treatment of bulbs with diatomaceous earth or chlorine, either alone or in combination, did not reduce the amount of internal decay in this trial.

### Acknowledgements

This project was funded by the Idaho-Eastern Oregon Onion Committee, cooperating onion seed companies, Oregon State University, the Malheur County Education Service District, and supported by Formula Grant nos. 2017-31100-06041 and 2017-31200-06041 from the USDA National Institute of Food and Agriculture.

## References

- Jepson, S.B. and M.L. Putnam. 2008. Eriophyid mites on stored garlic. Oregon State University Extension Service. http://www.science.oregonstate.edu/bpp/Plant\_Clinic/Garlic/Mites.pdf
- Praeger, U., W.B. Herppich, and K. Hassenberg. 2016. Aqueous chlorine dioxide treatment of horticultural produce: Effects on microbial safety and produce quality A review. Critical reviews in food science and nutrition: < http://dx.doi.org/10.1080/10408398.2016.1169157>.
- Shock, C.C., J. Barnum, and M. Seddigh. 1998. Calibration of Watermark soil moisture sensors for irrigation management. Irrigation Association. Pages 139-146 in Proc. International Irrigation Show. San Diego, CA.
- Shock, C.C., E.B.G. Feibert, and L.D. Saunders. 2000. Irrigation criteria for drip-irrigated onions. HortScience 35:63-66.
- Shock, C.C., E.B.G. Feibert, A. Rivera, and L.D. Saunders. 2017. Evaluation of chlorine and diatomaceous earth for control of internal decay in onion bulbs. Malheur Experiment Station Annual Report 2016, Ext/CrS 157:63-66.
- Sullivan, D.M., B.D. Brown, C.C. Shock, D.A. Horneck, R.G. Stevens, G.Q. Pelter, and E.B.G. Feibert. 2001. Nutrient management for onions in the Pacific Northwest. Pacific Northwest Ext. Publ. 546.
- Wakil, W., M.U. Ghazanfar, and F. Mustafa. 2010. Influence of temperature and relative humidity on the efficacy of diatomaceous earth and *Metarhizium anisopliae* (Metschinkoff) Sorokin (Hyphomycetes: Deuteromycotina) against *Tyrophagus fatimii* F. (Astigmata: Acaridae). 10th International Working Conference on Stored Product Protection 930-935, Julius-Kühn-Archiv, 425, 2010.

Table 6. The proportions of Vaquero onion bulbs with complete scales, incomplete scales, dry scale, and internal rot in response to chlorine (CI) and diatomaceous earth (D.E.) applied alone or in combination, Malheur Experiment Station, Oregon State University, Ontario, OR, December 12, 2017.

|          |         |              |            | All b   | oulbs        |             |         |       |              |             | Dise    | eased bulbs  |            |         |       |
|----------|---------|--------------|------------|---------|--------------|-------------|---------|-------|--------------|-------------|---------|--------------|------------|---------|-------|
|          |         | Compl        | ete scale  | S       | Incomp       | olete scale | es      | Total | Compl        | ete scales  | 5       | Incomp       | lete scale | s       | Total |
| Trea     | atment  | no dry scale | e dry scal | e total | no dry scale | e dry scal  | e total |       | no dry scale | e dry scale | e total | no dry scale | e dry scal | e total |       |
|          |         |              |            |         |              |             |         | %     |              |             |         |              |            |         |       |
| Check    |         | 24.0         | 5.5        | 29.4    | 36.6         | 34.0        | 70.6    | 100   | 0.0          | 0.0         | 0.0     | 0.0          | 0.5        | 0.5     | 0.5   |
| CI       |         | 24.9         | 3.1        | 27.9    | 31.3         | 40.7        | 72.1    | 100   | 0.2          | 0.0         | 0.2     | 0.0          | 1.0        | 1.0     | 1.1   |
| D.E.     |         | 18.7         | 4.0        | 22.7    | 33.4         | 43.9        | 77.3    | 100   | 0.0          | 0.1         | 0.1     | 0.0          | 2.3        | 2.3     | 2.4   |
| CI, D.E. |         | 32.1         | 6.2        | 38.3    | 31.4         | 30.2        | 61.7    | 100   | 0.1          | 0.0         | 0.1     | 0.3          | 1.7        | 2.0     | 2.1   |
| Average  | е       | 24.9         | 4.7        | 29.6    | 33.2         | 37.2        | 70.4    | 100   | 0.1          | 0.0         | 0.1     | 0.1          | 1.4        | 1.4     | 1.5   |
| CI       | no      | 21.3         | 4.7        | 26.1    | 35.0         | 39.0        | 73.9    | 100   | 0.0          | 0.0         | 0.0     | 0.0          | 1.4        | 1.4     | 1.4   |
|          | yes     | 28.5         | 4.7        | 33.1    | 31.4         | 35.5        | 66.9    | 100   | 0.1          | 0.0         | 0.1     | 0.2          | 1.3        | 1.5     | 1.6   |
|          | average | 24.9         | 4.7        | 29.6    | 33.2         | 37.2        | 70.4    | 100   | 0.1          | 0.0         | 0.1     | 0.1          | 1.4        | 1.4     | 1.5   |
| D.E.     | no      | 24.4         | 4.3        | 28.7    | 33.9         | 37.4        | 71.3    | 100   | 0.1          | 0.0         | 0.1     | 0.0          | 0.7        | 0.7     | 0.8   |
|          | yes     | 25.4         | 5.1        | 30.5    | 32.4         | 37.1        | 69.5    | 100   | 0.0          | 0.0         | 0.1     | 0.2          | 2.0        | 2.1     | 2.2   |
|          | average | 24.9         | 4.7        | 29.6    | 33.2         | 37.2        | 70.4    | 100   | 0.1          | 0.0         | 0.1     | 0.1          | 1.4        | 1.4     | 1.5   |
| LSD (0.  | 05)     |              |            |         |              |             |         |       |              |             |         |              |            |         |       |
| CI       |         | NS           | NS         | NS      | NS           | NS          | NS      |       | NS           | NS          | NS      | 0.1          | NS         | NS      | NS    |
| D.E.     |         | NS           | NS         | NS      | NS           | NS          | NS      |       | NS           | NS          | NS      | 0.1          | 1.3        | 1.3     | 1.4   |
| CI X     | D.E.    | 4.6          | NS         | 7.8     | NS           | 5.6         | 7.8     |       | NS           | NS          | NS      | 0.2          | NS         | NS      | NS    |

# ONION RESPONSE TO VARIOUS OUTLOOK<sup>®</sup> HERBICIDE RATES APPLIED THROUGH IRRIGATION DRIP WITH AND WITHOUT FERTILIZER

Joel Felix and Joey Ishida, Malheur Experiment Station, Oregon State University, Ontario, OR, 2017

### Introduction

Application of dimethenamid-p (Outlook<sup>®</sup>) through irrigation drips to control yellow nutsedge in dry bulb onion grown in the Treasure Valley of eastern Oregon and southwestern Idaho was approved in 2016. Section 24C Special Local Need (SLN) No. OR-160004 allows applications of Outlook through irrigation drips for onion growers in Malheur County only. In Idaho, SLN No. ID-160001 restricts the use to Ada, Canyon, Gem, Owyhee, Payette, and Washington counties. Both labels reference the chemigation section of the federal label regarding restrictions and directions on how to properly chemigate Outlook in onion production. The user is required to have both the entire Outlook container label and the SLN label in their possession at the time of application.

The research conducted at the Oregon State University's Malheur Experiment Station near Ontario, Oregon indicated improved yellow nutsedge control with Outlook applied through the irrigation drip compared to broadcast spraying. The labels still limit the maximum use rate to 21 fl oz/acre/season (0.98 lb ai/acre/season). Sequential applications are allowed without going over 21 fl oz/acre/season. Applications through the irrigation drip are allowed starting when onions are at the 2-leaf but not after the 6-leaf stage. The current registration restricts the applications through the irrigation drip only to Spanish yellow onions and does not allow mixtures with fertilizer or any other pesticide.

The objective of this study was to evaluate the response of direct-seeded onions to a mixture of Outlook herbicide and liquid fertilizer applied through the irrigation drips. The study was conducted with onion variety 'Vaquero' and URAN fertilizer was used.

# **Materials and Methods**

A field study was conducted at the Malheur Experiment Station, Ontario, Oregon in 2017 to evaluate the response of onion variety 'Vaquero' to mixtures of Outlook herbicide plus nitrogen (N) fertilizer applied through the irrigation drip. Herbicide/fertilizer solution applications were initiated when onion plants were at the 2-leaf stage. Onion seeds of variety Vaquero were planted on April 7 in double rows spaced 3 inches apart with 4-inch seed spacing within each row. Each double row was planted on beds spaced 22 inches apart. Immediately after planting, onion rows received a 7-inch band of Lorsban<sup>®</sup> at 3.7 oz/1000 ft of row and the soil surface was rolled. The soil was an Owyhee silt loam with a pH 7.2 and 1.8% organic matter.

The study had randomized complete blocks with four replicates. Individual plots were 7.33 ft wide (4 beds) by 27 ft long. The study area (except the hand-weeded check plots) was treated with pendimethalin (Prowl<sup>®</sup> H<sub>2</sub>O) at 2.0 pt/acre (0.95 lb ai/acre) late pre-emergence on April 19. Postemergence application of Buctril<sup>®</sup> at 12 fl oz/acre (bromoxynil at 0.188 lb ai/acre) plus GoalTender<sup>®</sup> at 4 fl oz/acre (oxyfluorfen at 0.125 lb/ai acre) occurred when onion seedlings were at the 2- and 4-leaf stages. The study was sprayed with Poast<sup>®</sup> herbicide at 1.5 pt/acre (sethoxydim at 0.287 lb ai/acre) on June 4 to control grassy weeds.

In order to achieve uniform herbicide distribution in the top soil layer, each Outlook herbicide rate and URAN fertilizer to supply 20 lb N/acre was mixed into 35 gal of water and metered into the drip irrigation system at a continuous uniform rate of 5 gal/hour during the middle of the irrigation period. Applications were initiated when onion plants were at the 2-leaf stage on June 1. Sequential applications on a weekly or biweekly schedule continued through June 22 (Tables 1 and 2). The first fertilizer application to supply 30 lb N/acre was injected on May 4 to the entire study in order to correct soil nutrient deficiencies attributed to uncharacteristically high moisture from previous winter snow and spring precipitation. The final URAN fertilizer to supply 50 lb N/acre was applied on July 10.

Treatments for Outlook plus URAN fertilizer to supply 20 lb N/acre were applied on June 1, 8, 15, and 22. Treatments receiving standalone Outlook solution were fertilized using URAN solution to supply 20 lb N/acre the day after the Outlook plus fertilizer treatments. On July 20, 10 plants were identified randomly from each plot and measured from the ground to the tip of the longest fully extended leaf to determine the average plant height. All other operations including insect control followed recommended local production practices.

Plant tops were flailed and onion bulbs were lifted on September 6 and 7, respectively. Bulbs were hand-harvested from the two center beds on September 11 and graded on September 22. Bulbs were graded for yield and quality based on USDA standards as follows: bulbs without blemishes (U.S. No. 1), split bulbs (U.S. No. 2), bulbs infected with the fungus Botrytis allii in the neck or side, bulbs infected with the fungus *Fusarium oxysporum* (plate rot), bulbs infected with the fungus Aspergillus niger (black mold), and bulbs infected with unidentified bacteria in the external scales. The U.S. No. 1 bulbs were graded according to diameter: small (<21/4 inches), medium (21/4-3 inches), jumbo (3-4 inches), colossal (4-41/4 inches), and supercolossal (>41/4 inches). Marketable yield consisted of U.S. No.1 bulbs >21/4 inches.

Data were subjected to analysis of variance and the treatment means were compared using protected LSD at the 0.05% level of confidence.

## Results

Onion emergence was observed on May 3, 2017. Evaluations on July 20 (60 days after emergence) indicated a variable onion plant stand across treatments but there was no effect on plant height (Table 1). Differences in plant stand were attributed to wet conditions during spring from uncharacteristically high snow amounts during winter and high precipitation in spring. Plant stand ranged from 102,423 to 109,466 plants/acre across Outlook treatments applied through the irrigation drip compared to 107.344 plants/acre for the grower standard and 109.607 plants/acre for the hand-weeded check.

Rotten bulb amounts were similar across herbicide treatments and ranged from 0 to 5.6 cwt/acre (Table 2). Yield for various onion categories varied widely across herbicide treatments. Marketable bulb yield for plants treated with the weekly sequential application of Outlook at 7 fl oz/acre with and without fertilizer was 1067.5 and 1036.6 cwt/acre, respectively. Similar yield was also recorded for plants treated with weekly sequential application of Outlook at 6, 5, 5, 5 fl oz/acre mixed with fertilizer (1080.8 cwt/acre) and 1015.5 cwt/acre for Outlook without fertilizer.

Sequential application of Outlook at 21 fl oz/acre on a biweekly schedule produced the lowest marketable yield regardless of whether Outlook was applied alone (927.3 cwt/acre) or mixed with fertilizer (934 cwt/acre) compared to 1131.7 cwt/acre for the hand-weeded check. Marketable yield for the grower standard and hand-weeded check was similar to Outlook applied sequentially at 7 fl oz/acre or 6, 5, 5, 5 fl oz/acre on a weekly schedule.

These results indicated no adverse effects when Outlook was applied through the irrigation drip with or without URAN fertilizer solution to onion variety Vaquero starting at the 2-leaf stage. The study will be repeated in 2018 to confirm these results. The 2 years of data will be used to solicit changes to the SLN label to allow mixing Outlook with liquid fertilizer in applications made through irrigation drips in the Treasure Valley of eastern Oregon and southwestern Idaho.

# Acknowledgements

This project was funded by the Idaho-Eastern Oregon Onion Committee, cooperating onion seed companies, Oregon State University, the Malheur County Education Service District, and supported by Formula Grant nos. 2017-31100-06041 and 2017-31200-06041 from the USDA National Institute of Food and Agriculture.

Table 1. Onion plant stand and height on July 20 and number of harvested bulbs in response to various Outlook (dimethenamid-p) herbicide treatments applied with and without liquid fertilizer through the irrigation drip at the Malheur Experiment Station, Ontario, OR, 2017.

|                |             |                   |                          |             | Plant   |                     |          |           |          |              | Marketable | Э        |           |
|----------------|-------------|-------------------|--------------------------|-------------|---------|---------------------|----------|-----------|----------|--------------|------------|----------|-----------|
|                | With        | Rate <sup>a</sup> | Timing <sup>ь</sup>      | Plant stand | height  | <2¼ in <sup>c</sup> | US No. 2 | Plate rot | 2¼-3 in  | 3-4 in       | 4-4¼ in    | >4¼ in   | Total     |
| Treatment      | fertilizer  | fl oz/acre        | •                        | No./acre    | cm      |                     |          |           | Number o | f bulbs/acre | c          |          |           |
| Outlook        | Yes         | 7                 | A = 2 leaf               | 109,466 ab  | 84.2 ab | 297 a               | 148 b    | 1,780 ab  | 4,599 ab | 57,121 ab    | 30,266 ab  | 8,012 ab | 99,998 a  |
| Outlook        | Yes         | 7                 | 14 days after A          |             |         |                     |          |           |          |              |            |          |           |
| Outlook        | Yes         | 7                 | 21 days after A          |             |         |                     |          |           |          |              |            |          |           |
| Outlook        | No          | 7                 | A = 2 leaf               | 102,324 c   | 87.1 a  | 593 a               | 1039 a   | 1,484 b   | 2,819 ab | 42,878 b     | 35,459 ab  | 8,012 ab | 89,167 b  |
| Outlook        | No          | 7                 | 7 days after A           |             |         |                     |          |           |          |              |            |          |           |
| Outlook        | No          | 7                 | 14 D after A             |             |         |                     |          |           |          |              |            |          |           |
| Outlook        | Yes         | 6                 | A = 2 leaf               | 107,344 abc | 84.3 ab | 445 a               | 445 ab   | 1,929 ab  | 3,116 ab | 52,521 ab    | 32,789 ab  | 8,754 ab | 97,179 ab |
| Outlook        | Yes         | 5                 | 7 days after A           |             |         |                     |          |           |          |              |            |          |           |
| Outlook        | Yes         | 5                 | 14 days after A          |             |         |                     |          |           |          |              |            |          |           |
| Outlook        | Yes         | 5                 | 21 days after A          |             |         |                     |          |           |          |              |            |          |           |
| Outlook        | No          | 6                 | A = 2 leaf               | 103,738 bc  | 83.6 ab | 445 a               | 445 ab   | 1,039 b   | 3,412 ab | 51,631 ab    | 29,376 ab  | 8,605 ab | 93,025 ab |
| Outlook        | No          | 5                 | 7 days after A           |             |         |                     |          |           |          |              |            |          |           |
| Outlook        | No          | 5                 | 14 days after A          |             |         |                     |          |           |          |              |            |          |           |
| Outlook        | No          | 5                 | 21 days after A          |             |         |                     |          |           |          |              |            |          |           |
| Outlook        | Yes         | 21                | A = 2 leaf               | 110,597 a   | 83.6 ab | 297 a               | 445 ab   | 4,006 a   | 5,935 ab | 64,984 a     | 22,997 b   | 3,412 b  | 97,328 ab |
| Outlook        | Yes         | 21                | 14 days after A          |             |         |                     |          |           |          |              |            |          |           |
| Outlook        | No          | 21                | A = 2 leaf               | 106,284 abc | 82.8 b  | 0 a                 | 445 ab   | 3,116 ab  | 9,199 a  | 52,373 ab    | 25,816 b   | 6,528 ab | 93,915 ab |
| Outlook        | No          | 21                | 14 days after A          |             |         |                     |          |           |          |              |            |          |           |
| Outlook-Grow   | er standard | 1 21              | A = 2 leaf-<br>broadcast | 107,344 abc | 87.0 a  | 445 a               | 1,039 a  | 2,522 ab  | 2,671 ab | 39,762 b     | 42,729 a   | 11,572 a | 96,734 ab |
| Hand-weeded    | check       |                   |                          | 109,607 ab  | 85.1 ab | 1,039 a             | 1187 a   | 3,412 ab  | 2,374 b  | 43,916 b     | 38,427 ab  | 11,869 a | 96,586 ab |
| LSD (P = 0.05) | )           |                   |                          | 6,390.1     | 3.90    | 1,082.7             | 860.4    | 2,498.9   | 6,635.5  | 17,562.0     | 15,458.0   | 6,009.3  | 8,479.7   |

<sup>a</sup>Herbicide rate; Outlook (dimethenamid-p) 5 fl oz/acre = 0.234 lb ai/acre; 6 fl oz/acre = 0.28 lb ai/acre; 7 fl oz/acre = 0.328 lb ai/acre; 21 fl oz/acre = 0.98lb ai/acre. <sup>b</sup>Herbicide application timing; A = onions at 2-leaf stage (Jun 1, 2017); B = 7 days after A (Jun 8, 2017); C = 14 days after A (Jun 15, 2017); D = 21 days after A (Jun 15, 2017); E = 28 days after A (Jun 22, 2017).

<sup>c</sup>The bulbs were graded according to diameter: small (<2¼ inches), medium (2¼-3 inches), jumbo (3-4 inches), colossal (4-4¼ inches), and supercolossal (>4¼ inches). Marketable yield is composed of medium, jumbo, colossal, and supercolossal grades. Split bulbs (No. 2s), bulbs infected with the fungus *Botrytis allii* in the neck or side, bulbs infected with the fungus *Fusarium oxysporum* (plate rot). Marketable yield consists of U.S. No.1 bulbs >2¼ inches.

Onion Response to Various Outlook<sup>®</sup> Herbicide Rates Applied Through Irrigation Drip With and Without Fertilizer 83

Table 2. Onion yield in response of various Outlook (dimethenamid-p) herbicide treatments applied with and without liquid fertilizer through the irrigation drip at the Malheur Experiment Station, Ontario, OR, 2017.

|                  |             |                   |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                     |                      |                         |                     |                        |                   | Marketabl             | е       |            |
|------------------|-------------|-------------------|--------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|----------------------|-------------------------|---------------------|------------------------|-------------------|-----------------------|---------|------------|
|                  | With        | Rate <sup>a</sup> | Timing <sup>b</sup>      | Plant stand                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Plant<br>height     | Plate rot            | US No. 2                | <2¼ in <sup>c</sup> | 2¼-3 in                | 3-4 in            | 4-4¼ in               | >4¼ in  | Total      |
| Treatment        | fertilizer  | fl oz/acre        |                          | No./acre                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | cm                  |                      |                         |                     | cwt/                   | acre <sup>c</sup> |                       |         |            |
| Outlook          | Yes         | 7                 | A = 2 leaf               | 109,466 ab                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 84.2 ab             | 2.3a                 | 0.4 b                   | 3.2 abc             | 18.3a                  | 514.3 ab          | 401.0 abc             | 133.9ab | 1,067.5 ab |
| Outlook          | Yes         | 7                 | 14 days after A          | L .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |                      |                         |                     |                        |                   |                       |         |            |
| Outlook          | Yes         | 7                 | 21 days after A          | L Contraction of the second seco |                     |                      |                         |                     |                        |                   |                       |         |            |
| Outlook          | No          | 7                 | A = 2 leaf               | 102,324 c                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 87.1 a              | 3.7a                 | 7.4 ab                  | 2.7 bc              | 11.2a                  | 421.5 ab          | 471.2 abc             | 132.7ab | 1,036.6 ab |
| Outlook          | No          | 7                 | 7 days after A           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                     |                      |                         |                     |                        |                   |                       |         |            |
| Outlook          | No          | 7                 | 14 days after A          | L .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |                      |                         |                     |                        |                   |                       |         |            |
| Outlook          | Yes         | 6                 | A = 2 leaf               | 107,344 abc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 84.3 ab             | 2.0a                 | 5.1 ab                  | 3.1 abc             | 12.0a                  | 493.1 ab          | 433.2 abc             | 142.5ab | 1,080.8 ab |
| Outlook          | Yes         | 5                 | 7 days after A           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                     |                      |                         |                     |                        |                   |                       |         |            |
| Outlook          | Yes         | 5                 | 14 days after A          | L Contraction of the second seco |                     |                      |                         |                     |                        |                   |                       |         |            |
| Outlook          | Yes         | 5                 | 21 days after A          | L Contraction of the second seco |                     |                      |                         |                     |                        |                   |                       |         |            |
| Outlook          | No          | 6                 | A = 2 leaf               | 103,738 bc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 83.6 ab             | 1.9a                 | 3.4 ab                  | 1.4 c               | 13.3a                  | 475.9 ab          | 382.6 abc             | 142.7ab | 1,014.5 ab |
| Outlook          | No          | 5                 | 7 days after A           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                     |                      |                         |                     |                        |                   |                       |         |            |
| Outlook          | No          | 5                 | 14 days after A          | L Contraction of the second seco |                     |                      |                         |                     |                        |                   |                       |         |            |
| Outlook          | No          | 5                 | 21 days after A          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                     |                      |                         |                     |                        |                   |                       |         |            |
| Outlook          | Yes         | 21                | A = 2 leaf               | 110,597 a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 83.6 ab             | 2.4a                 | 3.1 ab                  | 6.8a                | 23.7a                  | 552.0 a           | 299.6 c               | 58.7b   | 934.0 b    |
| Outlook          | Yes         | 21                | 14 days after A          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                     |                      |                         |                     |                        |                   |                       |         |            |
| Outlook          | No          | 21                | A = 2 leaf               | 106,284 abc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 82.8 b              | 0.0a                 | 2.9 ab                  | 5.1 abc             | 35.1a                  | 442.5 ab          | 341.8 bc              | 108.0ab | 927.3 b    |
| Outlook          | No          | 21                | 14 days after A          | L.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                     |                      |                         |                     |                        |                   |                       |         |            |
| Outlook-Grow     | er standaro | d 21              | A = 2 leaf-<br>broadcast | 107,344 abc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 87.0 a              | 3.7a                 | 9.7 a                   | 3.5 abc             | 10.6a                  | 380.6 b           | 568.8 a               | 186.9a  | 1,146.9 a  |
| Hand-weeded      | check       |                   |                          | 109,607 ab                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 85.1 ab             | 5.6                  | 10.1 a                  | 5.6 ab              | 9.8a                   | 411.9 b           | 513.1 ab              | 196.9a  | 1,131.7 a  |
| LSD ( $P = 0.05$ | /           | nethenamid        | -p) 5 fl oz/acre = 0     | 6,390.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 3.9<br>6 fl.oz/acre | NS<br>= 0.28 lb ai/a | 8.9<br>acre: 7 fl.oz/ac | 3.9                 | 26.5<br>ai/acre: 21 fl | 134.2             | 211.2<br>98lb ai/acre | 98.8    | 177.4      |

<sup>a</sup>Herbicide rate; Outlook (dimethenamid-p) 5 fl oz/acre = 0.234 lb ai/acre; 6 fl oz/acre = 0.28 lb ai/acre; 7 fl oz/acre = 0.328 lb ai/acre; 21 fl oz/acre = 0.98lb ai/acre. <sup>b</sup>Herbicide application timing; A = onions at 2-leaf stage (Jun 1, 2017); B = 7 days after A (Jun 8, 2017); C = 14 days after A (Jun 15, 2017); D = 21 days after A (Jun 15, 2017); E = 28 days after A (Jun 22, 2017).

"The bulbs were graded according to diameter: small (<2¼ inches), medium (2¼-3 inches), jumbo (3-4 inches), colossal (4-4¼ inches), and supercolossal (>4¼ inches). Marketable yield is composed of medium, jumbo, colossal, and supercolossal grades. Split bulbs (No. 2s), bulbs infected with the fungus *Botrytis allii* in the neck or side, bulbs infected with the fungus *Fusarium oxysporum* (plate rot). Marketable yield consists of U.S. No.1 bulbs >2¼ inches.

# RESPONSE OF RED AND WHITE ONION CULTIVARS TO OUTLOOK<sup>®</sup> APPLIED THROUGH DRIP IRRIGATION

Joel Felix and Joey Ishida, Malheur Experiment Station, Oregon State University, Ontario, OR, 2017

### Introduction

Application of dimethenamid-p (Outlook<sup>®</sup>) herbicide through drip irrigation systems to control yellow nutsedge in onion in the Treasure Valley of eastern Oregon and southwestern Idaho was authorized in 2016. The section 24C Special Local Need (SLN) registration is allowed only on yellow onions. In Oregon, the application of Outlook through drip irrigation is allowed only in Malheur County. The Idaho label allows application through drip irrigation in Ada, Canyon, Gem, Owyhee, Payette, and Washington counties. Both labels reference the chemigation section of the federal label regarding restrictions and directions on how to properly chemigate Outlook in onion production. The user is required to have both the entire Outlook container label and the SLN label in their possession at the time of application.

The research conducted at the Oregon State University's Malheur Experiment Station near Ontario, Oregon indicated improved yellow nutsedge control with Outlook applied through drip irrigation compared to Outlook applied by broadcast spraying. The labels still limit the maximum use rate to 21 fl oz/acre/season (0.98 lb ai/acre/season). Sequential applications are allowed as long as the total amount does not exceed 21 fl oz/acre/season. Applications through irrigation drip are allowed starting when onions are at the 2-leaf stage but not after the 6-leaf stage.

This study was conducted to generate data that is needed in order to allow the use of Outlook through the irrigation drips to red and white onions. The study included six red varieties and four white varieties.

## **Materials and Methods**

A field study was conducted at the Malheur Experiment Station, Ontario, Oregon in 2017 to evaluate the response of six red and four white onion varieties to various Outlook herbicide rates applied through irrigation drips. Seeds of red varieties 'Red Wing', 'Red Carpet', 'Red Devil', 'Salsa', SV4643NT, and 'Purple Haze'; as well as white varieties 'Antarctica', 'White Cloud', SV4058NU, and 'Brundage' were planted on April 10, 2017 in double rows spaced 3 inches apart with 4-inch seed spacing within each row. Each pair of rows was planted on beds spaced 22 inches apart. On April 17 each onion row received a 7-inch band of Lorsban<sup>®</sup> at 3.7 oz/1000 ft of row and the soil surface was rolled. The soil was an Owyhee silt loam with a pH 7.2 and 1.8% organic matter.

The study had a split-block design and treatments were arranged in randomized complete blocks with three replicates. Onion cultivars formed the main plot onto which herbicide treatments were

randomly assigned. Individual plots were 7.33 ft wide (4 beds) by 27 ft long. The study area (except the hand-weeded check plots) was treated with pendimethalin (Prowl<sup>®</sup> H<sub>2</sub>O) at 2.0 pt/acre (0.95 lb ai/acre) late pre-emergence on April 19. Postemergence applications of Buctril<sup>®</sup> at 12 fl oz/acre (bromoxynil at 0.188lb ai/acre) plus GoalTender<sup>®</sup> at 4 fl oz/acre (oxyfluorfen at 0.125 lb/ai acre) were made when onion seedlings were at the 2- and 4-leaf stages.

In order to achieve uniform herbicide distribution in the top soil layer, each Outlook herbicide rate was mixed into 35 gal of water and metered into the drip irrigation system at a continuous uniform rate of 5 gal/hour during the middle irrigation period. Applications were initiated when onion plants were at the 2-leaf stage and were made on May 31, June 7, 13, and 22 (Tables 1-4). On July 20, 10 plants were identified randomly from each plot and measured from the ground to the tip of the longest fully extended leaf to determine the average plant height. Fertilizer was applied through irrigation drip on May 8 (30 lb nitrogen (N)/acre), June 22, July 7, and 11 (50 lb N/acre each). All other operations followed recommended local production practices.

Plant tops were flailed and onion bulbs were lifted on September 6 and 7, respectively. Bulbs were hand-harvested from the two center beds on September 11 and graded on September 22. Bulbs were graded for yield and quality based on USDA standards as follows: bulbs without blemishes (U.S. No. 1), split bulbs (U.S. No. 2), bulbs infected with the fungus *Botrytis allii* in the neck or side, bulbs infected with the fungus *Fusarium oxysporum* (plate rot), bulbs infected with the fungus *Aspergillus niger* (black mold), and bulbs infected with unidentified bacteria in the external scales. The U.S. No. 1 bulbs were graded according to diameter: small (<2¼ inches), medium (2¼-3 inches), jumbo (3-4 inches), colossal (4-4¼ inches), and supercolossal (>4¼ inches). Marketable yield consisted of U.S. No.1 bulbs >2¼ inches.

Data were subjected to analysis of variance and the treatment means were compared using protected LSD at the 0.05% level of confidence.

## Results

Onion emergence was observed on May 3, 2017. Data analysis indicated differences attributed to varietal differences but not herbicide rates and there was no interaction between variety and herbicide rates. Therefore, the data presented herein are averaged across herbicide rates (or across varieties to illustrate lack of herbicide effects).

Evaluations on July 20 (78 days after onion emergence) indicated variations in plant height that were attributed to variety difference and not herbicide or the interaction of herbicide by variety (Table 1). The average plant height for red varieties was 29.2 inches compared to 31.8 for white varieties. Plant stand on July 20 ranged from 73,853 to 114,345 plants/acre for reds and 68,040 to 100,766 plants/acre for whites. Differences in the number of harvested bulbs for each category varied widely for the red and white varieties. The variations were not attributed to herbicide rates or the interaction of herbicide by variety.

Data averaged across varieties revealed differences in the number of plants and height as well as the number of harvested bulbs attributable to variety difference, with no negative effects from any of the herbicide rates or the interaction of herbicide by varieties (Table 2).

Differences in onion yield for various bulb categories were also attributed to variety differences (Table 3). Onion bulb yield averages across varieties confirmed differences were due to varieties and there were no negative effects from herbicide rates (Table 4).

These results demonstrated that red and white onion varieties evaluated in this study were not negatively affected by any of the Outlook herbicide rates tested.

The study will be repeated in 2018 to confirm these results followed by a request to include red and white onions on the Outlook SLN labels in eastern Oregon and southwestern Idaho to apply Outlook through the irrigation drips to control yellow nutsedge in onions.

The current SLN label allowing the application of Outlook through the irrigation drips applies only to yellow varieties, and will remain so until it is changed to include red and white onion types.

Growers are advised to be extra careful as they adopt this application technique because of the potential for onion injury if one is not precise in determining the area being treated and/or measuring the product. It is critical that Outlook herbicide be mixed into water and the solution metered into the drip irrigation system for 8 to 10 hours.

### Acknowledgements

This project was funded by the Idaho-Eastern Oregon Onion Committee, cooperating onion seed companies, Oregon State University, the Malheur County Education Service District, and supported by Formula Grant nos. 2017-31100-06041 and 2017-31200-06041 from the USDA National Institute of Food and Agriculture.

Table 1. Onion plant stand and plant height (July 20), and number of harvested bulbs for six red and four white onion varieties averaged across various Outlook<sup>a</sup> (dimethenamid-p) herbicide rates applied through the irrigation drip at the Malheur Experiment Station, Ontario, OR, 2017. The average across herbicide rates includes the untreated hand-weeded control treatment.

|                   |                 |             |              |        |           |           |         |               | Marketable     | ;      |        |
|-------------------|-----------------|-------------|--------------|--------|-----------|-----------|---------|---------------|----------------|--------|--------|
| Type <sup>a</sup> | Variety         | Plant stand | Plant height | <2¼ in | U.S No. 2 | Plate Rot | 2¼-3 in | 3-4 in        | 4-4¼ in        | >4¼ in | Total  |
|                   |                 | No./acre    | inches       |        |           |           | Number  | of bulbs/acro | e <sup>b</sup> |        |        |
| Red               | Red Wing        | 114,345     | 29.7         | 15,298 | 231       | 165       | 29,014  | 70,325        | 659            | 0      | 99,998 |
| Red               | Red Carpet      | 98,129      | 29.7         | 15,067 | 659       | 198       | 30,036  | 51,137        | 1,616          | 66     | 82,854 |
| Red               | Red Devil       | 79,201      | 30.2         | 10,979 | 264       | 1,286     | 30,827  | 35,641        | 264            | 33     | 66,764 |
| Red               | Salsa           | 77,638      | 26.6         | 16,947 | 4,121     | 3,495     | 21,892  | 29,310        | 758            | 33     | 51,994 |
| Red               | SV4643NT        | 88,555      | 30.2         | 16,518 | 2,341     | 923       | 27,365  | 38,443        | 1,418          | 33     | 67,259 |
| Red               | Purple Haze     | 73,853      | 29.0         | 9,528  | 330       | 1,121     | 27,530  | 36,564        | 264            | 0      | 64,357 |
| Ave               | rage            | 88,620      | 29.2         | 14,056 | 1,324     | 1,198     | 27,777  | 43,570        | 830            | 28     | 72,204 |
| White             | Antarctica      | 100,766     | 33.8         | 2,143  | 1,187     | 429       | 6,001   | 73,128        | 19,254         | 1,220  | 99,602 |
| White             | White Cloud     | 90,704      | 30.4         | 3,495  | 6,660     | 6,627     | 5,836   | 52,554        | 15,133         | 1,714  | 75,238 |
| White             | SV4058NU        | 99,423      | 31.9         | 2,769  | 1,121     | 1,451     | 10,847  | 72,369        | 11,144         | 593    | 94,954 |
| White             | Brundage        | 68,040      | 31.1         | 3,825  | 1,484     | 725       | 10,023  | 44,477        | 6,825          | 429    | 61,753 |
| Ave               | rage            | 89,733      | 31.8         | 3,058  | 2,613     | 2,308     | 8,177   | 60,632        | 13,089         | 989    | 82,887 |
| _SD (0.05)        | Variety         | 19,349      | 2.0          | NS     | 2,256     | 2,095     | 17,441  | 40,182        | 6,358          | 792    | 28,078 |
| _SD (0.05)        | Herbicide       | NS          | NS           | NS     | NS        | NS        | NS      | NS            | NS             | NS     | NS     |
| _SD (0.05)        | Var x Herbicide | NS          | NS           | NS     | NS        | NS        | NS      | NS            | NS             | NS     | NS     |

<sup>a</sup>Herbicide rate; Outlook (dimethenamid-p) 5 fl oz/acre = 0.234 lb ai/acre; 6 fl oz/acre = 0.28 lb ai/acre; 7 fl oz/acre = 0.328 lb ai/acre; 21 fl oz/acre = 0.98lb ai/acre.

<sup>b</sup>The bulbs were graded according to diameter: small (<2½ inches), medium (2½-3 inches), jumbo (3-4 inches), colossal (4-4¼ inches), and supercolossal (>4¼ inches). Marketable yield is composed of medium, jumbo, colossal, and supercolossal grades. Split bulbs (No. 2s), bulbs infected with the fungus *Botrytis allii* in the neck or side, bulbs infected with the fungus *Fusarium oxysporum* (plate rot). Marketable yield consists of U.S. No.1 bulbs >2¼ inches.

Table 2. Onion plant stand and plant height (July 20), and number of harvested bulbs in response to various Outlook<sup>a</sup> (dimethenamid-p) herbicide treatments applied through the irrigation drip at the Malheur Experiment Station, Ontario, OR 2017. The number of bulbs are averaged across six red and four white onion varieties.

|                  |                   |                     | Plant      | Plant  |        |          | Plate |            |              | Marketable      | 2      |        |
|------------------|-------------------|---------------------|------------|--------|--------|----------|-------|------------|--------------|-----------------|--------|--------|
| Treatment        | Rate <sup>a</sup> | Timing <sup>ь</sup> | population | height | <2¼ in | US No. 2 | rot   | 2¼-3 in    | 3-4 in       | 4-4¼ in         | >4¼ in | Total  |
|                  | fl oz/acre        | e                   | No./acre   | inches |        |          |       | - Number o | of bulbs /ac | re <sup>c</sup> |        |        |
| Outlook          | 11                | 2 leaves = A        | 89,459     | 30.4   | 8,289  | 2,097    | 1,365 | 18,377     | 52,917       | 6,667           | 475    | 78,436 |
| Outlook          | 10                | 14 days after A     |            |        |        |          |       |            |              |                 |        |        |
| Outlook          | 7                 | 2 leaves = A        | 87,847     | 30.4   | 9,772  | 1,780    | 1,899 | 20,079     | 51,117       | 5,440           | 475    | 77,110 |
| Outlook          | 7                 | 7 days after A      |            |        |        |          |       |            |              |                 |        |        |
| Outlook          | 7                 | 14 days after A     |            |        |        |          |       |            |              |                 |        |        |
| Outlook          | 6                 | 2 leaves = A        | 90,587     | 30.1   | 10,208 | 1,187    | 1,286 | 22,215     | 51,374       | 3,996           | 178    | 77,763 |
| Outlook          | 5                 | 7 days after A      |            |        |        |          |       |            |              |                 |        |        |
| Outlook          | 5                 | 14 days after A     |            |        |        |          |       |            |              |                 |        |        |
| Outlook          | 5                 | 21 days after A     |            |        |        |          |       |            |              |                 |        |        |
| Outlook          | 21                | 2 leaves = A        | 91,349     | 30.0   | 10,821 | 2,038    | 2,156 | 22,690     | 47,952       | 5,302           | 415    | 76,359 |
| Outlook          | 21                | 14 days after A     |            |        |        |          |       |            |              |                 |        |        |
| Outlook          | 21                | 2-leaf broadcast    | 86,645     | 30.3   | 9,950  | 1,899    | 1,622 | 17,646     | 49,435       | 6,014           | 495    | 73,589 |
| Hand-weeded      |                   |                     | 88,506     | 30.4   | 8,902  | 2,038    | 1,523 | 18,615     | 49,574       | 6,983           | 435    | 75,607 |
| LSD (0.05) herbi | cide              |                     | NS         | NS     | NS     | NS       | NS    | NS         | NS           | NS              | NS     | NS     |
| LSD (0.05) varie | ties              |                     | 19,349     | 2.0    | NS     | 2,256    | 2,095 | 17,441     | NS           | 6,358           | 792    | 28,078 |
| LSD (0.05) herbi | cide x vari       | ety                 | NS         | NS     | NS     | NS       | NS    | NS         | NS           | NS              | NS     | NS     |

<sup>a</sup>Herbicide rate; Outlook (dimethenamid-p) 5 fl oz/acre = 0.234 lb ai/acre; 6 fl oz/acre = 0.28 lb ai/acre; 7 fl oz/acre = 0.328 lb ai/acre; 21 fl oz/acre = 0.98lb ai/acre. <sup>b</sup>Herbicide application timing; A = onions at 2-leaf stage (May 31, 2017); B = 7 days after A (Jun 7, 2017); C = 14 days after A (Jun 13, 2017); D = 21 days after A (Jun 21, 2017). <sup>c</sup>The bulbs were graded according to diameter: small (<2¼ inches), medium (2¼-3 inches), jumbo (3-4 inches), colossal (4-4¼ inches), and supercolossal (>4¼ inches). Marketable yield is composed of medium, jumbo, colossal, and supercolossal grades. Split bulbs (No. 2s), bulbs infected with the fungus *Botrytis allii* in the neck or side, bulbs infected with the fungus *Fusarium oxysporum* (plate rot). Marketable yield consists of U.S. No.1 bulbs >2¼ inches. Table 3. Onion plant stand (July 20), and harvested bulb yield for six red and four white onion varieties averaged across various Outlook<sup>a</sup> (dimethenamid-p) herbicide rates applied through the irrigation drip at the Malheur Experiment Station, Ontario, OR, 2017. The average across herbicide rates includes the untreated hand-weeded check treatment.

|                        |                |             |        | Unmarketab | ble       |          | Ν              | /larketable |        |       |
|------------------------|----------------|-------------|--------|------------|-----------|----------|----------------|-------------|--------|-------|
| Туре                   | Variety        | Plant stand | <2¼ in | US No.2    | Plate Rot | 2¼-3 in  | 3-4 in         | 4-4¼ in     | >4¼ in | Total |
|                        |                | No./acre    |        |            |           | cwt/acre | 9 <sup>b</sup> |             |        |       |
| Red                    | Red Wing       | 114,345     | 27.7   | 1.3        | 0.6       | 106.3    | 481.3          | 6.8         | 0.0    | 594.4 |
| Red                    | Red<br>Carpet  | 98,129      | 30.8   | 4.6        | 0.7       | 106.2    | 365.6          | 16.7        | 0.7    | 489.2 |
| Red                    | Red Devil      | 79,201      | 23.1   | 1.3        | 4.9       | 115.7    | 231.8          | 3.2         | 0.4    | 351.0 |
| Red                    | Salsa          | 77,638      | 30.0   | 20.8       | 7.7       | 77.4     | 210.6          | 9.2         | 0.6    | 297.9 |
| Red                    | SV4643NT       | 88,555      | 30.6   | 18.4       | 3.4       | 95.4     | 280.5          | 16.9        | 0.5    | 393.3 |
| Red                    | Purple<br>Haze | 73,853      | 19.8   | 1.2        | 5.5       | 103.7    | 229.6          | 3.1         | 0.0    | 336.4 |
| Avera                  | ige            | 88,620      | 27     | 7.9        | 3.8       | 100.8    | 299.9          | 9.3         | 0.4    | 410.4 |
| White                  | Antarctica     | 100,766     | 4.3    | 11.3       | 4.9       | 24.3     | 646.5          | 234.8       | 18.2   | 923.7 |
| White                  | White<br>Cloud | 90,704      | 5.5    | 45.4       | 55.6      | 22.4     | 462.3          | 199.0       | 29.0   | 712.7 |
| White                  | SV4058NU       | 99,423      | 5.7    | 6.2        | 10.0      | 42.4     | 590.0          | 136.7       | 9.0    | 778.1 |
| White                  | Brundage       | 68,040      | 6.3    | 7.8        | 4.4       | 37.3     | 355.6          | 82.5        | 6.2    | 481.6 |
| Avera                  | ige            | 89,733      | 5.5    | 17.7       | 18.7      | 31.6     | 513.6          | 163.3       | 15.6   | 724.0 |
| LSD (0.05              | ) variety      | 19,349      | NS     | 17.7       | 15.4      | 55.5     | NS             | 81.6        | 13.2   | 311.5 |
| LSD (0.05              | ) herbicide    | NS          | NS     | NS         | NS        | NS       | NS             | NS          | NS     | NS    |
| LSD (0.05<br>herbicide | ) var x        | NS          | NS     | NS         | NS        | NS       | NS             | NS          | NS     | NS    |

<sup>a</sup>Herbicide rate; Outlook (dimethenamid-p) 5 fl oz/acre = 0.234 lb ai/acre; 6 fl oz/acre = 0.28 lb ai/acre; 7 fl oz/acre = 0.328 lb ai/acre; 21 fl oz/acre = 0.98lb ai/acre.

<sup>b</sup>The bulbs were graded according to diameter: small (<2¼ inches), medium (2¼-3 inches), jumbo (3-4 inches), colossal (4-4¼ inches), and supercolossal (>4¼ inches). Marketable yield is composed of medium, jumbo, colossal, and supercolossal grades. Split bulbs (No. 2s), bulbs infected with the fungus *Botrytis allii* in the neck or side, bulbs infected with the fungus *Fusarium oxysporum* (plate rot). Marketable yield consists of U.S. No.1 bulbs >2¼ inches.

Table 4. Onion plant stand on July 20 and harvested bulb yield averaged across six red and four white onion varieties various in response to Outlook<sup>a</sup> (dimethenamid-p) herbicide treatments applied through the irrigation drip at the Malheur Experiment Station, Ontario, OR, 2017.

|                        |                    |                     | -           |                     | Unmarketabl | е         |         |                   | Marketable |        |       |
|------------------------|--------------------|---------------------|-------------|---------------------|-------------|-----------|---------|-------------------|------------|--------|-------|
| Treatment              | Rate <sup>a</sup>  | Timing <sup>b</sup> | Plant stand | <2¼ in <sup>c</sup> | US No. 2    | Plate Rot | 2¼-3 in | 3-4 in            | 4-4¼ in    | >4¼ in | Total |
|                        | fl oz/acr          | e                   | No./acre    |                     |             |           | cwt/a   | acre <sup>c</sup> |            |        |       |
| Outlook                | 11                 | 2 leaves = A        | 89,459      | 15.5                | 13.6        | 7.6       | 69.7    | 414.4             | 82.7       | 7.5    | 574.3 |
| Outlook                | 10                 | 14 days after A     |             |                     |             |           |         |                   |            |        |       |
| Outlook                | 7                  | 2 leaves = A        | 87,847      | 19.0                | 11.2        | 12.2      | 73.7    | 388.5             | 67.5       | 7.4    | 537.1 |
| Outlook                | 7                  | 7 days after A      |             |                     |             |           |         |                   |            |        |       |
| Outlook                | 7                  | 14 days after A     |             |                     |             |           |         |                   |            |        |       |
| Outlook                | 6                  | 2 leaves = A        | 90,587      | 20.1                | 8.3         | 8.5       | 81.6    | 390.6             | 49.1       | 2.9    | 524.3 |
| Outlook                | 5                  | 7 days after A      |             |                     |             |           |         |                   |            |        |       |
| Outlook                | 5                  | 14 days after A     |             |                     |             |           |         |                   |            |        |       |
| Outlook                | 5                  | 21 days after A     |             |                     |             |           |         |                   |            |        |       |
| Outlook                | 21                 | 2 leaves = A        | 91,349      | 20.7                | 11.7        | 11.2      | 83.3    | 362.4             | 63.5       | 6.4    | 515.5 |
| Outlook                | 21                 | 14 days after A     |             |                     |             |           |         |                   |            |        |       |
| Outlook                | 21                 | 2-leaf broadcast    | 86,645      | 18.3                | 12.0        | 10.1      | 62.2    | 378.0             | 74.9       | 7.7    | 522.7 |
| Hand-weeded check      |                    |                     | 88,506      | 16.7                | 14.2        | 8.8       | 68.3    | 378.3             | 87.6       | 6.8    | 541.0 |
| LSD (0.05) herbicide   |                    |                     | NS          | NS                  | NS          | NS        | NS      | NS                | NS         | NS     | NS    |
| LSD (0.05) varieties   |                    |                     | 19,349      | NS                  | 17.7        | 15.4      | 55.5    | NS                | 81.6       | 13.2   | 311.5 |
| LSD (0.05) herbicide > | <i>c</i> varieties | 5                   | NS          | NS                  | NS          | NS        | NS      | NS                | NS         | NS     | NS    |

<sup>a</sup>Herbicide rate; Outlook (dimethenamid-p) 5 fl oz/acre = 0.234 lb ai/acre; 6 fl oz/acre = 0.28 lb ai/acre; 7 fl oz/acre = 0.328 lb ai/acre; 21 fl oz/acre = 0.98lb ai/acre. <sup>b</sup>Herbicide application timing; A = onions at 2-leaf stage (May 31, 2017); B = 7 days after A (Jun 7, 2017); C = 14 days after A (Jun 13, 2017); D = 21 days after A (Jun 21, 2017). <sup>c</sup>The bulbs were graded according to diameter: small (<2¼ inches), medium (2¼-3 inches), jumbo (3-4 inches), colossal (4-4¼ inches), and supercolossal (>4¼ inches). Marketable yield is composed of medium, jumbo, colossal, and supercolossal grades. Split bulbs (No. 2s), bulbs infected with the fungus *Botrytis allii* in the neck or side, bulbs infected with the fungus *Fusarium oxysporum* (plate rot). Marketable yield consists of U.S. No.1 bulbs >2¼ inches.

# ONION RESPONSE TO CHATEAU<sup>®</sup> AND FIERCE<sup>®</sup> HERBICIDES APPLIED LATE PRE-EMERGENCE ON MINERAL SOIL

Joel Felix and Joey Ishida, Malheur Experiment Station, Oregon State University, Ontario, OR, 2017

# Introduction

Weed control in marketable onions is essential in order to minimize yield losses from weed competition and realize acceptable bulb size. Weed control in onions is difficult compared to many crops because of the lack of a complete crop canopy and limited herbicide options. The herbicide Chateau<sup>®</sup> (flumioxazin) is also marketed as Valor<sup>®</sup> by Valent Corporation to manage weeds in various specialty crops. Initially it was evaluated for suitability as a postemergence weed control in direct-seeded onions, but injury proved to be too high for the company to proceed with registration in the Treasure Valley. Currently there are labels for Chateau use to control weeds in onions in Michigan and New York. This trial was initiated to evaluate the potential use of Chateau as a late pre-emergence-applied product similar to the timing of Prowl<sup>®</sup> H<sub>2</sub>O in onions grown in the Treasure Valley of eastern Oregon and southwestern Idaho.

#### **Materials and Methods**

A field study was conducted at the Malheur Experiment Station, Ontario, Oregon in 2017 to evaluate the response of onion variety 'Vaquero' to Chateau (flumioxazin) and Fierce<sup>®</sup> (premix of Chateau plus Zidua<sup>®</sup> (pyroxasulfone)), when applied late pre-emergence at reduced rates. Onion seeds of variety Vaquero were planted on April 7, 2017 in double rows spaced 3 inches apart with 4-inch seed spacing within each row. Each double row was planted on beds spaced 22 inches apart. Immediately after planting, onion rows received a 7-inch band of Lorsban<sup>®</sup> at 3.7 oz/1000 ft of row (chlorpyrifos at 0.206 lb ai/acre) and the soil surface was rolled. The soil was an Owyhee silt loam with a pH 7.2 and 1.83% organic matter.

The study had a randomized complete block design with three replicates. Individual plots were 7.33 ft wide (4 beds) by 27 ft long. Plots for respective treatments (except untreated check plots) were treated with pendimethalin (Prowl H<sub>2</sub>O) at 2.0 pt/acre (0.95 lb ai/acre) or Chateau or Fierce late pre-emergence on April 19 (Table 1). Postemergence application of Buctril<sup>®</sup> at 12 fl oz/acre (bromoxynil at 0.188 lb ai/acre) plus GoalTender<sup>®</sup> at 4 fl oz/acre (oxyfluorfen at 0.125 lb/ ai acre) was made when onion seedlings were at the 2-leaf stage on May 23 and at the 4- to 6-leaf stages on June 5. The study plots were sprayed with Poast<sup>®</sup> herbicide at 1.5 pt/acre (sethoxydim at 0.287 lb ai/acre) on June 4 to control grassy weeds.

The plants were fertilized on May 4 (30 lb nitrogen (N)/acre), June 16 (50 lb N/acre), July 3 and 14 (50 lb N/acre each date). On June 23, all weeds within the two center rows were counted and plots hand weeded. All other operations including insect control followed recommended local production practices.

Plant tops were flailed and onion bulbs were lifted on September 6 and 7, respectively. Bulbs were hand-harvested from the two center beds on September 13 and graded on September 25. Bulbs were graded for yield and quality based on USDA standards as follows: bulbs without blemishes (U.S. No. 1), split bulbs (U.S. No. 2), bulbs infected with the fungus *Botrytis allii* in the neck or side, bulbs infected with the fungus *Fusarium oxysporum* (plate rot), bulbs infected with the fungus *Aspergillus niger* (black mold), and bulbs infected with unidentified bacteria in the external scales. The U.S. No. 1 bulbs were graded according to diameter: small (<2¼ inches), medium (2¼-3 inches), jumbo (3-4 inches), colossal (4-4¼ inches), and supercolossal (>4¼ inches). Marketable yield consisted of U.S. No.1 bulbs >2¼ inches.

Data were subjected to analysis of variance and the treatment means were compared using protected LSD at the 0.05% level of confidence.

# Results

Onion emergence was observed on May 3, 2017. Generally, the plant population was low during the 2017 cropping season, possibly due to uncharacteristically high moisture from winter snow and spring precipitation. Evaluations on May 23 (34 days after application of late pre-emergence treatments) indicated plant injury ranging from 10 to 15% for plants growing in plots treated with Chateau or Fierce (Table 1). Common lambsquarters control ranged from 90 to 98% for Chateau and Fierce treatments compared to 94 to 97% for plots treated with Prowl H<sub>2</sub>O. A similar trend was observed for redroot pigweed, kochia, hairy nightshade, and barnyardgrass.

Evaluations on May 30 (41 days after late pre-emergence and 7 days after postemergence treatments) indicated onion injury in plots treated with Chateau and Fierce ranging from 5 to 10% compared to 0% for those treated with Prowl H<sub>2</sub>O (Table 2). Control for common lambsquarters, redroot pigweed, kochia, and hairy nightshade was still high, ranging from 80 to 79% compared to 100% for plots treated with Prowl H<sub>2</sub>O. However, weed control in plots treated with Prowl H<sub>2</sub>O late pre-emergence followed by Chateau at 0.5 oz/acre when onions were at the 2- and 4-leaf stage was  $\leq 23\%$  for common lambsquarters, redroot pigweed, kochia, and hairy nightshade. These results suggested that Chateau would not be a good choice as a standalone product to control weeds postemergence.

Average number of weeds in the two center rows on June 20 (31 days after late pre-emergence and 7 days after postemergence treatments) is presented in Table 3. Common lambsquarters control ranged from 2 to 14 plants for plots treated with Chateau or Fierce late pre-emergence compared to 18 plants for Chateau applied postemergence and 1 to 5 plants for plots treated with Prowl H<sub>2</sub>O. Generally, plots treated with Chateau or Fierce late pre-emergence had fewer weeds compared to plots treated with Prowl H<sub>2</sub>O at the same timing.

Plant stand on May 30 and marketable onion yield is presented in Table 4. Counts on May 30 indicated reduced plant stand in plots treated with Fierce at 1.25 oz/acre (0.0594 lb ai/acre) and Chateau at 1 oz/acre (0.032 lb ai/acre), which was 80,960 and 83,600 plants/acre, respectively. Yield for US. No. 2 onions was similar across treatments ranging from 0 to 5.5 cwt/acre. Yield for bulbs exhibiting plate rot was higher in plots treated with Chateau or Fierce late preemergence. Total marketable yield was similar across herbicide treatments and ranged from 862.2 to 988.4 cwt/acre compared to 1002.6 cwt/acre for the grower standard.

## Acknowledgements

This project was funded by the Idaho-Eastern Oregon Onion Committee, cooperating onion seed companies, Oregon State University, the Malheur County Education Service District, and supported by Formula Grant nos. 2017-31100-06041 and 2017-31200-06041 from the USDA National Institute of Food and Agriculture.

Table 1. Onion response and weed control on May 23 (34 days after late pre-emergence treatments) to application of various herbicides at the Malheur Experiment Station, Ontario, OR, 2017.

|                                          |                    |                     |            |               | V       | Veed cont | rolc  |               |
|------------------------------------------|--------------------|---------------------|------------|---------------|---------|-----------|-------|---------------|
| _                                        |                    |                     | Onion      | Common        | Redroot |           | Hairy | Common        |
| Treatment                                | Rate <sup>a</sup>  | Timing <sup>b</sup> | injury     | lambsquarters | pigweed |           |       | barnyardgrass |
| Untreated check                          | por ooro           |                     | 0 d        | <br>0 d       | 0 e     | %<br>0 d  | 0 c   | 0 b           |
| Chateau                                  | per acre<br>0.5 oz | LPRE                | 10 ab      | 90 c          | 95 d    | 92 c      | 94 ab | 97 a          |
| Buctril                                  | 12 fl oz           | 2-leaf              | 10 au      | 90 0          | 95 u    | 92 0      | 94 ab | 91 a          |
| GoalTender                               | 4 fl oz            | 2-leaf              |            |               |         |           |       |               |
| Buctril                                  | 12 fl oz           | 4-6 leaf            |            |               |         |           |       |               |
| GoalTender                               | 4 fl oz            | 4-6 leaf            |            |               |         |           |       |               |
| Chateau                                  | 1.0 oz             | LPRE                | 13 a       | 98 a          | 99 a    | 99 a      | 99 a  | 98 a          |
| Buctril                                  | 12 fl oz           | 2-leaf              |            |               |         |           |       |               |
| GoalTender                               | 4 fl oz            | 2-leaf              |            |               |         |           |       |               |
| Buctril                                  | 12 fl oz           | 4-6 leaf            |            |               |         |           |       |               |
| GoalTender                               | 4 fl oz            | 4-6 leaf            |            |               |         |           |       |               |
| Fierce (Chateau + Zidua)                 | 1.25 oz            | LPRE                | 15 a       | 97 ab         | 98 abc  | 98 ab     | 98 ab | 98 a          |
| Buctril                                  | 12 fl oz           | 2-leaf              |            |               |         |           |       |               |
| GoalTender                               | 4 fl oz            | 2-leaf              |            |               |         |           |       |               |
| Buctril                                  | 12 fl oz           | 4-6 leaf            |            |               |         |           |       |               |
| GoalTender                               | 4 fl oz            | 4-6 leaf            |            |               |         |           |       |               |
| Prowl H <sub>2</sub> O                   | 2.0 pt             | LPRE                | 3 cd       | 96 ab         | 96 cd   | 93 c      | 94 ab | 96 a          |
| Fierce (Chateau + Zidua)                 | 1.25 oz            | 2-leaf              |            |               |         |           |       |               |
| Buctril                                  | 12 fl oz           | 4-6 leaf            |            |               |         |           |       |               |
| GoalTender                               | 4 fl oz            | 4-6 leaf            | <b>0</b> 1 | 07.1          |         | 00 I      | 00 I  |               |
| Prowl H <sub>2</sub> O                   | 2.0 pt             | LPRE                | 3 cd       | 97 ab         | 99 ab   | 99 ab     | 96 ab | 94 a          |
| Fierce (Chateau + Zidua)                 | 1.5 oz             | 2-leaf              |            |               |         |           |       |               |
| Buctril                                  | 12 fl oz           | 4-6 leaf            |            |               |         |           |       |               |
| GoalTender<br>Prowl H <sub>2</sub> O     | 4 fl oz            | 4-6 leaf<br>LPRE    | 5 bcd      | 94 b          | 97 bcd  | 92 c      | 93 b  | 96 a          |
| Chateau                                  | 2.0 pt<br>0.5 oz   | 2-leaf              | 5 DCu      | 94 D          | 97 DCu  | 92 0      | 92.0  | 90 a          |
| Chateau                                  | 0.5 oz             | 4-6 leaf            |            |               |         |           |       |               |
| Prowl H <sub>2</sub> O (Grower standard) | 2.0 pt             | LPRE                | 7 bc       | 96 ab         | 98 abc  | 95 bc     | 95 ab | 98 a          |
| Buctril                                  | 12 fl oz           | 2-leaf              | 1 60       | 50 05         | 50 050  | 00 00     | 55 ab | 50 a          |
| GoalTender                               | 4 fl oz            | 2-leaf              |            |               |         |           |       |               |
| Buctril                                  | 12 fl oz           | 4-6 leaf            |            |               |         |           |       |               |
| GoalTender                               | 4 fl oz            | 4-6 leaf            |            |               |         |           |       |               |
| LSD ( $P = 0.05$ )                       |                    |                     | 5.8        | 3.4           | 2.3     | 4.2       | 5.2   | 4.0           |
| Standard Deviation                       |                    |                     | 3.3        |               | 1.3     | 2.4       | 3.0   | 2.3           |
| CV                                       |                    |                     | 46.53      | 2.32          | 1.52    | 2.86      | 3.54  | 2.7           |

<sup>a</sup>Chateau 0.5 oz/acre = flumioxazin 0.016 lb/acre; Buctril 12 fl oz/acre = bromoxynil 0.188 lb ai/acre; GoalTender 4 fl oz/acre = oxyfluorfen 0.125 lb ai/acre; Fierce 1.25 oz/acre = flumioxazin 0.0262 + pyroxasulfone 0.0332 lb ai/acre; Prowl H<sub>2</sub>O 2 pt/acre = pendimethalin 0.95 lb ai/acre.

<sup>b</sup>Timing LPRE-late pre-emergence (75% of seeds have germinated but no emergence); 2-leaf = onion seedlings at 2-leaf stage; 4-6 leaf = onion seedling at 4- to 6-leaf stage.

<sup>c</sup>Means within a column followed by same letter do not significantly differ (P = 0.05, LSD).

Table 2. Onion response and weed control on May 30 (41 days after late pre-emergence) and 7 days after postemergence application of various herbicides at the Malheur Experiment Station, Ontario, OR, 2017.

|                                          |                   |                     |                 |                         |                    | Weed c | ontrolc             |                         |
|------------------------------------------|-------------------|---------------------|-----------------|-------------------------|--------------------|--------|---------------------|-------------------------|
| Treatment                                | Rate <sup>a</sup> | Timing <sup>b</sup> | Onion<br>injury | Common<br>lambsquarters | Redroot<br>pigweed | Kochia | Hairy<br>nightshade | Common<br>barnyardgrass |
|                                          | per acre          |                     |                 |                         |                    | %      |                     |                         |
| Untreated check                          |                   |                     | 0.0 c           | 0 e                     | 0 d                | 0 e    | 0 e                 | 0 f                     |
| Chateau                                  | 0.5 oz            | LPRE                | 5.0 b           | 93 b                    | 97 a               | 95 b   | 95 b                | 80 b                    |
| Buctril                                  | 12 fl oz          | 2-leaf              |                 |                         |                    |        |                     |                         |
| GoalTender                               | 4 fl oz           | 2-leaf              |                 |                         |                    |        |                     |                         |
| Buctril                                  | 12 fl oz          | 4-6 leaf            |                 |                         |                    |        |                     |                         |
| GoalTender                               | 4 fl oz           | 4-6 leaf            |                 |                         |                    |        |                     |                         |
| Chateau                                  | 1.0 oz            | LPRE                | 10.0 a          | 97 ab                   | 97 a               | 95 b   | 97 b                | 20 e                    |
| Buctril                                  | 12 fl oz          | 2-leaf              |                 |                         |                    |        |                     |                         |
| GoalTender                               | 4 fl oz           | 2-leaf              |                 |                         |                    |        |                     |                         |
| Buctril                                  | 12 fl oz          | 4-6 leaf            |                 |                         |                    |        |                     |                         |
| GoalTender                               | 4 fl oz           | 4-6 leaf            |                 |                         |                    |        |                     |                         |
| Fierce (Chateau + Zidua)                 | 1.25 oz           | LPRE                | 6.7 b           | 97 ab                   | 97 a               | 97 ab  | 95 b                | 72 d                    |
| Buctril                                  | 12 fl oz          | 2-leaf              |                 |                         |                    |        |                     |                         |
| GoalTender                               | 4 fl oz           | 2-leaf              |                 |                         |                    |        |                     |                         |
| Buctril                                  | 12 fl oz          | 4-6 leaf            |                 |                         |                    |        |                     |                         |
| GoalTender                               | 4 fl oz           | 4-6 leaf            |                 |                         |                    |        |                     |                         |
| Prowl H <sub>2</sub> O                   | 2.0 pt            | LPRE                | 0.0 c           | 85 c                    | 87 b               | 78 c   | 80 c                | 77 c                    |
| Fierce (Chateau + Zidua)                 | 1.25 oz           | 2-leaf              |                 |                         |                    |        |                     |                         |
| Buctril                                  | 12 fl oz          | 4-6 leaf            |                 |                         |                    |        |                     |                         |
| GoalTender                               | 4 fl oz           | 4-6 leaf            |                 |                         |                    |        |                     |                         |
| Prowl H <sub>2</sub> O                   | 2.0 pt            | LPRE                | 5.0 b           | 96 ab                   | 97 a               | 97 ab  | 97 b                | 80 b                    |
| Fierce (Chateau + Zidua)                 | 1.5 oz            | 2-leaf              |                 |                         |                    |        |                     |                         |
| Buctril                                  | 12 fl oz          | 4-6 leaf            |                 |                         |                    |        |                     |                         |
| GoalTender                               | 4 fl oz           | 4-6 leaf            |                 |                         |                    |        |                     |                         |
| Prowl H <sub>2</sub> O                   | 2.0 pt            | LPRE                | 0.0 c           | 22 d                    | 23 c               | 22 d   | 22 d                | 2 f                     |
| Chateau                                  | 0.5 oz            | 2-leaf              |                 |                         |                    |        |                     |                         |
| Chateau                                  | 0.5 oz            | 4-6 leaf            |                 |                         |                    |        |                     |                         |
| Prowl H <sub>2</sub> O (Grower standard) | 2.0 pt            | LPRE                | 0.0 c           | 100 a                   | 100 a              | 100 a  | 100 a               | 100 a                   |
| Buctril                                  | 12 fl oz          | 2-leaf              |                 |                         |                    |        |                     |                         |
| GoalTender                               | 4 fl oz           | 2-leaf              |                 |                         |                    |        |                     |                         |
| Buctril                                  | 12 fl oz          | 4-6 leaf            |                 |                         |                    |        |                     |                         |
| GoalTender                               | 4 fl oz           | 4-6 leaf            |                 |                         |                    |        |                     |                         |
| LSD ( $P = 0.05$ )                       |                   |                     | 1.79            |                         | 3.4                | 4.3    | 2.4                 | 3                       |
| Standard Deviation                       |                   |                     | 1.02            |                         | 1.9                | 2.4    | 1.4                 | 1.89                    |
| CV                                       |                   |                     | 30.62           | 3.62                    | 2.58               | 3.35   | 1.9                 | 3.52                    |

<sup>a</sup>Chateau 0.5 oz/acre = flumioxazin 0.016 lb/acre; Buctril 12 fl oz/acre = bromoxynil 0.188 lb ai/acre; GoalTender 4 fl oz/acre = oxyfluorfen 0.125 lb ai/acre; Fierce 1.25 oz/acre = flumioxazin 0.0262 + pyroxasulfone 0.0332 lb ai/acre; Prowl H<sub>2</sub>O 2 pt/acre = pendimethalin 0.95 lb ai/acre.

<sup>b</sup>Timing LPRE-late pre-emergence (75% of seeds have germinated but no emergence); 2-leaf = onion seedlings at 2-leaf stage; 4-6 leaf = onion seedling at 4- to 6- leaf stage.

<sup>c</sup>Means within a column followed by same letter do not significantly differ (*P*=0.05, LSD).

Table 3. Average number of weeds in two center rows (3.67 x 27ft) of the onion plot on June 20 (31 days after late pre-emergence and 14 days after the last postemergence herbicide application) at the Malheur Experiment Station, Ontario, OR, 2017.

|                                |                   |                     |               |           | Ν              | lumber of we       |         |             |
|--------------------------------|-------------------|---------------------|---------------|-----------|----------------|--------------------|---------|-------------|
| <b>-</b>                       |                   |                     | Common        | Redroot   |                | Hairy              | Lady's- | <b>-</b>    |
| Treatment                      | Rate <sup>a</sup> | Timing <sup>b</sup> | lambsquarters | pigweed   |                | nightshade         |         | Total count |
| Untreated check                | per acre          |                     | <br>694 a     | <br>958 a | numbe<br>132 a | er/plot<br>1,949 a | 1,354 a | 5,087 a     |
| Chateau                        | 0.5 oz            | LPRE                | 14b           | 14b       | 3 b            | 1,545 a            | 22 b    | 53 b        |
| Buctril                        | 12 fl oz          | 2-leaf              | 140           | 140       | 50             | 1 D                | 22.0    | 55.0        |
| GoalTender                     | 4 fl oz           | 2-leaf              |               |           |                |                    |         |             |
| Buctril                        | 12 fl oz          | 4-6 leaf            |               |           |                |                    |         |             |
| GoalTender                     | 4 fl oz           | 4-6 leaf            |               |           |                |                    |         |             |
| Chateau                        | 1.0 oz            | LPRE                | 2 b           | 1b        | 0 b            | 0 b                | 2 b     | 5 b         |
| Buctril                        | 12 fl oz          | 2-leaf              | 20            | 1D        | 0.0            | 0.0                | 20      | 5.0         |
| GoalTender                     | 4 fl oz           | 2-leaf              |               |           |                |                    |         |             |
| Buctril                        | 12 fl oz          | 2-leal<br>4-6 leaf  |               |           |                |                    |         |             |
| GoalTender                     | 4 fl oz           | 4-6 leaf            |               |           |                |                    |         |             |
| Fierce (Chateau + Zidua)       | 1.25 oz           | LPRE                | 5 b           | 1b        | 1 b            | 0 b                | 3 b     | 10 b        |
| Buctril                        | 12fl oz           | 2-leaf              | 50            | TD        | 10             | 0.0                | 50      | 10.0        |
| GoalTender                     | 4 fl oz           | 2-leaf              |               |           |                |                    |         |             |
| Buctril                        | 12 fl oz          | 4-6 leaf            |               |           |                |                    |         |             |
| GoalTender                     | 4 fl oz           | 4-6 leaf            |               |           |                |                    |         |             |
| Prowl H <sub>2</sub> O         | 2.0 pt            | LPRE                | 5 b           | 22 b      | 2 b            | 54 b               | 27 b    | 111 b       |
| Fierce (Chateau + Zidua)       | 1.25 oz           | 2-Leaf              | 50            | 220       | 20             | 54 D               | 210     |             |
| Buctril                        | 12fl oz           | 4-6 leaf            |               |           |                |                    |         |             |
| GoalTender                     | 4 fl oz           | 4-6 leaf            |               |           |                |                    |         |             |
| Prowl H <sub>2</sub> O         | 2.0 pt            | LPRE                | 8b            | 12b       | 1 b            | 63 b               | 31 b    | 116 b       |
| Fierce (Chateau + Zidua)       | 1.5 oz            | 2-Leaf              | 00            | 120       | 10             | 05 0               | 510     | 110.0       |
| Buctril                        | 12 fl oz          | 4-6 leaf            |               |           |                |                    |         |             |
| GoalTender                     | 4 fl oz           | 4-6 leaf            |               |           |                |                    |         |             |
| Prowl H <sub>2</sub> O         | 2.0 pt            | LPRE                | 18b           | 58b       | 2 b            | 77 b               | 29 b    | 185 b       |
| Chateau                        | 0.5 oz            | 2-leaf              | 100           | 566       | 20             | 11 0               | 230     | 105 0       |
| Chateau                        | 0.5 oz            | 4-6 leaf            |               |           |                |                    |         |             |
| Prowl H <sub>2</sub> O (Grower | 0.502             | 4-0 leai            |               |           |                |                    |         |             |
| standard)                      | 2.0 pt            | LPRE                | 1 b           | 5 b       | 1 b            | 55 b               | 12 b    | 73 b        |
| Buctril                        | 12 fl oz          | 2-leaf              |               |           |                |                    |         |             |
| GoalTender                     | 4 fl oz           | 2-leaf              |               |           |                |                    |         |             |
| Buctril                        | 12 fl oz          | 4-6 leaf            |               |           |                |                    |         |             |
| GoalTender                     | 4 fl oz           | 4-6 leaf            |               |           |                |                    |         |             |
| LSD ( $P = 0.05$ )             | 411.02            |                     | 65.13         | 457.6     | 93.7           | 372.9              | 99.7    | 724.8       |
| Standard Deviation             |                   |                     | 37.19         | 261.3     | 53.7<br>53.5   | 212.9              | 56.9    | 413.8       |
| CV                             |                   |                     | 39.83         | 195.42    | 299.16         | 77.44              | 30.75   | 58.7        |
|                                | iovozia 0.016 lb  |                     |               |           |                | 11.44              |         |             |

<sup>a</sup>Chateau 0.5 oz/acre = flumioxazin 0.016 lb/acre; Buctril 12 fl oz/acre = bromoxynil 0.188 lb ai/acre; GoalTender 4 fl oz/acre = oxyfluorfen 0.125 lb ai/acre; Fierce 1.25 oz/acre = flumioxazin 0.0262 + pyroxasulfone 0.0332 lb ai/acre; Prowl H<sub>2</sub>O 2 pt/acre = pendimethalin 0.95 lb ai/acre.

<sup>b</sup>Timing LPRE-late pre-emergence (75% of seeds have germinated but no emergence); 2-leaf = onion seedlings at 2-leaf stage; 4-6 leaf = onion seedling at 4- to 6-leaf stage.

<sup>c</sup>Means within a column followed by same letter do not significantly differ (P = 0.05, LSD).

Table 4. Onion plant stand and bulb yield in response to Chateau and Fierce herbicides applied late pre-emergence at the Malheur Experiment Station, Ontario, OR, 2017.

|                                          |                   |                     |             |          | Jnmarketabl | е                   |          | Marl           | ketable yiel | d <sup>d</sup> |           |
|------------------------------------------|-------------------|---------------------|-------------|----------|-------------|---------------------|----------|----------------|--------------|----------------|-----------|
| Treatment                                | Rate <sup>a</sup> | Timing <sup>b</sup> | Plant stand | US No. 2 | Plate Rot   | <2¼ in <sup>c</sup> | 2¼-3 in  | 3-4 in         | 4-4¼ in      | >4¼ in         | Total     |
|                                          | per acre          |                     | No./acre    |          |             |                     | cwt/acr  | e <sup>d</sup> |              |                |           |
| Untreated check                          |                   |                     | 73,480 d    | 0.0 a    | 0.0 b       | 0.0 b               | 0.0 c    | 0.0 d          | 0.0 b        | 0.0 c          | 0.0 b     |
| Chateau                                  | 0.5 oz            | LPRE                | 91,520 ab   | 0.0 a    | 3.1 ab      | 2.3 ab              | 17.7 abc | 475.4 ab       | 376.4 a      | 57.3 bc        | 926.8 a   |
| Buctril                                  | 12 fl oz          | 2-leaf              |             |          |             |                     |          |                |              |                |           |
| GoalTender                               | 4 fl oz           | 2-leaf              |             |          |             |                     |          |                |              |                |           |
| Buctril                                  | 12fl oz           | 4-6 leaf            |             |          |             |                     |          |                |              |                |           |
| GoalTender                               | 4 fl oz           | 4-6 leaf            |             |          |             |                     |          |                |              |                |           |
| Chateau                                  | 1.0 oz            | LPRE                | 83,600 bc   | 1.6 a    | 7.3 a       | 2.7 ab              | 9.4 bc   | 368.1 c        | 379.6 a      | 145.4 a        | 902.5 a   |
| Buctril                                  | 12fl oz           | 2-leaf              |             |          |             |                     |          |                |              |                |           |
| GoalTender                               | 4 fl oz           | 2-leaf              |             |          |             |                     |          |                |              |                |           |
| Buctril                                  | 12fl oz           | 4-6 leaf            |             |          |             |                     |          |                |              |                |           |
| GoalTender                               | 4 fl oz           | 4-6 leaf            |             |          |             |                     |          |                |              |                |           |
| Fierce (Chateau + Zidua)                 | 1.25 oz           | LPRE                | 80,960 cd   | 0.0 a    | 5.0 ab      | 3.1 ab              | 18.8 abc | 431.6 bc       | 345.4 a      | 66.3 bc        | 862.2 a   |
| Buctril                                  | 12fl oz           | 2-leaf              |             |          |             |                     |          |                |              |                |           |
| GoalTender                               | 4 fl oz           | 2-leaf              |             |          |             |                     |          |                |              |                |           |
| Buctril                                  | 12fl oz           | 4-6 leaf            |             |          |             |                     |          |                |              |                |           |
| GoalTender                               | 4 fl oz           | 4-6 leaf            |             |          |             |                     |          |                |              |                |           |
| Prowl H <sub>2</sub> O                   | 2.0 pt            | LPRE                | 88,733 abc  | 0.0 a    | 0.0 b       | 5.7 ab              | 22.0 ab  | 484.7 ab       | 403.1 a      | 78.6 ab        | 988.4 a   |
| Fierce (Chateau + Zidua)                 | 1.25 oz           | 2-leaf              |             |          |             |                     |          |                |              |                |           |
| Buctril                                  | 12fl oz           | 4-6 leaf            |             |          |             |                     |          |                |              |                |           |
| GoalTender                               | 4 fl oz           | 4-6 leaf            |             |          |             |                     |          |                |              |                |           |
| Prowl H <sub>2</sub> O                   | 2.0 pt            | LPRE                | 94,013a     | 3.3 a    | 0.8 b       | 6.3 a               | 18.1 abc | 524.8 a        | 297.4 a      | 69.9 bc        | 910.3 a   |
| Fierce (Chateau + Zidua)                 | 1.5 oz            | 2-leaf              |             |          |             |                     |          |                |              |                |           |
| Buctril                                  | 12fl oz           | 4-6 leaf            |             |          |             |                     |          |                |              |                |           |
| GoalTender                               | 4 fl oz           | 4-6 leaf            |             |          |             |                     |          |                |              |                |           |
| Prowl H <sub>2</sub> O                   | 2.0 pt            | LPRE                | 97,093a     | 0.0 a    | 0.0 b       | 5.5 ab              | 36.4 a   | 542.7 a        | 292.8 a      | 42.9 bc        | 914.7 a   |
| Chateau                                  | 0.5 oz            | 2-leaf              |             |          |             |                     |          |                |              |                |           |
| Chateau                                  | 0.5 oz            | 4-6 leaf            |             |          |             |                     |          |                |              |                |           |
| Prowl H <sub>2</sub> O (Grower standard) | 2.0 pt            | LPRE                | 95,333 a    | 5.5 a    | 0.4 b       | 1.5 ab              | 24.2 ab  | 465.1 ab       | 439.0 a      | 74.4 b         | 1,002.6 a |
| Buctril                                  | 12fl oz           | 2-leaf              |             |          |             |                     |          |                |              |                |           |
| GoalTender                               | 4 fl oz           | 2-leaf              |             |          |             |                     |          |                |              |                |           |
| Buctril                                  | 12fl oz           | 4-6 leaf            |             |          |             |                     |          |                |              |                |           |
| GoalTender                               | 4 fl oz           | 4-6 leaf            |             |          |             |                     |          |                |              |                |           |
| LSD ( $P = 0.05$ )                       |                   |                     | 9,393.7     | 5.48     | 5.68        | 5.71                | 19.13    | 88.41          | 198.22       | 70.68          | 200.36    |
| Standard Deviation                       |                   |                     | 5,363.6     | 3.13     | 3.24        | 3.26                | 10.92    | 50.48          | 113.18       | 40.36          | 114.40    |
| CV                                       |                   |                     | 6.09        | 240.56   | 155.7       | 96.26               | 59.6     | 12.27          | 35.74        | 60.36          | 14.06     |

<sup>a</sup> Means within a column followed by same letter do not significantly differ (P = 0.05, LSD).

<sup>b</sup> Chateau 0.5 oz/acre = flumioxazin 0.016 lb/acre; Buctril 12 fl oz/acre = bromoxynil 0.188 lb ai/acre; GoalTender 4 fl oz/acre = oxyfluorfen 0.125 lb ai/acre; Fierce 1.25 oz/acre = flumioxazin 0.0262 + pyroxasulfone 0.0332 lb ai/acre; Prowl H<sub>2</sub>O 2pt/acre = pendimethalin 0.95 lb ai/acre.

<sup>c</sup> Timing LPRE-late pre-emergence (75% of seeds have germinated but no emergence); 2-leaf = onion seedlings at 2-leaf stage; 4-6 leaf = onion seedling at 4- to 6-leaf stage.

<sup>d</sup> The bulbs were graded according to diameter: small (<2<sup>1</sup>/<sub>4</sub> inches), medium (2<sup>1</sup>/<sub>4</sub>-3 inches), jumbo (3-4 inches), colossal (4-4<sup>1</sup>/<sub>4</sub> inches), and supercolossal (>4<sup>1</sup>/<sub>4</sub> inches). Marketable yield is composed of medium, jumbo, colossal, and supercolossal grades. Split bulbs (No. 2s), bulbs infected with the fungus *Botrytis allii* in the neck or side, bulbs infected with the fungus *Fusarium oxysporum* (plate rot). Marketable yield consists of U.S. No.1 bulbs >2<sup>1</sup>/<sub>4</sub> inches.

# ONION RESPONSE TO FOMESAFEN (REFLEX<sup>®</sup>) HERBICIDE APPLIED AT VARIOUS TIMINGS ON MINERAL SOIL

Joel Felix and Joey Ishida, Malheur Experiment Station, Oregon State University, Ontario, OR, 2017

### Introduction

Weed control is an important component of onion production in order to minimize yield losses and realize acceptable marketable bulb size. Weed control in onions is difficult compared to other crops because of the lack of a complete crop canopy and limited herbicide options. The few herbicides registered for use in onion necessitate evaluation of product fitness as they come on the market. Reflex<sup>®</sup> herbicide would fit well into onion production systems in the Treasure Valley of eastern Oregon and southwestern Oregon because of its ability to suppress yellow nutsedge. The objectives of this study were to evaluate onion tolerance of Reflex herbicide and weed control efficacy under local conditions.

#### **Materials and Methods**

A field study was conducted at the Malheur Experiment Station, Ontario, Oregon in 2017 to evaluate the response of onion variety 'Vaquero' to Reflex (fomesafen) herbicide applied at various onion growth stages. Seeds of onion variety Vaquero were planted on April 7, 2017 in double rows spaced 3 inches apart with 4-inch seed spacing within each row. Each double row was planted on beds spaced 22 inches apart. On April 12, onion rows received a 7-inch band of Lorsban<sup>®</sup> at 3.7 oz/1000 ft of row (chlorpyrifos at 0.206 lb ai/acre) and the soil surface was rolled. The soil was a Greenleaf silt loam with a pH of 7.2 and 1.5% organic matter.

The study had a randomized complete block design with four replicates. Individual plots were 7.33 ft wide (4 beds) by 27 ft long. Plots for respective treatments (except untreated check plots) were treated with pendimethalin (Prowl<sup>®</sup> H<sub>2</sub>O) at 2.0 pt/acre (0.95 lb ai/acre) or Reflex late preemergence (LPRE) on April 19 (Table 1). Postemergence treatments were sprayed on May 3 when onion plants were at the 2-leaf stage and on May 23 when plants were at the 4-leaf stage. The study was sprayed with Poast<sup>®</sup> herbicide at 1.5 pt/acre (sethoxydim at 0.287 lb ai/acre) plus crop oil concentrate at 2.5% v/v on May 10 to control grassy weeds.

Urea ammonium nitrate solution (URAN) to supply 30 lb nitrogen (N)/acre was applied through the drip tape on May 3. The same fertilizer solution was used to supply 50 lb N/acre at each occurrence on June 20, 29, and July 14. All weeds were counted and removed on June 20. All other operations including insect control followed recommended local production practices.

Plant tops were flailed and onion bulbs were lifted on September 6 and 7, respectively. Bulbs were hand-harvested from the two center beds on September 15 and graded on September 27. Bulbs were graded for yield and quality based on USDA standards as follows: bulbs without blemishes (U.S. No. 1), split bulbs (U.S. No. 2), bulbs infected with the fungus *Botrytis allii* in the neck or side, bulbs infected with the fungus *Fusarium oxysporum* (plate rot), bulbs infected with the fungus *Aspergillus niger* (black mold), and bulbs infected with unidentified bacteria in the external scales. The U.S. No. 1 bulbs were graded according to diameter: small (<2¼ inches), medium (2¼-3 inches), jumbo (3-4 inches), colossal (4-4¼ inches), and supercolossal (>4¼ inches). Marketable yield consisted of U.S. No.1 bulbs >2¼ inches.

Data were subjected to analysis of variance and the treatment means were compared using protected LSD at the 0.05% level of confidence.

## Results

Onion emergence was observed on May 3, 2017. Generally, the plant population was low during the 2017 cropping season, possibly due to uncharacteristically high moisture from winter snow and spring precipitation. Treatments that received Reflex LPRE had the lowest plant stand compared to plots treated with Prowl H<sub>2</sub>O (Table 1). Onion plant height was also variable across herbicide treatment, but there was no clear trend, suggesting plant stand may have been influenced by factors other than herbicide treatments. Onion injury was greater for plants in plots sprayed with Reflex LPRE. The injury was characterized by yellowing of the leaves and overall stunting.

Common lambsquarters control on May 23 (35 days after LPRE and 21 days after postemergence application) was  $\geq$ 91% across herbicide treatments except for Reflex followed by Buctril<sup>®</sup> alone when onions were at the 2-leaf stage (Table 1). A similar trend was observed for redroot pigweed, kochia, and hairy nightshade control.

Evaluation on May 30 (28 days after postemergence application) revealed high onion injury for plots treated with Reflex at 4 fl oz/acre (LPRE) followed by Reflex at 16 fl oz/acre when onions were at the 2-leaf stage (Table 2). Control for common lambsquarters ranged from 53 to 95%, while control for redroot pigweed ranged from 49 to 98%. Kochia control ranged from 25 to 98% and hairy nightshade control was from 41 to 98% across herbicide treatments.

The number of weeds in the two center rows of each plot on June 26 is presented in Table 3. The most weeds were observed in plots treated LPRE with Reflex at 4 fl oz/acre or Prowl  $H_2O$  followed by Reflex.

Three treatment combinations resulted in onion marketable yield similar to the hand-weeded check (Table 4): Prowl  $H_2O$  followed by Buctril, Prowl  $H_2O$  followed by Reflex at the loop stage followed by Buctril at the 4-leaf stage, and Prowl  $H_2O$  followed by Reflex at the 2-leaf stage (Table 4). The lowest yield was observed when Reflex at 4 fl oz/acre was applied LPRE followed by Reflex at 8 fl oz/acre when onions were at the 2-leaf stage.

Results from this study suggest that Reflex may not be a viable candidate as a late preemergence-applied product to control weeds in onions. Reflex remains a good candidate for postemergence application to manage weeds in onions. The study will be repeated in 2018 to confirm these results.

## Acknowledgements

This project was funded by the Idaho-Eastern Oregon Onion Committee, cooperating onion seed companies, Oregon State University, the Malheur County Education Service District, and supported by Formula Grant nos. 2017-31100-06041 and 2017-31200-06041 from the USDA National Institute of Food and Agriculture.

Table 1. Onion plant stand on May 23 and injury and weed control on May 24 in response to various fomesafen (Reflex) herbicide rates and application timing at the Malheur Experiment Station, Ontario, OR, 2017.

|                                                               |                                    |                             |                        |                   |                 |        |                         |    | Weed cor           | ntrolc |                     |
|---------------------------------------------------------------|------------------------------------|-----------------------------|------------------------|-------------------|-----------------|--------|-------------------------|----|--------------------|--------|---------------------|
| Treatment                                                     | Rate <sup>a</sup>                  | Product rate                | Timing <sup>b</sup>    | Plant<br>stand    | Plant<br>height | Injury | Common<br>lambsquarters |    | Redroot<br>pigweed | Kochia | Hairy<br>nightshade |
|                                                               | lb ai/a                            | per acre                    |                        |                   | inches          |        |                         |    | - %                |        |                     |
| Untreated                                                     |                                    |                             |                        | 79,640ab          | 29.3 f          | 0 c    | 0                       | С  | 0 c                | 0 d    | 0 c                 |
| Hand weeded                                                   |                                    |                             |                        | 94,820a           | 33.9 a          | 1 c    | 100                     | а  | 100 a              | 100 a  | 100 a               |
| Fomesafen<br>Buctril                                          | 0.0625<br>0.188                    | 4 fl oz<br>12 fl oz         | LPRE<br>4-leaf         | 78,100b           | 33.1 a-d        | 6 c    | 48                      | b  | 48 b               | 40 c   | 46 b                |
| Prowl H₂O<br>Buctril                                          | 0.95<br>0.188                      | 2 pt<br>12 fl oz            | LPRE<br>4-leaf         | 81,400ab          | 33.1 a-d        | 5 c    | 99                      | а  | 99 a               | 99 ab  | 100 a               |
| Prowl H <sub>2</sub> O<br>Fomesafen<br>Buctril                | 0.95<br>0.0625<br>0.188            | 2 pt<br>4 fl oz<br>12 fl oz | LPRE<br>LOOP<br>4-leaf | 72,930bc          | 33.5 abc        | 8 bc   | 100                     | а  | 100 a              | 100 a  | 100 a               |
| Prowl H <sub>2</sub> O<br>Fomesafen                           | 0.95<br>0.0625                     | 2 pt<br>4 fl oz             | LPRE<br>2-leaf         | 84,150ab          | 30.6 def        | 3 c    | 96                      | а  | 97 a               | 96 ab  | 96 a                |
| Prowl H₂O<br>Fomesafen                                        | 0.95<br>0.125                      | 2 pt<br>8 fl oz             | LPRE<br>2-leaf         | 82,720ab          | 32.7 a-e        | 4 c    | 97                      | а  | 98 a               | 98 ab  | 98 a                |
| Prowl H₂O<br>Fomesafen                                        | 0.95<br>0.25                       | 2 pt<br>16 fl oz            | LPRE<br>2-leaf         | 79,310ab          | 33.8 ab         | 5 c    | 99                      | а  | 99 a               | 99 ab  | 99 a                |
| Prowl H₂O<br>Buctril                                          | 0.95<br>0.188                      | 2 pt<br>12 fl oz            | LPRE<br>2-leaf         | 68,750bc          | 31.2 b-f        | 9 abc  | 97                      | а  | 95 a               | 78 b   | 98 a                |
| Fomesafen<br>Fomesafen                                        | 0.0625<br>0.125                    | 4 fl oz<br>8 fl oz          | LPRE<br>2-leaf         | 56,760c           | 30.2 ef         | 18 ab  | 94                      | а  | 93 a               | 90 ab  | 96 a                |
| Fomesafen<br>Fomesafen                                        | 0.0625<br>0.25                     |                             | LPRE<br>2-leaf         | 77,000b           | 31.0 c-f        | 8 bc   | 91                      | а  | 90 a               | 85 ab  | 90 a                |
| Prowl H <sub>2</sub> O<br>Fomesafen<br>Fomesafen<br>Fomesafen | 0.95<br>0.0625<br>0.0625<br>0.0625 | 2 pt<br>4 fl oz<br>4 fl oz  |                        | 57,310c           | 31.7 a-f        | 19 a   | 98                      | а  | 98 a               | 98 ab  | 96 a                |
| LSD (P = 0.05)                                                |                                    | 02                          | . 2001                 | 16,296.9          | 2.62            | 10.16  | 9.8                     | 31 | 12.45              | 22.46  | 10.61               |
| <b>`</b>                                                      | Standard Deviation                 |                             |                        |                   |                 | 7.04   | 6.8                     |    | 8.62               | 15.56  | 7.35                |
| CV                                                            |                                    |                             |                        | 11,286.6<br>14.84 | 1.81<br>5.67    | 100.82 | 8.0                     |    | 10.2               | 19.03  | 8.64                |

<sup>a</sup>Fomesafen = Reflex; Prowl H<sub>2</sub>O = pendimethalin. <sup>b</sup>Timing LPRE-late pre-emergence (75% of seeds have germinated but no emergence); 2-leaf = onion seedlings at 2-leaf stage; 4leaf = onion seedling at 4-leaf stage.

<sup>c</sup>Means within a column followed by same letter do not significantly differ (P = 0.05, LSD).

|                        | Weed              |              |                     |                 |                         | Weed co            | eed control <sup>c</sup> |                     |  |
|------------------------|-------------------|--------------|---------------------|-----------------|-------------------------|--------------------|--------------------------|---------------------|--|
| Treatment              | Rate <sup>a</sup> | Product rate | Timing <sup>ь</sup> | Onion<br>injury | Common<br>lambsquarters | Redroot<br>pigweed | Kochia                   | Hairy<br>nightshade |  |
|                        | lb ai/acre        | per acre     |                     |                 |                         | - %                |                          |                     |  |
| Untreated              |                   |              |                     | 0 c             | 0 d                     | 0 d                | 0 f                      | 0 e                 |  |
| Hand weeded            |                   |              |                     | 0 c             | 100 a                   | 100 a              | 100 a                    | 100 a               |  |
| Fomesafen              | 0.0625            | 4 fl oz      | LPRE                | 10 bc           | 53 c                    | 49 c               | 25 e                     | 41 d                |  |
| Buctril                | 0.188             | 12 fl oz     | 4-leaf              |                 |                         |                    |                          |                     |  |
| Prowl H <sub>2</sub> O | 0.95              | 2 pt         | LPRE                | 10 bc           | 95 ab                   | 97 a               | 98 ab                    | 95 a                |  |
| Buctril                | 0.188             | 12 fl oz     | 4-leaf              |                 |                         |                    |                          |                     |  |
| Prowl H <sub>2</sub> O | 0.95              | 2 pt         | LPRE                | 1 c             | 95 ab                   | 98 a               | 97 ab                    | 97 a                |  |
| Fomesafen              | 0.0625            | 4 fl oz      | LOOP                |                 |                         |                    |                          |                     |  |
| Buctril                | 0.188             | 12 fl oz     | 4-leaf              |                 |                         |                    |                          |                     |  |
| Prowl H <sub>2</sub> O | 0.95              | 2 pt         | LPRE                | 8 bc            | 76 abc                  | 76 ab              | 76 bc                    | 75 abc              |  |
| Fomesafen              | 0.0625            | 4 fl oz      | 2-leaf              |                 |                         |                    |                          |                     |  |
| Prowl H <sub>2</sub> O | 0.95              | 2.0 pt       | LPRE                | 4 c             | 93 ab                   | 95 ab              | 86 ab                    | 87 ab               |  |
| Fomesafen              | 0.125             | 8 fl oz      | 2-leaf              | _               |                         |                    |                          |                     |  |
| Prowl H <sub>2</sub> O | 0.95              | 2 pt         | LPRE                | 5 c             | 96 ab                   | 98 a               | 97 ab                    | 97 a                |  |
| Fomesafen              | 0.25              | 16 fl oz     | 2-leaf              |                 |                         |                    |                          |                     |  |
| Prowl H <sub>2</sub> O | 0.95              | 2 pt         | LPRE                | 4 c             | 95 ab                   | 95 ab              | 95 ab                    | 98 a                |  |
| Buctril                | 0.188             | 12 fl oz     | 2-leaf              |                 |                         | 00 I               |                          |                     |  |
| Fomesafen              | 0.0625            | 4 fl oz      | LPRE                | 23 ab           | 61 c                    | 69 bc              | 41 de                    | 50 cd               |  |
| Fomesafen              | 0.125             | 8 fl oz      | 2-leaf              |                 | 70.1                    | 75 1               | 50 1                     | 00.1                |  |
| Fomesafen              | 0.0625            | 4 fl oz      | LPRE                | 11 abc          | 73 bc                   | 75 abc             | 53 cd                    | 68 bc               |  |
| Fomesafen              | 0.25              | 16 fl oz     | 2-leaf              |                 | 00 1                    | 07                 | 00 1                     | 07                  |  |
| Prowl H <sub>2</sub> O | 0.95              | 2 pt         | LPRE                | 28 a            | 92 ab                   | 97 a               | 96a b                    | 97 a                |  |
| Fomesafen              | 0.0625            | 4 fl oz      | LOOP                |                 |                         |                    |                          |                     |  |
| Fomesafen              | 0.0625            | 4 fl oz      | 2-leaf              |                 |                         |                    |                          |                     |  |
| Fomesafen              | 0.0625            | 4 fl oz      | 4-leaf              | 47.04           | 04.50                   | 00.54              | 00.07                    | 05.44               |  |
| LSD ( $P = 0.05$ )     | ian               |              |                     | 17.04           |                         | 26.54              | 23.67                    | 25.18               |  |
| Standard Deviat        | ion               |              |                     | 11.80           |                         | 18.38              | 16.39                    | 17.4                |  |
| CV                     |                   |              |                     | 138.13          | 22.03                   | 23.27              | 22.79                    | 23.1                |  |

Table 2. Onion injury and weed control on May 30 in response to various Fomesafen (Reflex) rates and application timing at the Malheur Experiment Station, Ontario, OR.

<sup>a</sup>Fomesafen = Reflex; Prowl H<sub>2</sub>O = pendimethalin. <sup>b</sup>Timing LPRE-late pre-emergence (75% of seeds have germinated but no emergence); 2-leaf = onion seedlings at 2-leaf stage; 4leaf = onion seedling at 4-leaf stage.

<sup>c</sup>Means within a column followed by same letter do not significantly differ (P = 0.05, LSD).

Table 3. Number of weeds in the two center rows of each plot (3.67 x 27 ft) on June 29, 2017 in response to Fomesafen (Reflex) applied at various timings in direct-seeded onion at the Malheur Experiment Station, Ontario, OR.

|                                                |                         |                             |                        |                         | Number of weeds <sup>c</sup> |                |                     |         |  |  |  |
|------------------------------------------------|-------------------------|-----------------------------|------------------------|-------------------------|------------------------------|----------------|---------------------|---------|--|--|--|
| Treatment                                      | Rate <sup>a</sup>       | Product rate                | Timing <sup>b</sup>    | Common<br>lambsquarters | Redroot<br>pigweed           | Kochia         | Hairy<br>nightshade | Total   |  |  |  |
|                                                | lb ai/acre              | per acre                    |                        |                         | Numb                         | er in 2 center | rows                |         |  |  |  |
| Untreated                                      |                         |                             |                        | 138 a                   | 59 ab                        | 18 a           | 30 a                | 244 a   |  |  |  |
| Hand weeded                                    |                         |                             |                        | 18 c                    | 9 c                          | 0 d            | 1 b                 | 28 e    |  |  |  |
| Fomesafen<br>Buctril                           | 0.0625<br>0.188         | 4 fl oz<br>12 fl oz         | LPRE<br>4-leaf         | 104 ab                  | 32 abc                       | 9 a-d          | 8 ab                | 154 bc  |  |  |  |
| Prowl H₂O<br>Buctril                           | 0.95<br>0.188           | 2 pt<br>12 fl oz            | LPRE<br>4-leaf         | 14 c                    | 8 c                          | 3 d            | 3 b                 | 27 e    |  |  |  |
| Prowl H <sub>2</sub> O<br>Fomesafen<br>Buctril | 0.95<br>0.0625<br>0.188 | 2 pt<br>4 fl oz<br>12 fl oz | LPRE<br>LOOP<br>4-leaf | 5 c                     | 16 bc                        | 0 d            | 0 b                 | 22 e    |  |  |  |
| Prowl H <sub>2</sub> O<br>Fomesafen            | 0.95<br>0.0625          | 2 pt<br>4 fl oz             | LPRE<br>2-leaf         | 58 bc                   | 72 a                         | 8 a-d          | 31 a                | 169 abc |  |  |  |
| Prowl H <sub>2</sub> O<br>Fomesafen            | 0.95<br>0.125           | 2 pt<br>8 fl oz             | LPRE<br>2-leaf         | 58 bc                   | 23 bc                        | 4 cd           | 12 ab               | 97 cde  |  |  |  |
| Prowl H <sub>2</sub> O<br>Fomesafen            | 0.95<br>0.25            | 2 pt<br>16 fl oz            | LPRE<br>2-leaf         | 24 c                    | 3 c                          | 4 cd           | 0 b                 | 31 e    |  |  |  |
| Prowl H₂O<br>Buctril                           | 0.95<br>0.188           | 2 pt<br>12 fl oz            | LPRE<br>2-leaf         | 7 c                     | 14 c                         | 0 d            | 0 b                 | 20 e    |  |  |  |
| Fomesafen<br>Fomesafen                         | 0.0625<br>0.125         | 4 fl oz<br>8 fl oz          | LPRE<br>2-leaf         | 155 a                   | 24 bc                        | 15 ab          | 4 b                 | 198 ab  |  |  |  |
| Fomesafen<br>Fomesafen                         | 0.0625<br>0.25          | 4 fl oz<br>16 fl oz         | LPRE<br>2-leaf         | 99 ab                   | 11 c                         | 14 abc         | 8 ab                | 131 bcd |  |  |  |
| Prowl H <sub>2</sub> O<br>Fomesafen            | 0.95<br>0.0625          | 2 pt<br>4 fl oz             | LPRE<br>LOOP           | 46 bc                   | 3 c                          | 7 bcd          | 0 b                 | 55 de   |  |  |  |
| Fomesafen<br>Fomesafen                         | 0.0625                  | 4 fl oz<br>4 fl oz          | 2-leaf<br>4-leaf       |                         |                              |                |                     |         |  |  |  |
| LSD ( $P = 0.05$ )                             |                         |                             |                        | 72.7                    | 45.9                         | 9.5            | 23.6                | 86.3    |  |  |  |
| Standard Deviati                               | on                      |                             |                        | 50.3                    | 31.8                         | 6.6            | 16.3                | 59.8    |  |  |  |
| CV                                             |                         |                             |                        | 83.31                   | 139.17                       | 97.15          | 201.73              | 60.93   |  |  |  |

<sup>a</sup>Fomesafen = Reflex; Prowl H<sub>2</sub>O = pendimethalin.

<sup>b</sup>Timing LPRE-late pre-emergence (75% of seeds have germinated but no emergence); 2-leaf = onion seedlings at 2-leaf stage; 4-leaf = onion seedling at 4-leaf stage.

<sup>c</sup>Means within a column followed by same letter do not significantly differ (P = 0.05, LSD).

|                                                |                         |              | Unmarketable         |                        |           | Marketable <sup>c</sup> |          |          |           |           |          |           |
|------------------------------------------------|-------------------------|--------------|----------------------|------------------------|-----------|-------------------------|----------|----------|-----------|-----------|----------|-----------|
| Treatment                                      | Rate <sup>a</sup>       | Produ        | ct rate              | Timing <sup>b</sup>    | Plate rot | US No.<br>2             | <2¼ in   | 2¼-3 in  | 3-4 in    | 4-4¼ in   | >4¼ in   | Total     |
|                                                | lb ai/acre              | pe           | r acre               |                        |           |                         |          | C        | wt/acred  |           |          |           |
| Untreated                                      |                         | -            |                      |                        | 0.0b      | 0.0b                    | 0.0e     | 0.0 e    | 0.0 f     | 0.0 e     | 0.0 e    | 0.0 g     |
| Hand weeded                                    |                         |              |                      |                        | 6.5 a     | 2.3b                    | 7.2 bcd  | 15.2 cde | 404.4 ab  | 379.1 a   | 152.1 a  | 950.7a    |
| Fomesafen<br>Buctril                           | 0.0625<br>0.188         |              | fl oz<br>fl oz       | LPRE<br>4-leaf         | 2.5 ab    | 5.0b                    | 5.2 cde  | 25.3 bcd | 380.5 abc | 228.6 bcd | 73.5 bcd | 707.9b-e  |
| Prowl H <sub>2</sub> O<br>Buctril              | 0.95<br>0.188           | 2<br>12      | pt<br>fl oz          | LPRE<br>4-leaf         | 0.9 ab    | 2.3b                    | 4.2 de   | 14.6 cde | 358.5 abc | 384.2a    | 87.1 abc | 844.5ab   |
| Prowl H <sub>2</sub> O<br>Fomesafen<br>Buctril | 0.95<br>0.0625<br>0.188 | 2<br>4<br>12 | pt<br>fl oz<br>fl oz | LPRE<br>LOOP<br>4-leaf | 1.1 ab    | 5.4b                    | 2.7 de   | 9.1 de   | 305.1 cde | 376.6a    | 116.5 ab | 807.3ab   |
| Prowl H <sub>2</sub> O<br>Fomesafen            | 0.95<br>0.0625          |              | pt<br>fl oz          | LPRE<br>2-leaf         | 1.8 ab    | 2.4b                    | 16.2a    | 55.1 a   | 295.6 cde | 152.2 cd  | 45.6 cde | 548.5 def |
| Prowl H <sub>2</sub> O<br>Fomesafen            | 0.95<br>0.125           |              | 0 pt<br>fl oz        | LPRE<br>2-leaf         | 1.5 ab    | 1.0b                    | 11.1 abc | 31.9 bc  | 423.3 a   | 217.7 bcd | 50.8 b-e | 723.8bcd  |
| Prowl H <sub>2</sub> O<br>Fomesafen            | 0.95<br>0.25            |              | pt<br>fl oz          | LPRE<br>2-leaf         | 4.7 ab    | 6.5b                    | 5.3 cde  | 22.6 bcd | 321.2 bcd | 312.4 ab  | 116.0 ab | 772.2abc  |
| Prowl H <sub>2</sub> O<br>Buctril              | 0.95<br>0.188           | 2<br>12      | pt<br>fl oz          | LPRE<br>2-leaf         | 1.4 ab    | 8.8b                    | 7.4 bcd  | 22.1 b-e | 285.3 cde | 201.1 bcd | 80.9 bcd | 589.4 cde |
| Fomesafen<br>Fomesafen                         | 0.0625<br>0.125         |              | fl oz<br>fl oz       | LPRE<br>2-leaf         | 0.6b      | 1.8b                    | 13.4 ab  | 32.2 bc  | 207.7 e   | 85.0 de   | 37.4 cde | 362.4f    |
| Fomesafen<br>Fomesafen                         | 0.0625<br>0.25          | 4<br>16      | fl oz<br>fl oz       | LPRE<br>2-leaf         | 3.2 ab    | 3.1 b                   | 11.7 abc | 40.4 ab  | 321.9 bcd | 116.3 cde | 20.4 de  | 499.1 ef  |
| Prowl H <sub>2</sub> O                         | 0.95                    | 2            |                      | LPRE                   | 2.8 ab    | 114.4 a                 | 2.7 de   | 16.9 cde | 234.0 de  | 245.8 abc | 86.4 a-d | 583.0 cde |
| Fomesafen                                      | 0.0625                  | 4            | fl oz                | LOOP                   |           |                         |          |          |           |           |          |           |
| Fomesafen                                      | 0.0625                  | 4            | fl oz                | 2-leaf                 |           |                         |          |          |           |           |          |           |
| Fomesafen                                      | 0.0625                  | 4            | fl oz                | 4-leaf                 |           |                         |          |          |           |           |          |           |
| LSD ( $P = 0.05$                               | i)                      |              |                      |                        | 5.56      | 90.81                   | 6.64     | 22.31    | 98.67     | 144.52    | 66.58    | 216.45    |
| Standard Dev                                   | iation                  |              |                      |                        | 3.85      | 62.89                   | 4.60     | 15.45    | 68.33     | 100.09    | 46.11    | 149.90    |
| CV                                             |                         |              |                      |                        | 170.15    | 493.26                  | 63.29    | 64.94    | 23.18     | 44.5      | 63.84    | 24.35     |

Table 4. Onion bulb yield in response to Fomesafen (Reflex) herbicide applied at various growth stages at the Malheur Experiment Station, Ontario, OR, 2017.

<sup>a</sup>Fomesafen = Reflex; Prowl  $H_2O$  = pendimethalin.

<sup>b</sup>Timing LPRE-late pre-emergence (75% of seeds have germinated but no emergence); 2-leaf = onion seedlings at 2-leaf stage; 4-leaf = onion seedling at 4-leaf stage.

<sup>c</sup>Means within a column followed by same letter do not significantly differ (P = 0.05, LSD).

<sup>d</sup>The bulbs were graded according to diameter: small (<2<sup>1</sup>/<sub>4</sub> inches), medium (2<sup>1</sup>/<sub>4</sub>-3 inches), jumbo (3-4 inches), colossal (4-4<sup>1</sup>/<sub>4</sub> inches), and supercolossal (>4<sup>1</sup>/<sub>4</sub> inches). Marketable yield is composed of medium, jumbo, colossal, and supercolossal grades. Split bulbs (No. 2s), bulbs infected with the fungus Botrytis allii in the neck or side, bulbs infected with the fungus Fusarium oxysporum (plate rot). Marketable yield consists of U.S. No.1 bulbs >21/4 inches.

## SURFACE WATER QUALITY IN TREASURE VALLEY IRRIGATION CANALS IN RELATION TO FSMA STANDARDS FOR WATER TESTING – 2017

Stuart Reitz, Malheur County Extension, Oregon State University, Ontario, OR

## Introduction

The Produce Safety Rule of the Food Safety Modernization Act (FSMA) that regulates the production and harvesting of fresh produce begins to go into effect in 2018. Standards for determining the microbial quality of agricultural water are still under consideration by the Food and Drug Administration (FDA). As of this writing, the FDA is considering extending the compliance dates and potentially revising the standards to simplify them (https://www.fda.gov/Food/GuidanceRegulation/FSMA/ucm546089.htm).

A major concern with the water testing provisions is how extensive the microbial testing for agricultural water will need to be. The current draft version of the agricultural water standards would require the establishment of water quality profiles for each source of agricultural water used during the growing of onions or other covered produce. Agricultural water is defined by the FDA as water that is directly applied to growing produce, which includes irrigation water and water used for pesticide applications. Separate water quality profiles would be required when there is "known or reasonably foreseeable hazard" that would lead to a change in water quality. This condition could result in very fine scale water testing, with individual farms having multiple water profiles depending on layout of their fields and the sources of their spray water.

Under the current draft rules, growers would be required to establish water quality profiles based on 20 water samples. If the geometric mean of the most recent 20 samples exceeds 126 colony forming units of generic *E. coli* per 100 ml of water (CFU/100 ml) and the statistical threshold value of those samples exceeds 410 CFU/100 ml of water, growers would be required to take some type of mitigation measure. The most practical mitigation measure for onion growers would be to allow for a microbial die-off period before harvest. The draft rules would allow a die-off rate of 0.5 log per day for up to 4 days following the last irrigation.

Although each farm would be required to maintain their own water quality profiles, there are provisions in the FSMA rules for sharing of water test results and for allowing third parties to collect water samples.

The FDA has indicated that testing could be done at larger geographic scales rather than a farmby-farm or field-by-field basis if it can be scientifically demonstrated that data collected at those broader scales reliably characterize water quality. Such a region-wide data collection program could significantly reduce the burden on individual growers to collect water samples.

## **Potential Impact**

The FDA has indicated that some form of water quality monitoring will be required for compliance with the produce safety rules of FSMA. Field configurations and the complexity of irrigation systems in the Treasure Valley could mean individual farms would need significant numbers of separate water quality profiles.

Developing a regional approach that samples water at broad geographic levels and that shares data among farms would significantly reduce the cost and time investment for individual growers.

In this study, water quality profiles were developed over a 2-year period for multiple sites along three major canals that provide irrigation water to a large proportion of onion fields in the Treasure Valley. These were the Old Owyhee Ditch in Malheur County, the Owyhee Irrigation District's "Shoestring" Canal in Malheur County, and the Farmers' Coop Canal in Canyon County, Idaho. The Shoestring Canal is supplied by water from the Owyhee Reservoir, water pumped from the Snake River and return flows. The Old Owyhee Ditch is supplied from the Owyhee Reservoir, the Snake River, and return flows from other canal systems. The Farmers' Coop Canal is supplied by a diversion from the Boise River, which itself flows through agricultural areas. The data (n = 20 samples from each of 48 sites) were then used to generate other profiles based on different geographic parameters.

## **Materials and Methods**

For each canal, four sampling "zones" with four sample sites within each zone were established (n = 16 sites per canal). Sample sites within zones were separated by 1 km (0.62 miles), and there was approximately 7 km (4.5 miles) between zones. These distances covered almost all of the lengths of each canal used for irrigation, with the intent to characterize water quality throughout each system. To comply with the proposed FSMA standards, sites were sampled a total of 20 times over 2 years (2016 and 2017). Canals were sampled from late July to early September to satisfy the FDA requirement that samples are collected as "close to harvest as practicable".

In addition to locating the sample sites, all places where water returned into each canal from drains or other inlets were identified and mapped.

## Water Quality Monitoring

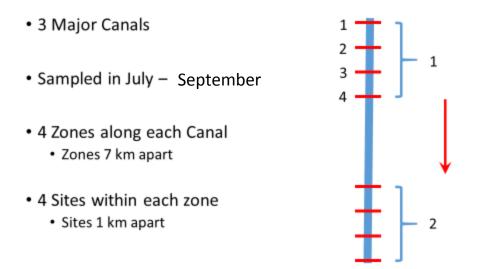



Figure 1. Schematic of water monitoring plan showing the arrangement of sampling sites within sampling zones.

Water quality profiles were developed for each canal to determine how variable results were among sites within and among zones. The water quality profiles were recalculated with the FDA die-off provisions (0.5 log per day die-off over 4 days). This 2-log reduction translates into a final level 1% of the original level.

Water quality profiles based on the actual sample data were expected to be highly variable with a large proportion potentially not within the FSMA thresholds ( $GM \le 126$ ,  $STV \le 410$  CFU/100 ml) (GM = geometric mean, STV = statistical threshold value). However, when recalculated with the die-off allowance ( $\log(CFU) - 2$ ), all sites were expected to be well within standards.

## RESULTS

The sampling sites encompassed nearly the entire length of each canal. We mapped several hundred return points in the systems. The runoff from these points may potentially lead to increases in the bacterial load of the water in each canal. In general, the canals had different water quality characteristics.

Each canal flows through intensive agricultural areas with numerous return flow points. Even with these similarities, each canal had different patterns and levels of generic *E. coli* levels (Fig. 2). Canal 3 had the overall highest generic *E. coli* levels and the most variable data. Upstream sites on Canal 3 had low mean *E. coli* levels, but its downstream sites had the highest levels (Fig. 2). These patterns led to significant differences among the sampling zones on Canals 2 and 3; however, there were no differences among the sampling zones on Canal 1.

Although there were differences in water quality profiles among the different zones on Canals 2 and 3, there were no significant differences in profiles within each of the zones. This same pattern held for Canal 1. In fact, there were no differences in the profiles within or among zones. This finding suggests that sampling over larger geographic areas (e.g., 2-6 miles among testing locations) would be as representative of water quality as field-by-field sampling.

The majority of profiles for each of the canals had GM > 126 MPN / 100 or STV > 410 MPN / 100 ml or both, and thus exceeded the proposed FSMA standards (Figs. 3 and 4). However, after the 4-day die-off period, all profile sampling sites were well within the proposed FSMA standards. All of the sampling sites had profiles within the proposed standards within just 1-2 days of die-off.

Importantly, there was little variation among sample sites within each zone (Figs. 2 and 3). With the die-off provisions, large-scale geographic testing of water should adequately characterize the quality of different canal systems (Fig. 4). These results raise the potential that FSMA-related water testing could be done on a regional basis and growers can share water testing results. This could reduce some of the water testing burdens and costs on individual growers.

With Idaho-Eastern Oregon Onion Committee and grower association approval, information will be communicated to FDA to determine if broader scale monitoring would be an acceptable approach.

## ACKNOWLEDGMENTS

I appreciate the technical assistance of Ian Trenkel, Nicole Drake, Darvee Stevens, Katelyn Nelson, Megan Travis, and Kelsey Alexander, and the staff at Western Laboratories, Parma, Idaho. The project was supported by the Idaho-Eastern Oregon Onion Committee, cooperating onion seed companies, Oregon State University, and the Malheur County Education Service District.

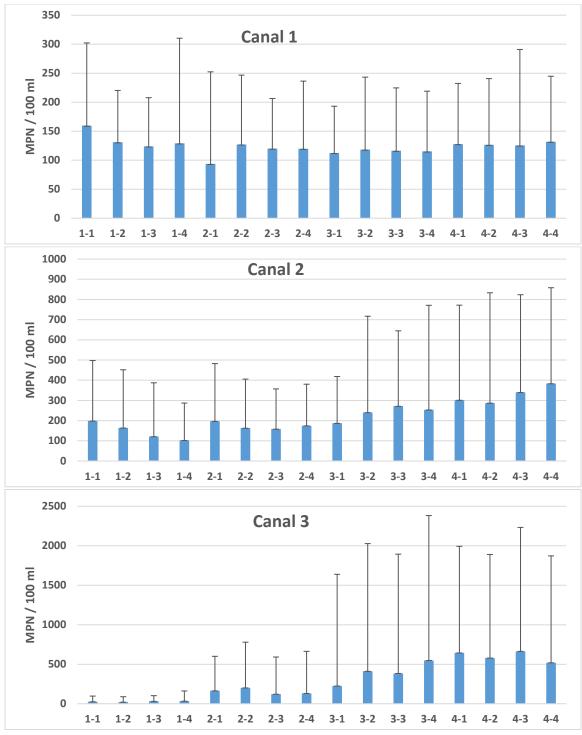



Figure 2. Water quality profiles for each sampling site along different canals. The first number in the site ID refers to the sampling zone (1 = upstream, 4 = downstream). The second reference number refers to site within zone (1 = most upstream, 4 = most downstream). Bars represent the geometric mean (GM); lines above bars represent the statistical threshold value (STV) for each site's profile. Note the different scales on each graph.

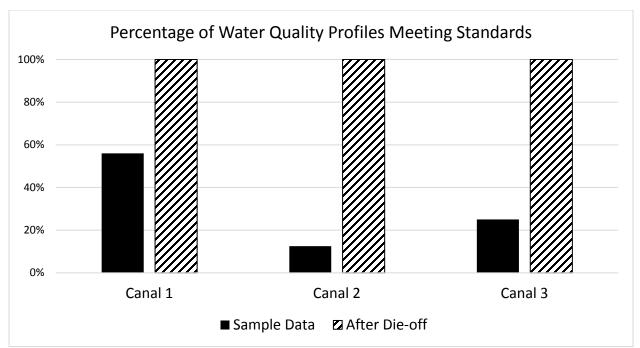



Figure 3. Percentage of water quality profiles that were within the proposed FSMA standards. All profiles were within the standards after allowing for die-off (hatched bars). Initial profiles based on the actual data show that only 13-56% of the profiles were within the proposed FSMA standards.

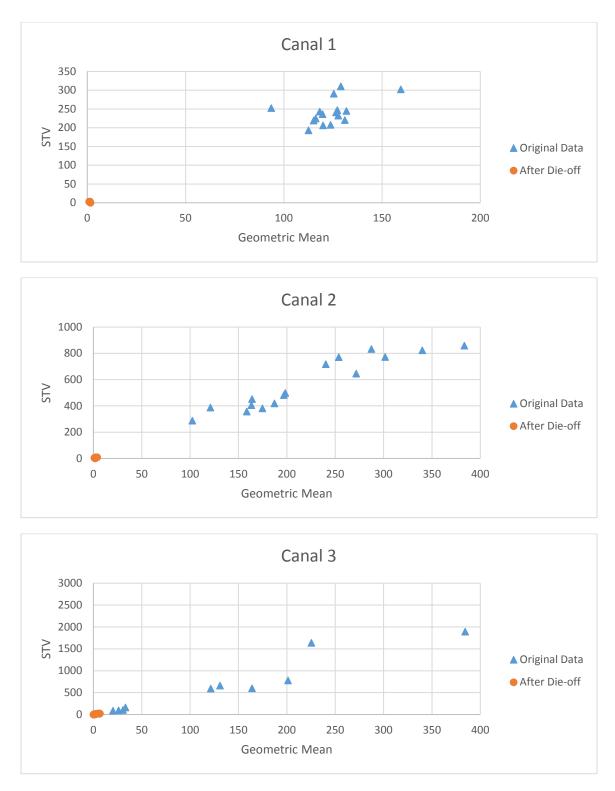



Figure 4. Water quality profiles based on original sample data (triangles) and after a 4day die-off allowance (circles). Profiles with geometric mean (GM)  $\leq$  126 and statistical threshold value (STV)  $\leq$  410 meet the proposed FSMA standards. All profiles met the standard after the die-off period.

## THRIPS AND IRIS YELLOW SPOT VIRUS MANAGEMENT IN THE TREASURE VALLEY

Stuart Reitz, Malheur County Extension, Oregon State University, Ontario, OR

Clinton C. Shock, Erik B. G. Feibert, Alicia Rivera, and Lamont D. Saunders, Malheur Experiment Station, Oregon State University, Ontario, OR, 2017

## **Objectives**

- 1. Evaluate different treatment sequences of insecticides for thrips and Iris yellow spot management.
- 2. Evaluate new application methods for thrips and Iris yellow spot management.

## Introduction

Insecticides remain the primary tool for thrips management. However, insecticide-based management faces difficulties because there is a limited set of registered insecticides with efficacy against onion thrips, and thrips are able to rapidly develop resistance to various classes of insecticides. Therefore, it is important to assess the effectiveness of currently registered insecticides and to determine when during the season different insecticides may be used most effectively. It is also important to determine the effectiveness of new products and how they may be integrated into an overall thrips management program.

Production practices for onions continue to evolve in the Treasure Valley. Today, the majority of onions are grown under drip irrigation, and with the expanding use of drip irrigation, it is important to evaluate insecticides that can be applied through drip systems.

Therefore, we conducted two field trials to evaluate different insecticide management programs, with products applied in various sequences over the growing season. The "foliar" application trial consisted of 24 different treatment regimens (Table 1). Applications in this trial were made on a 7-day interval. Treatment programs with experimental or unregistered insecticides are not shown.

A second trial was designed to compare treatment regimens in which products were applied by drip application versus corresponding foliar applications. This trial included 12 different treatment regimens, in which applications were made on an approximate 10-day interval (Table 2). Treatment programs with experimental or unregistered insecticides are not shown.

## **Materials and Methods**

#### **Cultural Practices**

The field was drip irrigated with drip tape laid at 4-inch depth between two onion beds during planting. The drip tape had emitters spaced 12 inches apart and an emitter flow rate of 0.22 gal/min/100 ft (T-Tape, Rivulis USA, San Diego, CA). The distance between the tape and the center of each double row of onions was 11 inches.

Onions were irrigated automatically to maintain the soil water tension (SWT) in the onion root zone below 20 cb. Soil water tension was measured with six granular matrix sensors (GMS, Watermark Soil Moisture Sensors Model 200SS, Irrometer Co., Riverside, CA) installed at 8-inch depth in the center of the double row. Sensors had been calibrated to SWT. Irrigations were run by a controller programmed to irrigate twice a day applying 0.48 inch of water per irrigation. A Watermark Electronic Module (WEM, Irrometer Co.) was adjusted to override controller irrigations if the SWT was below 20 cb. Four Watermark sensors were connected to the WEM.

#### Foliar Insecticide and Adjuvant Trial Applications

Insecticides were applied weekly from June 2 to July 21, according to the schedule and rates listed in Table 1. Certain programs had two additional treatments at the end of the season (July 28 and August 4). Insecticides were applied with a CO<sub>2</sub> backpack sprayer using a 4-nozzle boom with 11004 nozzles at 30 psi and 35 gal/acre.

#### **Drip Insecticide Trial Applications**

Drip applications began after 1 hour of water was applied at the beginning of an 8-hour set (1 hour water, 6 hour insecticide injection, 1 hour water). Foliar applications of insecticides for this trial were made with a  $CO_2$  backpack sprayer, as described above. Applications in this trial were made on a 10-day schedule, beginning on June 6 and continuing until August 11. A total of 7 applications were made in this trial.

#### **Data Collection**

Weekly thrips counts were made, starting on May 4 (before applications began). Thrips counts were made by counting the number of thrips on 10 consecutive plants in one of the middle two rows of each plot. Adult and larval (immature) thrips were counted separately. Each treatment plot was 4 double rows wide by 23 ft long.

Onions in each plot were evaluated visually for severity of symptoms of iris yellow spot virus (IYSV) and thrips feeding damage on August 3 in the foliar trial and August 14 in the drip trial. Ten consecutive plants in one of the middle two rows of each plot were rated on a scale of 0 to 4 of increasing severity of symptoms or feeding damage. Separate ratings were made for the inner, middle, and outer leaves of each plant to estimate damage occurrence over the course of the growing season.

The rating scale was as follows:

| Rating | IYSV lesions<br>(% foliage with lesions) | Feeding damage<br>(% foliage with scarring) |
|--------|------------------------------------------|---------------------------------------------|
| 0      | 0                                        | 0                                           |
| 1      | 1–25                                     | 1–25                                        |
| 2      | 26–50                                    | 26–50                                       |
| 3      | 51–75                                    | 51–75                                       |
| 4      | 76–100                                   | 76–100                                      |

Onions from the middle two double rows in each plot were lifted, topped by hand, bagged and placed in storage. The onions from each plot were graded on November 3 for the drip trial and November 6 for the foliar trial. During grading, bulbs were separated according to quality: bulbs without blemishes (No. 1s), split bulbs (No. 2s), neck rot (bulbs infected with the fungus *Botrytis allii* in the neck or side), plate rot (bulbs infected with the fungus *Fusarium oxysporum*), and black mold (bulbs infected with the fungus *Aspergillus niger*). The No. 1 bulbs were graded according to diameter: small, medium, jumbo, colossal, and supercolossal. Bulb counts per 50 lb of supercolossal onions were determined for each plot by weighing and counting all supercolossal bulbs during grading. Marketable yield consisted of No.1 bulbs in the medium or larger size classes (larger than 2¼ inches).

Table 1. Treatments used in the foliar thrips trial. Applications were made weekly from June 2 to July 21, for up to eight applications. Treatment 17 included two additional late season applications (July 28 [I] and August 4 [J]). Treatment programs with experimental or unregistered products are not included in the table or the results. Malheur Experiment Station, Ontario, OR, 2017. Continued on next page.

| Trt | Treatment<br>Name | Formulation<br>Type* | Rate                            | Application<br>Timing** | Application<br>Description    | рН           |
|-----|-------------------|----------------------|---------------------------------|-------------------------|-------------------------------|--------------|
| 1   | Untreated Check   | туре                 | Rale                            | Titting                 | Control                       |              |
|     | MOVENTO           | SC                   | 5 fl oz/acre                    | AB                      | Standard Treatment            | pH 6.5       |
| 2   | MSO               | SL                   | 0.5 % vol/vol                   | AB                      | Standard Treatment            | рп 6.5       |
|     |                   | SC                   |                                 |                         |                               | pH 7         |
|     | AGRI-MEK          | SL                   | 3.5 fl oz/acre<br>0.5 % vol/vol | CD                      |                               | рп /         |
|     | MSO               | SC                   |                                 | CD<br>EF                |                               | n.l. 7       |
|     |                   | SL                   | 8 fl oz/acre                    | EF                      |                               | pH 7         |
|     | DYNE-AMIC         |                      | 0.7 pt/acre                     |                         |                               |              |
|     | LANNATE LV        | L                    | 3 pt/acre                       | GH                      |                               | pH 5         |
|     | NIS               | SL                   | 0.25 % vol/vol                  | GH                      | Delaurational (Marcanta       |              |
| 3   | AZA-DIRECT        | EC                   | 12 fl oz/acre                   | ABC                     | Delayed use of Movento        | pH 6         |
|     | M-PEDE            | SL                   | 2 % vol/vol                     | ABDFG                   | No Lannate                    |              |
|     | MOVENTO           | SC                   | 5 fl oz/acre                    | CD                      |                               | pH 6.5       |
|     | MSO               | SL                   | 0.5 % vol/vol                   | D                       |                               |              |
|     | AGRI-MEK          | SC                   | 3.5 fl oz/acre                  | Н                       |                               | pH 7         |
|     | MSO               | SL                   | 0.5 % vol/vol                   | H                       |                               |              |
|     | RADIANT           | SC                   | 8 fl oz/acre                    | FG                      |                               | pH 7         |
|     | CAPTIVA           | EC                   | 11 fl oz/acre                   | E                       |                               | pH 7         |
|     | CAPTIVA           | EC                   | 7 fl oz/acre                    | H                       |                               |              |
| 4   | RADIANT           | SC                   | 8 fl oz/acre                    | В                       | Radiant as adulticide with    | pH 7         |
|     | MOVENTO           | SC                   | 5 fl oz/acre                    | BD                      | Movento. Delayed start of     | pH 6.5       |
|     | MSO               | SL                   | 0.5 % vol/vol                   | BD                      | applications.                 |              |
|     | AZA-DIRECT        | EC                   | 16 fl oz/acre                   | D                       |                               | pH 6         |
|     | M-PEDE            | SL                   | 2 % vol/vol                     | FH                      |                               |              |
|     | LANNATE LV        | L                    | 3 pt/acre                       | FH                      |                               |              |
|     | NIS               | SL                   | 0.25 % vol/vol                  | FH                      |                               |              |
| 5   | RADIANT           | SC                   | 8 fl oz/acre                    | A                       | Radiant as adulticide with    | pH 7         |
|     | MOVENTO           | SC                   | 5 fl oz/acre                    | AC                      | Movento. Early season start   | pH 6.5       |
|     | MSO               | SL                   | 0.5 % vol/vol                   | AC                      |                               |              |
|     | AZA-DIRECT        | EC                   | 16 fl oz/acre                   | С                       |                               | pH 6         |
|     | M-PEDE            | SL                   | 2 % vol/vol                     | EG                      |                               |              |
|     | LANNATE LV        | L                    | 3 pt/acre                       | EG                      |                               | pH 5         |
| 12  | MINECTO PRO       | SC                   | 10.0 fl oz/acre                 | AB                      | Minecto Pro substituted for   | pH 6.5       |
|     | NIS               | SL                   | 0.25 % vol/vol                  | AB                      | Agri-Mek, beginning of season |              |
|     | MOVENTO           | SC                   | 5.0 fl oz/acre                  | CD                      | , igh mon, boghning of boabon | pH 7         |
|     | NIS               | SL                   | 0.25 % vol/vol                  | CD                      |                               | piri         |
|     | RADIANT           | SC                   | 8.0 fl oz/acre                  | EF                      |                               | pH 7         |
|     | NIS               | SL                   | 0.25 % vol/vol                  | EF                      |                               | pri          |
|     | LANNATE LV        | L                    | 3.0 pt/acre                     | GH                      |                               | pH 5         |
|     | NIS               | SL                   | 0.25 % vol/vol                  | GH                      |                               | prio         |
| 12  | MINECTO PRO       | SC                   | 10.0 fl oz/acre                 | AB                      | Minecto Pro substituted for   | pH 6.5       |
| 15  | NIS               | SL                   | 0.25 % vol/vol                  | AB                      | Agri-Mek, beginning of season |              |
|     | MOVENTO           | SC                   | 5.0 fl oz/acre                  | EF                      | Earlier use of Radiant        | pH 7         |
|     | NIS               | SL                   | 0.25 % vol/vol                  | EF                      |                               | pri <i>r</i> |
|     | RADIANT           | SC                   | 8.0 fl oz/acre                  | CD                      |                               | <u>рЦ 7</u>  |
|     | NIS               | SL                   | 0.25 % vol/vol                  | CD                      |                               | pH 7         |
|     | LANNATE LV        |                      |                                 |                         |                               | pH 5         |
|     |                   | L                    | 3.0 pt/acre                     | GH                      |                               | рпэ          |
|     | NIS               | SL                   | 0.25 % vol/vol                  | GH                      | Mineste Dre substitute d.f.   |              |
| 14  | MOVENTO           | SC                   | 5.0 fl oz/acre                  | AB                      | Minecto Pro substituted for   | pH 7         |
|     | NIS               | SL                   | 0.25 % vol/vol                  | AB                      | Agri-Mek, later season        |              |
|     | LANNATE LV        | L                    | 3.0 pt/acre                     | CD                      |                               | pH 5         |
|     | NIS               | SL                   | 0.25 % vol/vol                  | CD                      |                               |              |
|     | MINECTO PRO       | SC                   | 10.0 fl oz/acre                 | EF                      |                               | pH 6.5       |
|     | NIS               | SL                   | 0.25 % vol/vol                  | EF                      |                               | =            |
|     | RADIANT           | SC                   | 8.0 fl oz/acre                  | GH                      |                               | pH 7         |
|     | NIS               | SL                   | 0.25 % vol/vol                  | GH                      |                               |              |

\* Formulation Type: EC = Emulsifiable Concentrate, L = Liquid, SC = Soluble Concentrate, SL = Soluble Liquid, \*\*Application Timing: June 2 = A, June 9 = B, June 16 = C, June 23 = D, June 30 = E, July 7 = F, July 14 = G, July 21 = H, July 28 = I, and August 4 = J.

Table 1. Continued. Treatments used in the foliar thrips trial. Applications were made weekly from June 2 to July 21, for up to eight applications. Some treatments included fewer than eight applications. Treatment 17 included two additional late season applications (July 28 [I] and August 4 [J]). Treatment programs with experimental or unregistered products are not included in the table or the results. Malheur Experiment Station, Ontario, OR, 2017.

| rt | Treatment<br>Name | Formulation<br>Type* | Rate            | Application<br>Timing** | Application<br>Description            | рН     |
|----|-------------------|----------------------|-----------------|-------------------------|---------------------------------------|--------|
| 15 | RADIANT           | SC                   | 8.0 fl oz/acre  | AB                      |                                       | pH 7   |
| -  | NIS               | SL                   | 0.25 % vol/vol  | AB                      |                                       |        |
|    | LANNATE LV        | Ĺ                    | 3.0 pt/acre     | CD                      |                                       | pH 5   |
|    | NIS               | SL                   | 0.25 % vol/vol  | CD                      |                                       | •      |
|    | MINECTO PRO       | SC                   | 10.0 fl oz/acre | EF                      | Minecto Pro substituted for           | pH 6.5 |
|    | NIS               | SL                   | 0.25 % vol/vol  | EF                      | Agri-Mek, later season                | •      |
|    | MOVENTO           | SC                   | 5.0 fl oz/acre  | GH                      | 0                                     | pH 7   |
|    | NIS               | SL                   | 0.25 % vol/vol  | GH                      |                                       | •      |
| 16 | MOVENTO           | SC                   | 5.0 fl oz/acre  | AB                      |                                       | pH 7   |
|    | NIS               | SL                   | 0.25 % vol/vol  | AB                      |                                       | •      |
|    | MINECTO PRO       | SC                   | 10.0 fl oz/acre | CD                      | Minecto Pro substituted for           | pH 6.5 |
|    | NIS               | SL                   | 0.25 % vol/vol  | CD                      | Agri-Mek                              | •      |
|    | RADIANT           | SC                   | 8.0 fl oz/acre  | EF                      | C                                     | pH 7   |
|    | NIS               | SL                   | 0.25 % vol/vol  | EF                      |                                       |        |
|    | LANNATE LV        | L                    | 3.0 pt/acre     | GH                      |                                       | pH 5   |
|    | NIS               | SL                   | 0.25 % vol/vol  | GH                      |                                       |        |
| 17 | MOVENTO           | SC                   | 5.0 fl oz/acre  | AB                      |                                       | pH 7   |
|    | NIS               | SL                   | 0.25 % vol/vol  | AB                      |                                       |        |
|    | MINECTO PRO       | SC                   | 10.0 fl oz/acre | CD                      | Minecto Pro substituted for           | pH 6.  |
|    | NIS               | SL                   | 0.25 % vol/vol  | CD                      | Agri-Mek, early season                | •      |
|    | RADIANT           | SC                   | 8.0 fl oz/acre  | EF                      | 0                                     | pH 7   |
|    | NIS               | SL                   | 0.25 % vol/vol  | EF                      | Agri-Mek used later for longer        | •      |
|    | AGRI-MEK          | SC                   | 3.5 fl oz/acre  | GH                      | Spray season                          | pH 7   |
|    | MSO               | SL                   | 0.5 % vol/vol   | GH                      |                                       | •      |
|    | LANNATE LV        | L                    | 3.0 pt/acre     | IJ                      |                                       | pH 5   |
|    | NIS               | SL                   | 0.25 % vol/vol  | IJ                      |                                       | •      |
| 22 | MOVENTO           | SC                   | 5 fl oz/acre    | AB                      | Movento with different adjuvant       | pH 6.  |
|    | DYNE-AMIC         | SL                   | 0.7 pt/acre     | AB                      | · · · · · · · · · · · · · · · · · · · |        |
|    | AGRI-MEK          | SC                   | 3.5 fl oz/acre  | CD                      |                                       | pH 7   |
|    | MSO               | SL                   | 0.5 % vol/vol   | CD                      |                                       |        |
|    | RADIANT           | SC                   | 8 fl oz/acre    | EF                      |                                       | pH 7   |
|    | DYNE-AMIC         | SL                   | 0.7 pt/acre     | EF                      |                                       |        |
|    | LANNATE LV        | L                    | 3 pt/acre       | GH                      |                                       | pH 5   |
|    | NIS               | SL                   | 0.25 % vol/vol  | GH                      |                                       |        |
| 23 | MOVENTO HL        | SC                   | 2.5 fl oz/acre  | AB                      | New Movento formulation               | pH 6.  |
| -  | DYNE-AMIC         | SL                   | 0.7 pt/acre     | AB                      |                                       |        |
|    | AGRI-MEK          | SC                   | 3.5 fl oz/acre  | CD                      |                                       | pH 7   |
|    | MSO               | SL                   | 0.5 % vol/vol   | CD                      |                                       | •      |
|    | RADIANT           | SC                   | 8 fl oz/acre    | EF                      |                                       | pH 7   |
|    | DYNE-AMIC         | SL                   | 0.7 pt/acre     | EF                      |                                       |        |
|    | LANNATE LV        | L                    | 3 pt/acre       | GH                      |                                       | pH 5   |
|    | NIS               | SL                   | 0.25 % vol/vol  | GH                      |                                       | •      |
| 24 | MOVENTO HL        | SC                   | 2.5 fl oz/acre  | AB                      | New Movento formulation and           | pH 6.  |
|    | DYNE-AMIC         | SL                   | 0.7 pt/acre     | AB                      | Exirel substituted for Agri-Mek       |        |
|    | EXIREL            | SC                   | 13.5 fl oz/acre | CD                      |                                       | pH 7   |
|    | DYNE-AMIC         | SL                   | 0.7 pt/acre     | CD                      |                                       | •      |
|    | RADIANT           | SC                   | 8 fl oz/acre    | ĒF                      |                                       | pH 7   |
|    | DYNE-AMIC         | SL                   | 0.7 pt/acre     | EF                      |                                       |        |
|    | LANNATE LV        | L                    | 3 pt/acre       | GH                      |                                       | pH 5   |
|    | NIS               | SL                   | 0.25 % vol/vol  | GH                      |                                       |        |

\* Formulation Type: EC = Emulsifiable Concentrate, L = Liquid, SC = Soluble Concentrate, SL = Soluble Liquid, \*\*Application Timing: June 2 = A, June 9 = B, June 16 = C, June 23 = D, June 30 = E, July 7 = F, July 14 = G, July 21 = H, July 28 = I, and August 4 = J.

Table 2. Treatments used in the drip thrips trial. Seven applications were made approximately 10 days apart from June 6 to August 11. Malheur Experiment Station, Ontario, OR, 2017.

| Trt Treatment        | Formulation |                                  | Appl     |                                                                 |
|----------------------|-------------|----------------------------------|----------|-----------------------------------------------------------------|
| No. Name             | Туре        | Rate                             |          | Application Description                                         |
| 1 Untreated Check    |             |                                  |          | Untreated Control                                               |
| 2 VERIMARK           | SC          | 10.3 fl oz/acre                  | AB       | Verimark by drip substituted for Movento (Complement            |
| AGRI-MEK             | SC          | 3.5 fl oz/acre                   | CD       | To Treatment 5)                                                 |
| MSO                  | SL          | 0.5 % vol/vol                    | CD       |                                                                 |
| RADIANT              | SC          | 8 fl oz/acre                     | EF       |                                                                 |
| DYNE-AMIC            | SL          | 0.7 pt/acre                      | EF       |                                                                 |
| LANNATE LV           | L           | 3 pt/acre                        | G        |                                                                 |
| NIS                  | SL          | 0.5 % vol/vol                    | G        | Variments by drin often Meyente (Complement to                  |
| 3 VERIMARK           | SC<br>SC    | 10.3 fl oz/acre                  | CD<br>AB | Verimark by drip after Movento (Complement to                   |
| MOVENTO<br>MSO       | SL          | 5 fl oz/acre<br>0.5 % vol/vol    | AB<br>AB | Treatment 8)                                                    |
| RADIANT              | SC          | 8 fl oz/acre                     | EF       |                                                                 |
| DYNE-AMIC            | SL          | 0.7 pt/acre                      | EF       |                                                                 |
| AGRI-MEK             | SC          | 3 pt/acre                        | G        |                                                                 |
| MSO                  | SL          | 0.5 % vol/vol                    | G        |                                                                 |
| 4 MOVENTO            | SC          | 5 fl oz/acre                     | AB       | Standard                                                        |
| MSO                  | SL          | 0.5 % vol/vol                    | AB       |                                                                 |
| AGRI-MEK             | SC          | 3.5 fl oz/acre                   | CD       |                                                                 |
| MSO                  | SL          | 0.5 % vol/vol                    | CD       |                                                                 |
| RADIANT              | SC          | 8 fl oz/acre                     | EF       |                                                                 |
| DYNE-AMIC            | SL          | 0.7 pt/acre                      | EF       |                                                                 |
| LANNATE LV           | L           | 3 pt/acre                        | G        |                                                                 |
| MSO                  | SL          | 0.5 % vol/vol                    | G        |                                                                 |
| 5 EXIREL             | SE          | 13.5 fl oz/acre                  | AB       | Exirel substituted for Movento (Complement to                   |
| MSO                  | SL          | 0.5 % vol/vol                    | AB       | Treatment 2)                                                    |
| AGRI-MEK             | SC          | 3.5 fl oz/acre                   | CD       |                                                                 |
| MSO                  | SL          | 0.5 % vol/vol                    | CD       |                                                                 |
| RADIANT              | SC          | 8 fl oz/acre                     | EF       |                                                                 |
| DYNE-AMIC            | SL          | 0.7 pt/acre                      | EF       |                                                                 |
| LANNATE LV           | L           | 3 pt/acre                        | G        |                                                                 |
| MSO                  | SL          | 0.5 % vol/vol                    | G        | Evident offers Mercanter (Complement to Transferrent 2)         |
| 8 MOVENTO            | SC          | 5 fl oz/acre                     | AB<br>AB | Exirel after Movento (Complement to Treatment 3)                |
| MSO<br>EXIREL        | SL<br>SE    | 0.5 % vol/vol<br>13.5 fl oz/acre | CD       |                                                                 |
| MSO                  | SL          | 0.5 % vol/vol                    | CD       |                                                                 |
| RADIANT              | SC          | 8 fl oz/acre                     | EF       |                                                                 |
| DYNE-AMIC            | SL          | 0.7 pt/acre                      | EF       |                                                                 |
| AGRI-MEK             | SC          | 3.5 fl oz/acre                   | G        |                                                                 |
| MSO                  | SL          | 0.5 % vol/vol                    | Ğ        |                                                                 |
| 10 AZA-DIRECT        | EC          | 32 fl oz/acre                    | AB       | Azadirect by drip before Movento (Complement to                 |
| MOVENTO              | SC          | 5 fl oz/acre                     | CD       | Treatment 11)                                                   |
| MSO                  | SL          | 0.5 % vol/vol                    | CD       | ,                                                               |
| VERIMARK             | SC          | 10.3 fl oz/acre                  | EF       |                                                                 |
| AGRI-MEK             | SC          | 3.5 fl oz/acre                   | G        |                                                                 |
| MSO                  | SL          | 0.5 % vol/vol                    | G        |                                                                 |
| 11 AZA-DIRECT        | EC          | 12 fl oz/acre                    | AB       | Azadirect + M-Pede before Movento (Complement to                |
| M-PEDE               | SL          | 2 % vol/vol                      | AB       | Treatment 10)                                                   |
| MOVENTO              | SC          | 5 fl oz/acre                     | CD       |                                                                 |
| MSO                  | SL          | 0.5 % vol/vol                    | CD       |                                                                 |
| EXIREL               | SE          | 13.5 fl oz/acre                  | EF       |                                                                 |
| MSO                  | SL          | 0.5 % vol/vol                    | EF       |                                                                 |
| AGRI-MEK             | SC          | 3.5 fl oz/acre                   | G        |                                                                 |
|                      | SL          | 0.5 % vol/vol                    | G        | Azadiraat and Varimark by drin                                  |
| 12 AZA-DIRECT        | EC          | 32 fl oz/acre                    | AB       | Azadirect and Verimark by drip                                  |
|                      | SC          | 10.3 fl oz/acre                  |          |                                                                 |
| RADIANT<br>DYNE-AMIC | SC<br>SL    | 8 fl oz/acre<br>0.7 pt/acre      | EF<br>EF |                                                                 |
| AGRI-MEK             | SC          | 3.5 fl oz/acre                   | G        |                                                                 |
| MSO                  | SL          | 0.5 % vol/vol                    | G        |                                                                 |
|                      |             |                                  |          | $\Box$ = Soluble Concentrate, SE = Suspo-emulsion, SL = Soluble |

\* Formulation Type: EC = Emulsifiable Concentrate, L = Liquid, SC = Soluble Concentrate, SE = Suspo-emulsion, SL = Soluble Liquid,

\*\*Application Timing: June 6 = A, June 16 = B, June 30 = C, July 10 = D, July 21 = E, July 31 = F, and August 11 = G

## **Results and Conclusions**

#### Foliar Application Trial

Thrips began to colonize onions in late May and reached the threshold level for the trial (4 thrips per plant) by May 30. Applications in the foliar trial began on June 2, [A] June 9 [B], June 16 [C], June 23 [D], June 30 [E], July 7 [F], July 14 [G] and July 21 [H]. Treatment program 17 had two additional applications: July 28 [I] and August 4 [J]. Thrips populations began to peak in late June and early July, which has been the typical pattern in the Ontario/Cairo Junction area. However, populations rapidly collapsed soon after although populations of immature thrips rebounded in mid-July before collapsing at the end of July. As is typical, most thrips on onions throughout the season were immatures (~75%). Because of the ability of adults to move from plant to plant and recolonize treated areas, we typically do not see large differences in adult populations among insecticide treatments in field station trials.

The standard reference program of two applications of Movento<sup>®</sup>, followed by two of Agri-Mek<sup>®</sup>, two of Radiant<sup>®</sup> and two of Lannate<sup>®</sup> still performed well under this season's conditions (Treatment program 2 in Figs. 1-2). As reported previously, Movento does not show good activity until after a second application is made, but it does provide residual control of larvae for 2-3 weeks after a second application.

The effect of Movento was enhanced by combining it with an adulticide (e.g., Treatment 4, Movento + Radiant). In situations where applications need to begin earlier in the spring than late May-early June, applying Movento later in the season (by 1-2 weeks) rather than at the start of the spray season may also make better use of its activity against the large populations of immature thrips that occur during peak abundance in late June-early July. It is important to combine Movento with an adulticide with this type of use pattern so that dispersing adults do not cause excessive damage. The cool, wet spring of 2017 delayed thrips populations development, which minimized the need for applications to begin much earlier in the spring.

Minecto<sup>®</sup> Pro, which includes abamectin, the active ingredient in Agri-Mek, and cyantraniliprole, the active ingredient in Exirel<sup>®</sup> and Verimark<sup>®</sup>, provided slightly better control than Agri-Mek itself. For resistance management, it would be best to not use either Agri-Mek, or Exirel/Verimark if Minecto Pro is used.

Radiant remains the most effective insecticide in trials. It has good activity against adult and immature thrips. Because of this activity, it is a good option for use during peak thrips abundance (Figs. 1 and 2).

In many of the treatment programs in the foliar trial, thrips numbers increased during mid- to late July after dropping to low levels in early July (Figs. 1 and 2). This pattern contrasts with the pattern in the drip trial (Figs. 3 and 4), where populations decreased sharply by mid-July and remained low through the remainder of the season. One possible contributing factor relates to timing and different insecticides in the trial. In the foliar trial, most treatment programs included late season use of Lannate (7<sup>th</sup> and 8<sup>th</sup> applications). With the 10-day application interval in the drip trial, most programs included the use of Radiant in mid- to late July. There are concerns regarding the efficacy of Lannate, and growers should avoid overuse of Lannate and consider using other products during periods of peak thrips abundance.

Treatment program 3, which did not include Lannate, provided good late season control of thrips. This program also started applications of Movento 1 week later than the standard program (Treatment 2).

Onion yields in programs with insecticides were higher than in the untreated check. The average yield for all of the insecticide programs was more than 62% higher than in the untreated check. Yields were low, reflecting the late planting and high temperatures during the season that affected plant growth. It also may reflect the late season thrips pressure. Treatment programs 3, 8, 15, 17, and 22 had size profiles weighted to larger size classes than other treatments (Fig. 5). Treatment program 3 included later use of Movento and Radiant than the standard program and did not include Lannate. Program 15 included Lannate but used it earlier in the season and included Minecto Pro later in the season.

#### **Drip Application Trial**

In the drip application trial, applications were made on an approximately 10-day interval from June 6 to August 11. Application dates were June 6 [A], June 16 [B], June 30 [C], July 10 [D], July 21 [E], July 31 [F] and August 11 [G]. The drip trial included the standard foliar applications of Movento, Agri-Mek, Radiant, and Lannate for comparison (Treatment 4 in this trial).

The foliar standard performed well and gave good season-long management of thrips (Figs. 3 and 4).

Exirel, the foliar version of cyantraniliprole, and Verimark, the drip version of cyantraniliprole, performed well. Their use at the beginning of the season followed by foliar applications of Movento gave good control and allowed Movento to continue to control immature thrips through the peak abundance time.

Foliar applications of Aza-Direct<sup>®</sup> (12 fl oz/acre) gave better control of thrips than drip applications of Aza-Direct (32 fl oz/acre).

In terms of onion yield, there were no statistical differences in marketable yields among the treatments (Fig. 6). However, size profiles were weighted toward larger sizes in Treatments 2, 4, 10, and 12. Treatment 2 used Verimark by drip as a substitute for Movento. Treatment 4 was the standard foliar program of Movento (2X), Agri-Mek (2x), Radiant (2X), and Lannate (1X). Treatments 10 and 12 included drip applications of Aza-Direct. Treatment program 2 started with drip applications of Verimark and had significantly higher yields of colossal and supercolossal bulbs (36% of marketable yield) compared with the other treatments (Fig. 6). This is similar to results from our 2016 trial.

Although drip applications of Aza-Direct did not give as good thrips management as foliar applications, the drip programs had the highest yields and larger size profiles than other treatments, with total marketable yields 5-7% higher than the standard program (Fig. 6). Colossal and supercolossal bulbs made up 28-34% of the marketable yield in the Aza-Direct by drip treatments (Treatments 10 and 12).

Again, the longer application windows in the drip trial probably contributed to the larger yields than in the foliar trial, where applications ended July 21.

## Acknowledgments

We appreciate the technical assistance of Ian Trenkel, Allison Simmons, Hannah Rose, Megan Travis, and Kelsey Alexander. The project was supported by the Idaho-Eastern Oregon Onion Committee, Bayer, Gowan, Syngenta, Simplot, Dow, DuPont, Nichino. Oregon State University, and the Malheur County Education Service District.

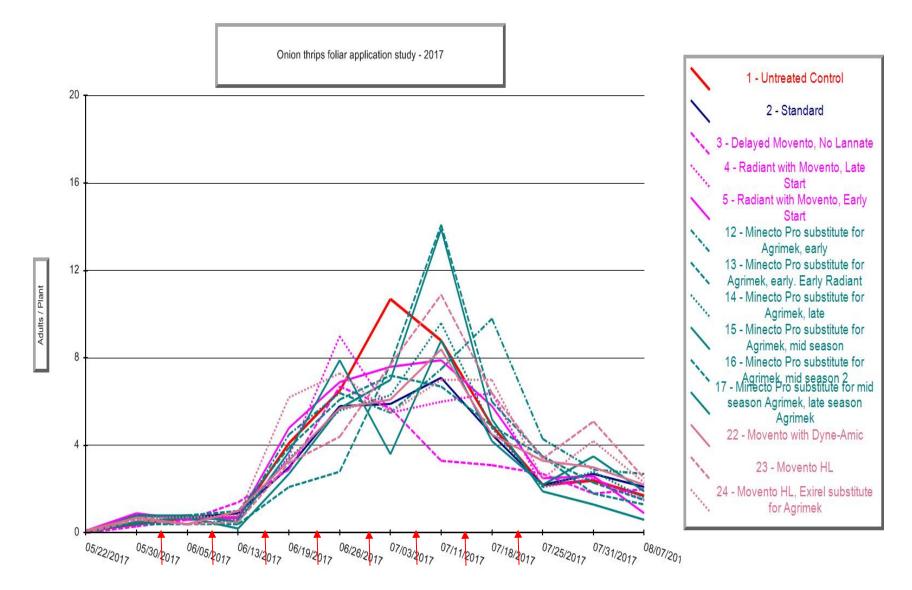



Figure 1. Average adult thrips per onion plant in the foliar thrips trial. Arrows on the date axis mark when applications were made. Malheur Experiment Station, Ontario, OR 2017.

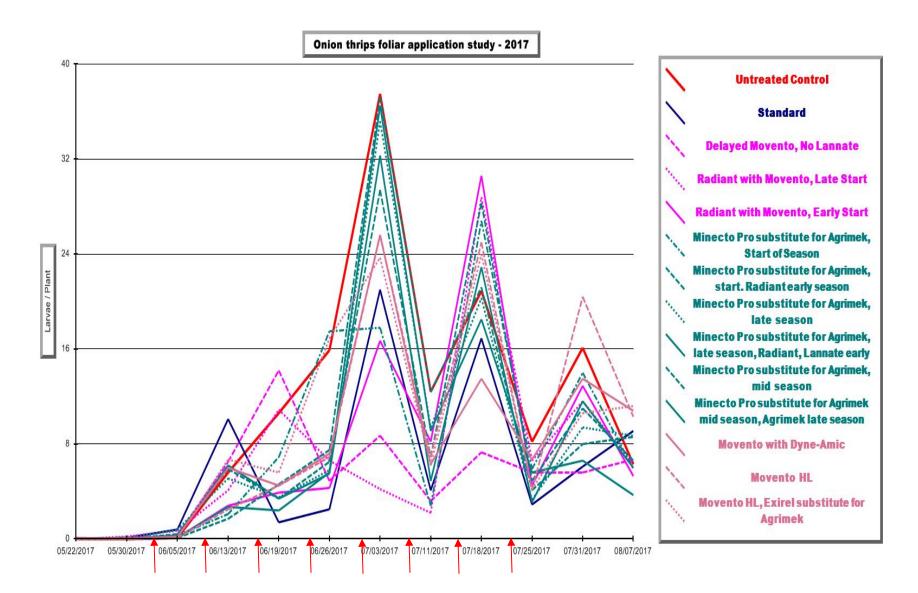



Figure 2. Average immature thrips per onion plant in the foliar thrips trial. Arrows on the date axis mark when applications were made. Malheur Experiment Station, Ontario, OR 97914.

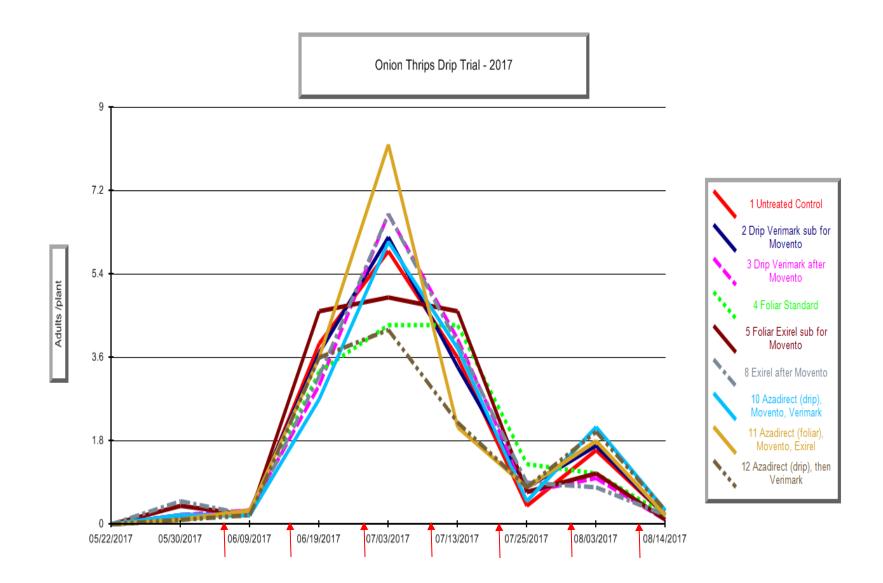



Figure 3. Average adult thrips per onion plant in the drip thrips trial. Malheur Experiment Station, Ontario, OR, 2017.

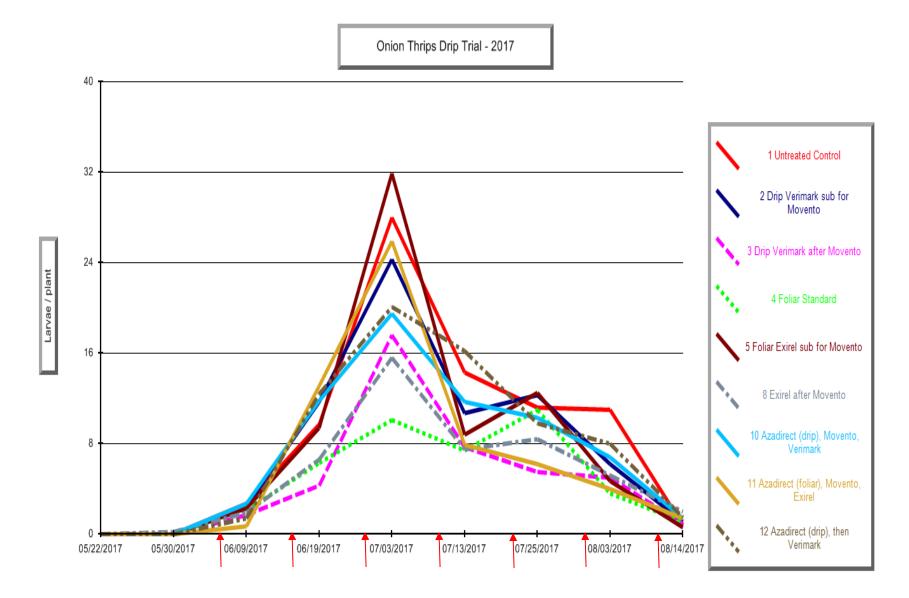



Figure 4. Average immature thrips per onion plant in the drip trial. Malheur Experiment Station, Ontario, OR, 2017.

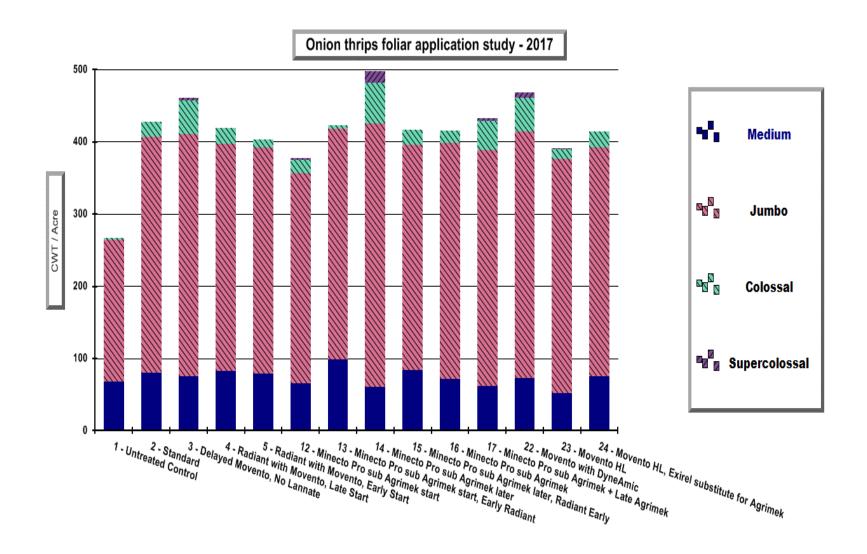



Figure 5. Onion yield by size class (cwt/acre) in the foliar trial. Malheur Experiment Station, Ontario, OR, 2017.

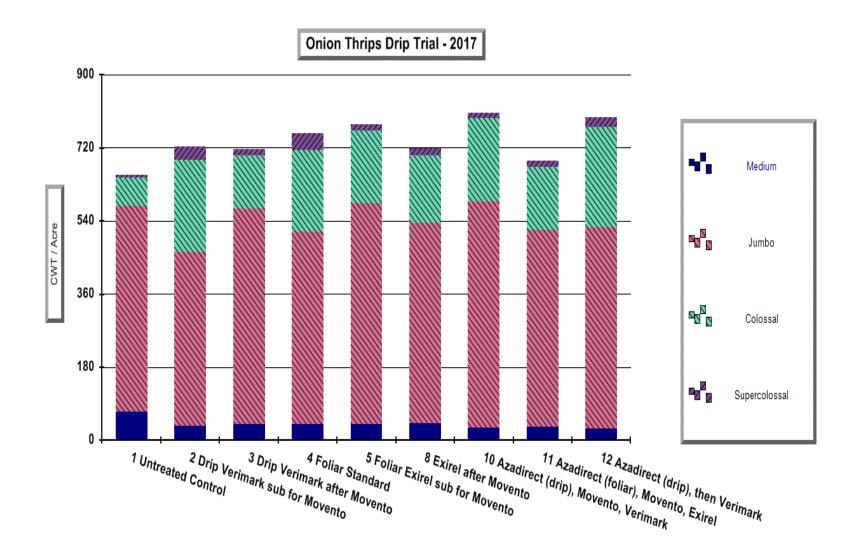



Figure 6. Onion yield by size class (cwt/acre) in the drip trial. Malheur Experiment Station, Ontario, OR, 2017.

# MONITORING ONION PESTS ACROSS THE TREASURE VALLEY - 2017

Stuart Reitz, Malheur County Extension, Oregon State University, Ontario, OR

## Objective

Provide growers with regional assessments of pest abundance in commercial fields.

## Introduction

Growers continue to be challenged in how to manage thrips and iris yellow spot virus (IYSV) that thrips vector. The Idaho-Eastern Oregon region has a range of different subregions, and thrips and virus pressure varies across those subregions. A number of growers have asked for assistance in monitoring pest pressure within their particular districts so they can make better informed management decisions.

## Methods

Six commercial fields in each of seven growing areas were monitored for thrips and IYSV on a weekly basis. Those areas were 1) Ontario, 2) Vale, 3) Oregon Slope/Weiser, 4) Nyssa, 5) Adrian, 6) Fruitland, and 7) Parma. Thirty-six of the fields were yellow onions and six were red onions. The most common variety among these fields was 'Joaquin' (n = 12). There were no more than three fields of any other variety.

Averages of adult and immature thrips, and IYSV incidence for each district were reported to growers, crop advisors, and others each week from May to August, when plants began to senesce and fields were being prepared for harvest.

## **Results and Conclusions**

Adult thrips were first detected in fields on May 19 in the Adrian area. Plants in the two fields with thrips were at the 2-leaf stage. Other fields in the monitoring network were in the 1- to 2-leaf state. By the following week, adult thrips had colonized at least some fields in all growing areas. Immature thrips were also found in fields in Adrian and Ontario. Thrips populations built up rapidly in early June. Plants with thrips went from 8% on May 26 to 82% on June 15.

Adult thrips numbers peaked around the first week of July in most areas. Immature thrips numbers peaked in the second half of July. Despite later plantings than normal in 2017 because of the weather, the timing of peak thrips abundance in mid- to late July was similar to other recent years.

Iris yellow spot virus emerged later and with a much lower incidence in 2017 than in recent years. The first plants infected with IYSV in commercial fields were found on June 15, 2 weeks later than in 2016. Ironically, these first infections were found in a field on the Oregon Slope, which usually

has much lower incidence than other growing areas. The earliest increase in IYSV incidence occurred in Fruitland, reaching 5% on July 21, while all other areas remained at  $\leq 1\%$ . The incidence of IYSV began to increase substantially during the week of July 28 and continued to escalate over the last 2 weeks of monitoring. However, the final seasonal incidence remained relatively low (2% in Parma to 27% in Vale). In contrast, IYSV incidence in 2016 ranged from 12% on the Oregon Slope/Weiser to over 80% in Fruitland, Nyssa, and Ontario. Infections on individual plants in 2017 did not appear to be very severe or extensive. The low incidence and severity of IYSV in 2017 suggest that direct feeding damage would have been more important in determining yield losses from thrips than virus damage.

Thrips populations varied across the growing regions and fluctuated depending on insecticide applications (Fig. 1). Fields on the Oregon Slope tended to have the fewest thrips and lowest incidence of IYSV (Figs. 1 and 2). Fields in Nyssa, Ontario, and Fruitland/Parma had the highest incidence of IYSV, with the earliest outbreaks occurring in Fruitland/Parma.

## Acknowledgments

I appreciate the assistance of the cooperating growers and crop advisors. This project was funded by the Idaho-Eastern Oregon Onion Committee, cooperating onion seed companies, Oregon State University, and the Malheur County Education Service District.

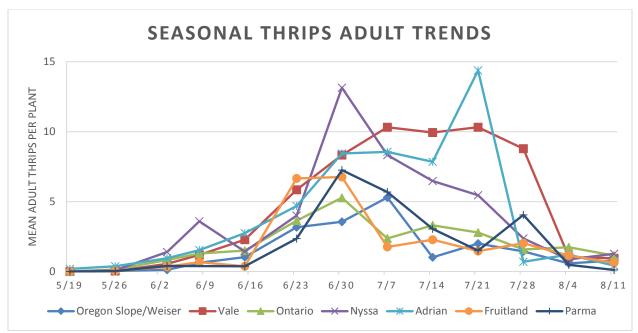



Figure 1. Seasonal trends of adult thrips in onion growing areas of the Treasure Valley during 2017.

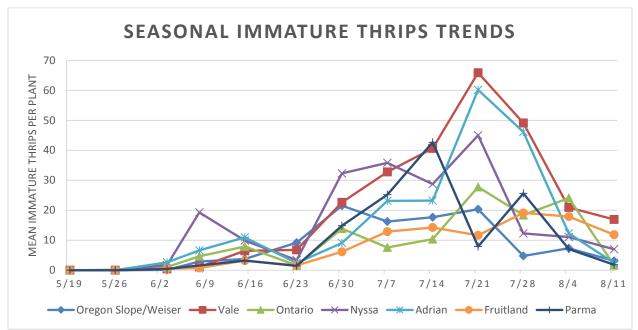



Figure 2. Seasonal trends of immature thrips in onion growing areas of the Treasure Valley during 2017.

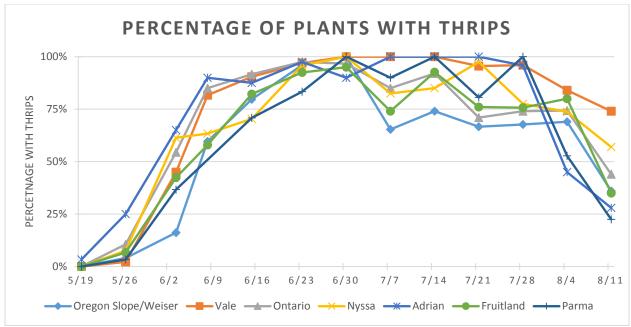



Figure 3. Average percentage of onion plants with thrips present during the 2017 season from different growing areas of the Treasure Valley.

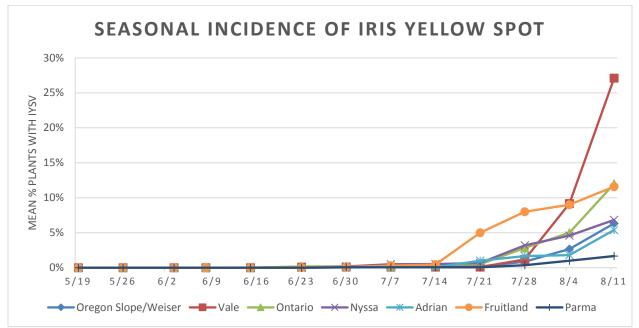



Figure 4. Seasonal incidence of Iris yellow spot virus in commercial onion fields from different growing areas of the Treasure Valley, 2017. Values are the mean percentage of infected plants per field for each area.

## ONION CULTIVAR TRIAL: EVALUATION OF CULTIVAR RESISTANCE TO FUSARIUM PROLIFERATUM STORAGE ROT

Brenda Schroeder, Dept. of Entomology, Plant Pathology and Nematology, University of Idaho, Moscow, ID

James Woodhall and Mike Thornton, Parma Research and Extension Center, University of Idaho, Parma, ID

Clinton C. Shock and Erik B. G. Feibert, Malheur Experiment Station, Oregon State University, Ontario, OR

Stuart Reitz, Malheur County Extension, Oregon State University, Ontario, OR, 2017

### Introduction

In the United States, storage onions are produced on more than 110,000 acres annually. This high-value vegetable crop produces >\$900 million in annual farm receipts (USDA-NASS 2004-2014). Storage onion acreage in the western United State comprises about 66% of national onion production, with 18% or more of the production occurring in Oregon and Idaho (USDA NASS 2014). Production costs can be significant (\$4,000/acre), making stakeholder losses to onion bulb rots during storage costly (http://www.ipmcenters.org/CropProfiles/docs/WAonions.pdf). More than 20 different bacterial and fungal pathogens cause onion losses under field and storage conditions, resulting in up to 25-50% crop loss (Schwartz and Mohan 2008). In many cases, bulb infection is asymptomatic prior to harvest (Schwartz and Mohan 2008), and the infected bulbs go into storage undetected. These infections can develop into storage rot and when they do, an entire season of production and storage expenses has been incurred and can result in significant financial losses during storage. Accurate diagnosis and differentiation of the pathogens using traditional methods can take weeks to months to complete.

Recently, *Fusarium proliferatum* has emerged as a new pathogen causing bulb rot of onion and is responsible for causing significant losses in the Pacific Northwest. *F. proliferatum* is present in the Treasure Valley and onion growers have reported increased incidence of bulb rot associated with this pathogen during the past three seasons. Bulb rot appears at harvest with limited or no symptoms present in the field prior to harvest. Bulb decomposition may develop in storage. *Fusarium oxysporum* f. sp. *cepae*, a different species of *Fusarium*, is a well-known pathogen and causes rot at the base of the bulb during the growing season. Unfortunately, little is known about the biology of *F. proliferatum*, inoculum sources, vectors, relative resistance of onion varieties, or the impact of curing on disease development.

Growers and shippers requested information about the potential resistance that different onion cultivars may have to *F. proliferatum*. The Oregon State Onion Cultivar trial is an excellent resource providing critical information for onion stakeholders in the Treasure Valley of Idaho.

We sought to assess whether onion cultivars grown in the onion variety trial differ significantly in susceptibility to storage rot caused by *F. proliferatum*.

## **Materials and Methods**

A total of 20 of the onion cultivars grown in the 2017-2018 Onion Variety Trial at the OSU Malheur Experiment Station (Shock et al. 2018) were inoculated with a spore suspension of *F. proliferatum*. The cultivars chosen were recommended by stakeholders because of their use in commercial production. Bulbs were harvested, cured, and stored, then inoculated on October 18, 2017.

A total of 20 bulbs per cultivar from each of 4 replicates were treated in one of three ways as follows:

- a. Inoculation with 0.5 ml *Fusarium proliferatum* (1.0 x 10<sup>6</sup> spores/ml) in sterile water;
- b. Inoculation with 0.5 ml of sterile water (negative check);
- c. Non-inoculated check.

Spots to be inoculated were wiped with 70% ethanol, inoculated, and the inoculated spot was marked. Bulbs were stored under commercial conditions. Onion bulbs were evaluated on February 7, 2018 by Brenda Schroeder and scored for bulb rot.

The means and standard errors were calculated from 4 replications of 20 onion bulbs. LSD for disease is presented in Table 1. All analyses were performed using SAS (SAS Institute Inc., Cary, NC).

## **Results and Discussion**

Bulbs not inoculated with *F. proliferatum* did not develop the disease. Results of this study indicate that onion bulb cultivars exhibit a range of resistance responses in response to *F. proliferatum* (Table 1). Onion cultivars 'Oloroso', 'Vaquero', 'Tucannon', 'Sedona', 'Pandero' and SV6646 were among those most susceptible to *F. proliferatum* in this assay. Onion cultivars 16000, 'Avalon', and 'Grand Perfection' were among the least susceptible to *F. proliferatum* evaluated in this study. A second year of testing will be needed to demonstrate the reliability of these cultivars to resist *F. proliferatum*.

Knowing how different onion cultivars respond to *F. proliferatum* could provide critical knowledge to stakeholders about cultivar choices. This knowledge could aid in the management of this storage rot problem and reduce onion bulb losses to *F. proliferatum*.

### References

Schwartz, H.F., and S.K. Mohan, 2008. Compendium of Onion and Garlic Diseases and Pests, Second Edition. APS Press, St. Paul, MN.

Shock, C.C., E.B.G. Feibert, A. Rivera, K.D. Wieland, and L.D. Saunders. 2018. 2017 Onion variety trials. Malheur Experiment Station Annual Report 2017, Ext/CrS 159:12-31.

United States Department of Agriculture-National Agriculture Statistics Service http://www.nass.usda.gov/QuickStats/PullData\_US.jsp

Table 1. Percent bulb rot resulting from inoculation of onion bulbs by  $5 \times 10^5$  spores of *Fusarium proliferatum* at harvest and stored for 4 months, Oregon State University, Malheur Experiment Station, Ontario, Oregon, 2017.

| Cultivar         | Percent disease* |
|------------------|------------------|
| Oloroso          | 23.8 A           |
| Vaquero          | 22.4 AB          |
| Tucannon         | 21.8 ABC         |
| Sedona           | 21.1 ABC         |
| Pandero          | 20.6 ABC         |
| SV6646           | 20.4 ABCD        |
| Joaquin          | 20.3 BCD         |
| Hamilton         | 20.1 BCDE        |
| Swale            | 20.1 BCDE        |
| Granero          | 19.9 BCDEF       |
| Montero          | 18.9 CDEFG       |
| Morpheus         | 18.5 CDEFG       |
| Arcero           | 17.2 EFDG        |
| SV6672           | 16.8 EFGH        |
| Annillo          | 16.5 FGH         |
| Barbaro          | 16.4 GH          |
| Scout            | 13.5 HI          |
| 16000            | 12.6 I           |
| Avalon           | 12.6 I           |
| Grand Perfection | 7.59 J           |

\*Treatments within each effect followed by different letters are significantly different at  $P \le 0.001$ .

## DIRECT SURFACE SEEDING SYSTEMS FOR THE ESTABLISHMENT OF NATIVE WILDFLOWERS IN 2016 AND 2017

Clinton C. Shock, Erik B. G. Feibert, Alicia Rivera, and Lamont D. Saunders, Malheur Experiment Station, Oregon State University, Ontario, OR

Francis Kilkenny and Nancy Shaw, U.S. Forest Service, Rocky Mountain Research Station, Boise, ID

## Introduction

Seed of native plants is needed to restore rangelands of the Intermountain West. Reliable commercial seed production is needed to make seed readily available. Direct seeding of native range plants in the Intermountain West is often problematic. Fall planting is helpful in establishing stands for many of these native species to overcome physiological dormancy through cold stratification. Fall planting alone may be insufficient for adequate stands for seed production, and it may be necessary to combine fall planting with other techniques.

Previous trials to address poor stand examined seed pelleting, planting depth, and soil anticrustant with four fall-planted species (Shock et al. 2010). Planting at depth with soil anticrustant improved emergence compared to surface planting whereas seed pelleting did not improve emergence. Planting at <sup>1</sup>/<sub>8</sub>-inch depth resulted in higher emergence than either surface planting or planting at <sup>1</sup>/<sub>4</sub>-inch depth for three of the four species. Emergence for one species was too poor for any conclusions to be made. Despite these results, emergence was extremely poor for all species tested. Soil crusting, loss of soil moisture, and bird damage could have contributed to the poor emergence.

In established native perennial fields at the Malheur Experiment Station, Ontario, Oregon, and in rangelands, we observed prolific emergence from seed naturally falling on the soil surface and subsequently covered by thin layers of normally occurring organic debris. Building on this observation, we developed and tested planting systems, focusing on surface-planted seed (Table 1, Shock et al. 2012-2014). Treatments included row cover, sawdust, sand, and seed treatments. Row cover can act as a protective barrier against soil desiccation and bird damage. Sawdust was intended to mimic the protective effect of organic debris. Sand could help hold the seed in place. Seed treatment could protect the emerging seed from fungal pathogens that might cause seed decomposition or seedling damping off. Trials did not test all possible combinations of treatments, but focused on combinations likely to result in adequate stand establishment based on previous observations.

## **Materials and Methods**

In 2016 and 2017, 14 species for which stand establishment has been problematic were included and an additional species (*Penstemon speciosus*) was chosen as a check, because it has reliably

produced adequate stands at Ontario. Seed weights for all species were determined. In November each year, a portion of the seed was treated with a liquid mix of the fungicides Thiram and Captan (10 g Thiram, 10 g Captan in 0.5 L of water). Seed weights of the treated seeds were determined after treatment. The seed weights of untreated and treated seed were used to make seed packets containing approximately 300 seeds each. The seed packets were assigned to one of seven treatments (Table 1). The trials were planted manually on November 23, 2015 and on December 1, 2016. The experiments had randomized complete block designs with six replicates. Treatments were planted on beds 30 inches wide by 5 ft long. The seed was placed on the soil surface in two rows on each bed.

The four factors (row cover, sawdust, sand, and mulch) were applied in combined systems after planting. Sawdust was applied in a narrow band over the seeded row at 0.26 oz/ft of row (558 lb/acre). For the treatment systems receiving both sawdust and sand, sand was applied at 0.65 oz/ft of row (1404 lb/acre) as a narrow band over the sawdust. Following planting and sawdust and sand applications, some beds were covered with row cover. The row cover (N-sulate, DeWitt Co., Inc., Sikeston, MO) covered four rows (two beds) and was applied with a mechanical plastic mulch layer. Mouse bait packs were scattered under the row covers. For the hydroseeding mulch treatments, 10 lb of hydroseeding paper mulch (Premium Hydroseeding Mulch, Applegate Mulch, <u>http://applegatemulch.com</u>) was mixed in 50 gal of water in a jet agitated 50-gal hydroseeder (Turbo Turf Technologies, Beaver Falls, PA). The mulch was applied with the hydroseeder in a thin 3-cm band over the seed row. In early April each year, the row cover was removed and the trial was sprayed with Poast<sup>®</sup> at 24 oz/acre for control of grass weeds. The trial was hand weeded. Emergence counts were recorded in all plots on May 2, 2016 and May 4, 2017.

Tetrazolium tests were conducted to determine seed viability of each species (Table 2) and the seed viability results were used to correct the emergence data to emergence as a percentage of planted viable seed. Data were analyzed using analysis of variance (General Linear Models Procedure, NCSS, Kaysville, UT). Means separation was determined using a protected Fisher's least significant difference test at the 5% probability level, LSD (0.05).

### **Results and Discussion**

### 2016 Results

The row cover with sawdust plus seed treatment resulted in higher stands than no row cover (bare ground) with sawdust and seed treatment for *Chaenactis douglasii*, *Machaeranthera canescens*, *Phacelia hastata*, *P. crenulata*, *Heliomeris multiflora*, *Penstemon speciosus*, and *Achillea millefolium* (Table 3). Sawdust added to the row cover plus seed treatment only improved stand of *Penstemon speciosus* and reduced stand of *Nicotiana attenuata* and *Achillea millefolium*.

Adding seed treatment to sawdust plus row cover did not improve stand of any species and reduced stands of *Phacelia crenulata*, *Heliomeris multiflora*, and *Ipomopsis aggregata*. Adding sand to sawdust, seed treatment, plus row cover combination improved stand for *Machaeranthera canescens* and *Cleome lutea* and reduced stand for *Achillea millefolium*. Hydroseed mulch with seed treatment resulted in lower stand than row cover with seed treatment for *Machaeranthera canescens*, *Phacelia hastata*, *P. crenulata*, *Heliomeris multiflora*, *Nicotiana* 

attenuata, Thelypodium milleflorum, Penstemon speciosus, and Achillea millefolium. For *Chaenactis douglasii, Phacelia linearis, Cleome lutea,* and *Ipomopsis aggregata,* there was no difference in stand between hydroseed mulch with seed treatment and row cover with seed treatment. However, for *Ipomopsis aggregata,* seed treatment was detrimental and all systems with seed treatment resulted in low stand, negating an evaluation of hydroseed mulch for this species.

#### 2017 Results

The row cover with sawdust plus seed treatment resulted in higher stands than no row cover (bare ground) with sawdust and seed treatment only for *Machaeranthera canescens* (Table 4). Sawdust added to the row cover plus seed treatment did not improve stand of any species and reduced stand of *Nicotiana attenuata* and *Achillea millefolium*.

Adding seed treatment to sawdust plus row cover only improved stand of *Machaeranthera canescens* and *Chaenactis douglasii* and reduced stands of *Phacelia crenulata, Cleome serrulata,* and *Ipomopsis aggregata.* Adding sand to sawdust, seed treatment, plus row cover combination only improved stand of *Penstemon speciosus.* Hydroseed mulch with seed treatment resulted in lower stand than row cover with seed treatment for *Machaeranthera canescens, Nicotiana attenuata,* and *Achillea millefolium.* For the other species there was no difference in stand between hydroseed mulch with seed treatment and row cover with seed treatment. However, for *Ipomopsis aggregata,* seed treatment was detrimental and all systems with seed treatment resulted in low stand, negating an evaluation of hydroseed mulch for this species.

#### 2-year Average Results

The row cover with sawdust plus seed treatment resulted in higher stands than no row cover (bare ground) with sawdust and seed treatment for *Machaeranthera canescens*, *Heliomeris multiflora*, *Penstemon speciosus*, and *Achillea millefolium* (Table 5). Sawdust added to the row cover plus seed treatment only improved stand of *Penstemon speciosus* and reduced stand of *Nicotiana attenuata* and *Achillea millefolium*.

Adding seed treatment to sawdust plus row cover only improved stand of *Machaeranthera canescens* and reduced stands of *Heliomeris multiflora, Ipomopsis aggregata, Phacelia crenulata,* and *Cleome serrulata.* Adding sand to sawdust, seed treatment, plus row cover combination improved stand of *Phacelia hastata* and *Cleome lutea* and reduced stand of *Achillea millefolium.* Hydroseed mulch with seed treatment resulted in lower stand than row cover with seed treatment for *Machaeranthera canescens, Phacelia hastata, Heliomeris multiflora, Nicotiana attenuata, Dalea ornata, Achillea millefolium,* and *Phacelia crenulata.* For the other species there was no difference in stand between hydroseed mulch with seed treatment and row cover with seed treatment. However, for *Ipomopsis aggregata,* seed treatment was detrimental and all systems with seed treatment resulted in low stand, negating an evaluation of hydroseed mulch for this species.

Averaged over species, the row cover with sawdust plus seed treatment resulted in higher stand than no row cover (bare ground) with sawdust and seed treatment in 2016, but not in 2017. Averaged over species, adding seed treatment to sawdust plus row cover reduced stands in 2016 and did not improve stands in 2017. Sawdust added to the row cover plus seed treatment did not

improve stands in 2016 and reduced stands in 2017. Adding sand to sawdust, seed treatment, plus row cover combination improved stands in 2016, but not in 2017.

### Discussion

Snow cover over the winter of 2016-2017 was deeper and longer lasting than in 2015-2016. In the winter of 2015-2016 the ground was covered by snow continuously from December 18 to January 22 (36 days) with an average snow depth of 2.3 inches. In the winter of 2016-2017 the ground was covered by snow continuously from December 9 to March 5 (87 days) with an average snow depth of 13 inches. The longer snow cover in 2017 probably was a factor in row cover with sawdust plus seed treatment resulting in higher stand than no row cover (bare ground) with sawdust and seed treatment in 2016, but not in 2017.

Seed treatment, sawdust, and sand were factors that had inconsistent results for most species over the 2 years. Some species showed consistent results over the 2 years for seed treatment and sawdust. Seed treatment resulted in lower stands for *Ipomopsis aggregata* and *Phacelia crenulata* both years. Sawdust reduced stands of *Nicotiana attenuata* and *Achillea millefolium* both years.

### References

- Shock, C.C., E.B.G. Feibert, C. Parris, L.D. Saunders, and N. Shaw. 2012. Direct surface seeding strategies for establishment of Intermountain West native plants for seed production. Oregon State University Malheur Experiment Station Annual Report 2011, Ext/CrS 141:130-135.
- Shock, C.C., E.B.G. Feibert, L.D. Saunders, and N. Shaw. 2010. Emergence of native plant seeds in response to seed pelleting, planting depth, scarification, and soil anti-crusting treatment. Oregon State University Malheur Experiment Station Annual Report 2009, Ext/CrS 131:218-222.
- Shock, C.C., E.B.G. Feibert, L.D. Saunders, D. Johnson, and S. Bushman. 2013. Direct surface seeding strategies for establishment of two native legumes of the Intermountain West. Oregon State University Malheur Experiment Station Annual Report 2012, Ext/CrS 144:132-137.
- Shock, C.C., E.B.G. Feibert, L.D. Saunders, and N. Shaw. 2014. Direct surface seeding systems for successful establishment of native wildflowers. Oregon State University Malheur Experiment Station Annual Report 2013, Ext/CrS 149:159-165.

### Acknowledgements

This project was funded by the U.S. Forest Service Great Basin Native Plant Project, U.S. Bureau of Land Management, Oregon State University, Malheur County Education Service District, and supported by Formula Grant nos. 2017-31100-06041 and 2017-31200-06041 from the USDA National Institute of Food and Agriculture.

| # | Row cover | Seed treatment <sup>a</sup> | Sawdust | Sand | Mulch |
|---|-----------|-----------------------------|---------|------|-------|
| 1 | yes       | yes                         | yes     | no   | no    |
| 2 | yes       | yes                         | no      | no   | no    |
| 3 | yes       | no                          | yes     | no   | no    |
| 4 | yes       | yes                         | yes     | yes  | no    |
| 5 | no        | yes                         | yes     | no   | no    |
| 6 | no        | yes                         | no      | no   | yes   |
| 7 | no        | no                          | no      | no   | no    |
|   |           |                             |         |      |       |

Table 1. Planting systems evaluated for emergence of 15 native plant species. Malheur Experiment Station, Oregon State University, Ontario, OR, fall 2015 and 2016.

<sup>a</sup>Mixture of Captan and Thiram fungicides for prevention of seed decomposition and seedling damping off.

Table 2. Seed weights and tetrazolium test (seed viability) results for seed used for the planting system treatments in the fall of 2015 and 2016, Malheur Experiment Station, Oregon State University, Ontario, OR.

|                          |                          |                                |      | zolium<br>est |
|--------------------------|--------------------------|--------------------------------|------|---------------|
| Species                  | Common name              | Preplant untreated seed weight | 2016 | 2017          |
|                          |                          | seeds/g                        | Q    | 6             |
| Chaenactis douglasii     | Douglas' dustymaiden     | 682                            | 72   | 29            |
| Machaeranthera canescens | hoary tansyaster         | 1,590                          | 70   | 83            |
| Phacelia hastata         | silverleaf phacelia      | 1,098                          | 98   | 95            |
| Phacelia crenulata       | cleftleaf wildheliotrope | 918                            | 87   | 89            |
| Phacelia linearis        | threadleaf phacelia      | 4,091                          | 98   | 98            |
| Heliomeris multiflora    | showy goldeneye          | 1,800                          | 76   | 76            |
| Nicotiana attenuata      | coyote tobacco           | 8,333                          | 90   | 93            |
| Thelypodium milleflorum  | manyflower thelypody     | 3,629                          | 97   | 96            |
| lpomopsis aggregata      | scarlet gilia            | 616                            | 81   | 79            |
| Penstemon speciosus      | showy penstemon          | 662                            | 85   | 86            |
| Dalea ornata             | Western prairie clover   | 341                            | 84   | 83            |
| Dalea searlsiae          | Searls' prairie clover   | 274                            | 81   | 51            |
| Achillea millefolium     | common yarrow            | 12,162                         | 37   | 45            |
| Cleome lutea             | yellow beeplant          | 214                            | 87   | 85            |
| Cleome serrulata         | Rocky Mountain beeplant  | 134                            | 90   | 97            |

Table 3. Plant stands of 15 native plant species on May 2, 2016 in response to 7 planting systems used in November 2015. Stand for each species was corrected to the percent of viable seed based on the tetrazolium test. To evaluate systems, the following treatment comparisons were used: Row cover, treatments 1 and 5; Seed treatment, treatments 1 and 3; Sawdust, treatments 1 and 2; Sand, treatments 1 and 4. Oregon State University, Malheur Experiment Station, Ontario, OR.

| Species                  | Row<br>cover,<br>seed<br>treatment,<br>sawdust | Row<br>cover,<br>seed<br>treatment | Row<br>cover,<br>sawdust | Row cover,<br>seed<br>treatment,<br>sawdust,<br>sand | Seed<br>treatment,<br>sawdust | Mulch,<br>seed<br>treatment | Untreated<br>check | Average |
|--------------------------|------------------------------------------------|------------------------------------|--------------------------|------------------------------------------------------|-------------------------------|-----------------------------|--------------------|---------|
|                          |                                                |                                    |                          | %                                                    | stand                         |                             |                    |         |
| Chaenactis douglasii     | 22.3                                           | 16.3                               | 24.2                     | 23.2                                                 | 10.7                          | 14.2                        | 5.3                | 16.6    |
| Machaeranthera canescens | 28.9                                           | 26.0                               | 25.2                     | 38.7                                                 | 14.8                          | 16.2                        | 16.0               | 23.7    |
| Phacelia hastata         | 23.2                                           | 28.3                               | 21.8                     | 31.7                                                 | 11.1                          | 3.6                         | 8.5                | 18.3    |
| Phacelia linearis        | 6.2                                            | 1.8                                | 2.3                      | 11.7                                                 | 4.5                           | 2.7                         | 1.8                | 4.4     |
| Heliomeris multiflora    | 33.1                                           | 31.0                               | 44.9                     | 41.2                                                 | 6.7                           | 1.2                         | 2.3                | 22.9    |
| Nicotiana attenuata      | 6.5                                            | 21.7                               | 15.2                     | 10.1                                                 | 0.1                           | 0.1                         | 0.4                | 7.7     |
| Thelypodium milleflorum  | 10.9                                           | 15.3                               | 9.8                      | 14.4                                                 | 9.3                           | 6.1                         | 5.2                | 10.1    |
| Ipomopsis aggregata      | 2.6                                            | 1.8                                | 22.9                     | 4.1                                                  | 0.6                           | 0.2                         | 2.7                | 5.0     |
| Penstemon speciosus      | 23.4                                           | 11.4                               | 15.9                     | 26.3                                                 | 3.7                           | 0.5                         | 0.5                | 11.7    |
| Dalea ornata             | 4.0                                            | 6.4                                | 4.8                      | 4.0                                                  | 0.4                           | 0.1                         | 0.0                | 2.8     |
| Dalea searlsiae          | 2.8                                            | 2.3                                | 1.0                      | 3.0                                                  | 0.3                           | 0.1                         | 0.1                | 1.4     |
| Achillea millefolium     | 27.9                                           | 51.1                               | 25.7                     | 18.2                                                 | 10.5                          | 8.0                         | 9.3                | 21.5    |
| Cleome lutea             | 19.0                                           | 14.4                               | 18.2                     | 28.9                                                 | 11.9                          | 6.3                         | 6.1                | 15.0    |
| Cleome serrulata         | 7.2                                            | 2.6                                | 7.0                      | 7.7                                                  | 4.6                           | 1.4                         | 1.5                | 4.6     |
| Phacelia crenulata       | 15.5                                           | 13.9                               | 30.5                     | 17.1                                                 | 2.3                           | 1.9                         | 0.8                | 11.7    |
| 2016 Average             | 15.6                                           | 16.3                               | 18.0                     | 18.7                                                 | 6.1                           | 4.2                         | 4.0                | 11.8    |

Table 4. Plant stands of 15 native plant species on May 4, 2017 in response to 7 planting systems used in November 2016. Stand for each species was corrected to the percent of viable seed based on the tetrazolium test. To evaluate systems, the following treatment comparisons were used: Row cover, treatments 1 and 5; Seed treatment, treatments 1 and 3; Sawdust, treatments 1 and 2; Sand, treatments 1 and 4. Oregon State University, Malheur Experiment Station, Ontario, OR.

|                          | Row<br>cover, | Row       |         | Row cover,<br>seed |            |           |           |         |
|--------------------------|---------------|-----------|---------|--------------------|------------|-----------|-----------|---------|
|                          | seed          | cover,    | Row     | treatment,         | Seed       | Mulch,    |           |         |
|                          | treatment,    | seed      | cover,  | sawdust,           | treatment, | seed      | Untreated |         |
| Species                  | sawdust       | treatment | sawdust | sand               | sawdust    | treatment | check     | Average |
|                          |               |           |         | %                  | stand      |           |           |         |
| Chaenactis douglasii     | 26.2          | 21.5      | 13.5    | 25.3               | 26.2       | 24.4      | 12.9      | 21.4    |
| Machaeranthera canescens | 77.7          | 77.4      | 13.7    | 73.4               | 67.7       | 59.4      | 18.6      | 55.4    |
| Phacelia hastata         | 9.5           | 13.7      | 12.3    | 15.2               | 11.8       | 11.8      | 12.7      | 12.4    |
| Phacelia linearis        | 13.7          | 10.7      | 13.3    | 12.1               | 10.7       | 11.5      | 11.2      | 11.9    |
| Heliomeris multiflora    | 7.7           | 8.7       | 16.2    | 10.2               | 8.2        | 11.3      | 12.4      | 10.7    |
| Nicotiana attenuata      | 12.5          | 35.8      | 10.2    | 21.1               | 9.9        | 6.3       | 8.4       | 14.9    |
| Thelypodium milleflorum  | 6.3           | 6.1       | 10.2    | 5.3                | 9.3        | 8.7       | 11.2      | 8.2     |
| lpomopsis aggregata      | 0.6           | 4.9       | 18.6    | 0.3                | 0.2        | 3.5       | 12.5      | 5.8     |
| Penstemon speciosus      | 10.8          | 7.6       | 13.0    | 20.2               | 12.7       | 10.3      | 11.2      | 12.3    |
| Dalea ornata             | 11.0          | 9.6       | 10.3    | 11.6               | 6.0        | 2.1       | 3.6       | 7.8     |
| Dalea searlsiae          | 3.2           | 2.1       | 2.6     | 3.8                | 1.1        | 1.1       | 1.2       | 2.1     |
| Achillea millefolium     | 30.6          | 49.0      | 36.4    | 27.4               | 31.1       | 38.6      | 46.0      | 37.0    |
| Cleome lutea             | 18.1          | 19.0      | 26.1    | 24.6               | 22.5       | 21.2      | 32.5      | 23.4    |
| Cleome serrulata         | 8.4           | 8.6       | 24.4    | 8.2                | 10.5       | 9.6       | 36.9      | 15.2    |
| Phacelia crenulata       | 5.2           | 11.5      | 15.0    | 8.7                | 5.7        | 3.9       | 13.3      | 9.0     |
| 2017 Average             | 16.1          | 19.1      | 15.7    | 17.8               | 15.6       | 14.9      | 16.3      | 16.5    |

Table 5. Plant stands of 15 native plant species averaged over 2 years in response to 7 planting systems used in the previous fall. Stand for each species was corrected to the percent of viable seed based on the tetrazolium test. To evaluate systems, the following treatment comparisons were used: Row cover, treatments 1 and 5; Seed treatment, treatments 1 and 3; Sawdust, treatments 1 and 2; Sand, treatments 1 and 4. Oregon State University, Malheur Experiment Station, Ontario, OR, 2016-2017.

|                            | Row        |           |         | Row cover, |            |           |           |         |
|----------------------------|------------|-----------|---------|------------|------------|-----------|-----------|---------|
|                            | cover,     | Row       |         | seed       |            |           |           |         |
|                            | seed       | cover,    | Row     | treatment, | Seed       | Mulch,    |           |         |
| <b>.</b> .                 | treatment, | seed      | cover,  | sawdust,   | treatment, | seed      | Untreated | _       |
| Species                    | sawdust    | treatment | sawdust | sand       | sawdust    | treatment | check     | Average |
|                            |            |           |         | %          |            |           |           |         |
| Chaenactis douglasii       | 24.3       | 19.1      | 18.4    | 24.3       | 18.4       | 18.8      | 8.8       | 18.9    |
| Machaeranthera canescens   | 53.3       | 51.7      | 19.4    | 56.1       | 41.2       | 37.8      | 17.3      | 39.6    |
| Phacelia hastata           | 16.4       | 21.0      | 17.1    | 23.4       | 11.4       | 7.7       | 10.6      | 15.4    |
| Phacelia linearis          | 9.9        | 6.2       | 7.8     | 11.9       | 7.6        | 7.1       | 6.5       | 8.2     |
| Heliomeris multiflora      | 20.4       | 19.8      | 30.6    | 25.7       | 7.5        | 6.2       | 7.3       | 16.8    |
| Nicotiana attenuata        | 9.5        | 28.7      | 12.7    | 15.6       | 5.0        | 3.2       | 4.4       | 11.3    |
| Thelypodium milleflorum    | 8.6        | 10.7      | 10.0    | 9.8        | 9.3        | 7.4       | 8.2       | 9.2     |
| lpomopsis aggregata        | 1.6        | 3.4       | 20.8    | 2.2        | 0.4        | 1.9       | 7.6       | 5.4     |
| Penstemon speciosus        | 17.1       | 9.5       | 14.5    | 23.2       | 8.2        | 5.4       | 5.9       | 12.0    |
| Dalea ornata               | 7.5        | 8.0       | 7.5     | 7.8        | 3.2        | 1.1       | 1.8       | 5.3     |
| Dalea searlsiae            | 3.0        | 2.2       | 1.8     | 3.4        | 0.7        | 0.6       | 0.6       | 1.8     |
| Achillea millefolium       | 29.3       | 50.0      | 31.0    | 22.8       | 19.9       | 23.3      | 29.1      | 29.3    |
| Cleome lutea               | 18.5       | 16.7      | 21.8    | 26.6       | 17.2       | 13.7      | 19.3      | 19.1    |
| Cleome serrulata           | 7.8        | 5.6       | 15.7    | 8.0        | 7.6        | 5.5       | 19.2      | 9.9     |
| Phacelia crenulata         | 10.3       | 12.7      | 22.8    | 12.9       | 4.0        | 2.9       | 7.0       | 10.4    |
| 2016-2017 Average          | 15.8       | 17.7      | 16.8    | 18.2       | 10.8       | 9.5       | 10.2      | 14.2    |
| LSD (0.05)                 |            |           |         |            |            |           |           |         |
| Treatment                  | 1.4        |           |         |            |            |           |           |         |
| Species                    | 2.4        |           |         |            |            |           |           |         |
| Year                       | 0.9        |           |         |            |            |           |           |         |
| Species X year             | 3.5        |           |         |            |            |           |           |         |
| Treatment X species        | 6.4        |           |         |            |            |           |           |         |
| Treatment X year           | 2.4        |           |         |            |            |           |           |         |
| Treatment X species X year | 9.2        |           |         |            |            |           |           |         |

# IRRIGATION REQUIREMENTS FOR SEED PRODUCTION OF VARIOUS NATIVE WILDFLOWER SPECIES

Clinton C. Shock, Erik B. G. Feibert, Alicia Rivera, and Lamont D. Saunders, Malheur Experiment Station, Oregon State University, Ontario, OR, 2017

Nancy Shaw and Francis Kilkenny, U.S. Forest Service, Rocky Mountain Research Station, Boise, ID

### Introduction

Commercial seed production of native wildflowers is necessary to provide the quantity of seed needed for restoration of Intermountain West rangelands. Native wildflower plants may not be well adapted to croplands. Native plants are often not competitive with crop weeds in cultivated fields, and this poor competitiveness with weeds could limit wildflower seed production. Both sprinkler and furrow irrigation could provide supplemental water for seed production, but these irrigation systems risk further encouraging weeds. Also, sprinkler and furrow irrigation can lead to the loss of plant stand and seed production due to fungal pathogens. By burying drip tape at a 12-inch depth and avoiding wetting the soil surface, we designed experiments to assure flowering and seed set without undue encouragement of weeds or opportunistic diseases. The trials reported here tested effects of three low rates of irrigation on seed yield of 14 native wildflower species (Table 1).

| Species                            | Common name            | Longevity | Row spacing (inches) |
|------------------------------------|------------------------|-----------|----------------------|
| Chaenactis douglasii               | Douglas' dustymaiden   | perennial | 30                   |
| Crepis intermedia <sup>a</sup>     | Limestone hawksbeard   | perennial | 30                   |
| Cymopterus bipinnatus <sup>b</sup> | Hayden's cymopterus    | perennial | 30                   |
| Enceliopsis nudicaulis             | nakedstem sunray       | perennial | 30                   |
| Heliomeris multiflora              | showy goldeneye        | perennial | 30                   |
| Ipomopsis aggregata                | scarlet gilia          | biennial  | 15                   |
| Ligusticum canbyi                  | Canby's licorice-root  | perennial | 30                   |
| Ligusticum porteri                 | Porter's licorice-root | perennial | 30                   |
| Machaeranthera canescens           | hoary tansyaster       | perennial | 30                   |
| Nicotiana attenuata                | coyote tobacco         | perennial | 30                   |
| Phacelia linearis                  | threadleaf phacelia    | annual    | 15                   |
| Phacelia hastata                   | silverleaf phacelia    | perennial | 15                   |
| Thelypodium milleflorum            | manyflower thelypody   | biennial  | 30                   |
| Achillea millefolium               | common yarrow          | perennial | 30                   |

Table 1. Wildflower species planted in the fall of 2012 at the Malheur Experiment Station, Oregon State University, Ontario, OR.

<sup>a</sup>Planted in the fall of 2011.

<sup>b</sup>Recently classified as *Cymopterus nivalis* S. Watson "snowline springparsley". Planted in the fall of 2009.

### **Materials and Methods**

### Plant establishment

Each wildflower species was planted on 60-inch beds in rows 450 ft long on Nyssa silt loam at the Malheur Experiment Station, Ontario, Oregon. The soil had a pH of 8.3 and 1.1% organic matter. In October 2012, drip tape (T-Tape TSX 515-16-340) was buried at 12-inch depth in the center of each bed to irrigate the rows in the plot. The flow rate for the drip tape was 0.34 gal/min/100 ft at 8 psi with emitters spaced 16 inches apart, resulting in a water application rate of 0.066 inch/hour.

On October 30, 2012 seed of 11 species (Table 1) was planted in either 15-inch or 30-inch rows using a custom-made small-plot grain drill with disc openers. All seed was planted on the soil surface at 20-30 seeds/ft of row. After planting, sawdust was applied in a narrow band over the seed row at 0.26 oz/ft of row (558 lb/acre). Following planting and sawdust application, the beds were covered with row cover (N-sulate, DeWitt Co., Inc., Sikeston, MO), which covered four rows (two beds) and was applied with a mechanical plastic mulch layer. *Cymopterus bipinnatus* was planted on November 25, 2009, and *Crepis intermedia* was planted on November 28, 2011 as previously described using similar methods.

Weeds were controlled by hand-weeding as necessary.

Starting in March following fall planting, the row cover was removed. Immediately following the removal of the row cover, bird netting was placed over the seedlings on No. 9 galvanized wire hoops to prevent bird feeding on young seedlings and new shoots. During seedling emergence, wild bird seed was placed several hundred feet from the trial to attract quail away from the trials. Bird netting was removed in early May. Bird netting was applied and removed each spring.

On April 13, 2012, 50 lb nitrogen/acre, 10 lb phosphorus/acre, and 0.3 lb iron/acre was applied to all plots of *Cymopterus bipinnatus* and *C. intermedia* as liquid fertilizer injected through the drip tape.

### **Cultural practices in 2013**

On July 26, all plots of *Machaeranthera canescens* were sprayed with Capture<sup>®</sup> at 19 oz/acre (0.3 lb ai/acre) for aphid control. On October 31, seed of *Phacelia linearis* was planted as previously described.

Due to poor stand, seed of *Chaenactis douglasii* was replanted on November 1, as previously described. Stand of *Nicotiana attenuata* was extremely poor and seed was unavailable for replanting.

### **Cultural practices in 2014**

Stand of *Chaenactis douglasii*, which was replanted in the fall of 2013, was poor and did not allow evaluation of irrigation responses.

On November 11, *Phacelia linearis, Nicotiana attenuata,* and *Thelypodium milleflorum* were replanted as previously described. Lengths of row with missing stand in plots of *Chaenactis douglasii* were replanted by hand and row cover was not applied to the replanting.

#### **Cultural practices in 2015**

On November 2, *Nicotiana attenuata* and *Enceliopsis nudicaulis* were replanted as previously described. Before planting, the ground was not tilled, only cultipacked. On November 5, *Phacelia linearis, Chaenactis douglasii, Achillea millefolium*, and *Ipomopsis aggregata* were replanted as previously described.

#### **Cultural practices in 2016**

On November 22, *Nicotiana attenuata, Phacelia linearis,* and *Thelypodium milleflorum* were replanted as previously described.

#### Irrigation for seed production

In March 2010 for *Cymopterus bipinnatus*, and March 2013 for the other species, the planted strip of each wildflower species was divided into 12 30-ft-long plots. Each plot contained four rows of each species. The experimental design for each species was a randomized complete block with four replicates. The three treatments were a nonirrigated check, 1 inch of water per irrigation, and 2 inches of water per irrigation. Each treatment received four irrigations that were applied approximately every 2 weeks starting at bud formation and flowering. The amount of water applied to each treatment was calculated by the length of time necessary to deliver 1 or 2 inches through the drip system. Irrigations were regulated with a controller and solenoid valves.

The drip-irrigation system was designed to allow separate irrigation of each species due to different timings of flowering and seed formation. All species were irrigated separately except the two *Phacelia* spp. and the two *Ligusticum* spp. Flowering, irrigation, and harvest dates were recorded (Table 2) with the exception of *Nicotiana attenuata*, which did not germinate in 2014 and the *Ligusticum* spp., which did not flower.

#### Harvest

All species were harvested manually in 2013. Due to a long flowering duration, seed of *Enceliopsis nudicaulis*, *Chaenactis douglasii*, and *Crepis intermedia* required multiple harvests. Seed of *Enceliopsis nudicaulis* was harvested manually once a week. Seed of *Chaenactis douglasii* and *Crepis intermedia* was harvested weekly with a leaf blower in vacuum mode. In 2016, the duration of flowering for *C. intermedia* was much shorter and uniform in timing between irrigation treatments. In 2016 and 2017, seed of *C. intermedia* was harvested by mowing and bagging just prior to the seed heads opening. A seed sample from each plot of *C. intermedia* in 2016 was cleaned manually to determine the proportion of pure seed. A sample of light yellow (immature) seed and dark brown (mature) seed of *C. intermedia* was harvested manually once a week.

*Machaeranthera canescens* seed was harvested by cutting and windrowing the plants. After drying for 2 days the *M. canescens* plants were beaten on plastic tubs to separate the seed heads from the stalks. *Phacelia hastata* was harvested with a small-plot combine in 2014 and 2015. In 2016 and 2017, *P. hastata* was harvested manually due to the low stature of the plants. *Heliomeris multiflora* was harvested with a small plot combine in 2015 and 2016. The duration of flowering for *H. multiflora* tends to increase with increasing irrigation. In 2013 and 2014, the duration of flowering in the wetter plots of *H. multiflora* was much longer than in the drier plots, making a single mechanical harvest unfeasible. In 2015, the duration of flowering in the wetter plots of *H. multiflora* was shorter, enabling mechanical harvest. In 2016, plots of the driest

treatment were harvested manually before the other plots, which were harvested mechanically on July 8. All plots of *H. multiflora* were harvested with a small plot combine in 2017.

Seed of all species was cleaned manually.

### Statistical analysis

Seed yield means were compared by analysis of variance and by linear and quadratic regression. Seed yield (y) in response to irrigation or irrigation plus precipitation (x, inches/season) was estimated by the equation  $y = a + b \cdot x + c \cdot x^2$ . For the quadratic equations, the amount of irrigation (x') that resulted in maximum yield (y') was calculated using the formula x' = -b/2c, where a is the intercept, b is the linear parameter, and c is the quadratic parameter. For the linear regressions, the seed yield responses to irrigation were based on the actual greatest amount of water applied plus precipitation and the measured average seed yield.

## **Results and Discussion**

Precipitation in the winter and spring in 2013 was lower and in 2017 was higher than the 5-year average (Table 3). Precipitation in the other years was close to the average. The accumulation of growing degree-days (50-86°F) was higher than average in 2013-2016 (Table 3).

*Achillea millefolium*. Seed yields of *Achillea millefolium* showed a quadratic response to irrigation in 2017 with a maximum seed yield of 220 lb/acre at 6.2 inches of water applied (Tables 4 and 5).

*Thelypodium milleflorum*. Seed yield of *Thelypodium milleflorum* did not respond to irrigation in 2014 or 2016 (Tables 4 and 5). Highest seed yields averaged 225 lb/acre over the 2 years.

*Crepis intermedia*. *Crepis intermedia* flowered and produced seed for the first time in 2015, the third year after fall planting in 2011. The uniform and short flowering of *C. intermedia* in 2016 allowed the seed from all plots to be harvested once. A single mechanical harvest is more efficient, but some of the seed could be immature because harvest needed to occur just before seed heads opened. In 2016, 77% of the seed harvested was mature and had a viability of 57%. The other 23% of the harvested seed was immature and had a viability of 5%. This suggests that a single harvest as conducted in this trial resulted in adequate seed quality. *Crepis intermedia* seed yields increased with increasing irrigation rate up to the highest rate of 8 inches in 2015. In 2016 and 2017, seed yields of *C. intermedia* did not respond to irrigation. Seed yields increased each year from 2015 to 2017 with highest seed yields of 349 lb/acre in 2017.

*Cymopterus bipinnatus*. *Cymopterus bipinnatus* did not flower in either 2010 or 2011, and flowered very little in 2012. *Cymopterus bipinnatus* seed yields did not respond to irrigation in 2013 and 2016. In 2014, seed yields increased with increasing irrigation rate up to the highest rate of 8 inches. In 2015, seed yields showed a quadratic response to irrigation with a maximum seed yield at 4.2 inches of water applied. In 2017, seed yields were highest with no irrigation. Highest seed yields averaged 1146 lb/acre over the 5 years.

*Heliomeris multiflora. Heliomeris multiflora* seed yield increased with increasing irrigation rate up to the highest rate of 8 inches in 2013-2015; *H. multiflora* seed yield did not respond to irrigation in 2016 and 2017. Highest seed yields averaged 149 lb/acre over the 5 years.

*Ipomopsis aggregata*. *Ipomopsis aggregata* flowered very little in 2013, then flowered and set seed in 2014. The stand of *I. aggregata* died over the winter of 2014-2015, which indicated a

biennial growth habit. *Ipomopsis aggregata* seed yields were highest with 4 inches of water applied in 2014 and 2017. Highest seed yields averaged 262 lb/acre over the 2 years.

*Chaenactis douglasii.* Stands of *Chaenactis douglasii* were poor in 2013 and 2014, and did not permit evaluation of irrigation responses. After replanting in the fall of 2013 and 2014, an adequate stand of *C. douglasii* was established, allowing evaluations of irrigation responses in 2015, 2016, and 2017. *Chaenactis douglasii* seed yields did not respond to irrigation in 2015-2017. Highest seed yields averaged 288 lb/acre over the 3 years.

*Enceliopsis nudicaulis. Enceliopsis nudicaulis* seed yield was very low and did not respond to irrigation in 2013. In 2014, seed yield showed a quadratic response to irrigation with a maximum seed yield at 5.4 inches of water applied. Extensive die-off of *E. nudicaulis* occurred over the winter of 2014-2015, and was more severe in the plots receiving the highest amount of irrigation. Seed yields of *E. nudicaulis* were substantially reduced in 2015 and were highest without irrigation. In 2016, seed yield showed a quadratic response to irrigation with a maximum seed yield at 5.8 inches of water applied. In 2017, seed yields were highest without irrigation. The replanting done in the fall of 2015 was successful, but stands continue to decline, especially in the irrigated plots. Highest seed yields averaged 25 lb/acre over the 4 years.

*Machaeranthera canescens*. *Machaeranthera canescens* seed yields showed a quadratic response to irrigation with a maximum seed yield at 2.4 inches of water applied in 2013. In 2014, 2015, and averaged over the 3 years, seed yields of *M. canescens* did not respond to irrigation. Highest seed yields averaged 240 lb/acre over the 3 years. Partial die-off of *Machaeranthera canescens* over the winter of 2015-2016 resulted in stand too uneven for an irrigation trial in 2016 and 2017. Natural reseeding occurred over the winter of 2016-2017, but the young plants did not flower in 2017.

*Nicotiana attenuata*. Seed yields of *Nicotiana attenuata* showed a quadratic response to irrigation in 2016 with a maximum seed yield of 151 lb/acre at 4.6 inches of water applied. In 2015 and 2017, stands of *Nicotiana attenuata* were uneven and did not permit evaluation of irrigation responses.

*Phacelia hastata*. Irrigation responses for *P. hastata* were evaluated for two sets of plots: the 3-year-old stand planted in 2012 and a new stand originating in 2015 from volunteer seed. *Phacelia hastata* (planted in the fall of 2012) seed yields showed a quadratic response to irrigation with a maximum seed yield at 5.4 and 7.5 inches of water applied in 2013 and 2014, respectively. In 2015, seed yield of *P. hastata* did not respond to irrigation, possibly due to loss of stand in this weak perennial. The original stand of *P. hastata*, planted in the fall of 2012, was extremely poor in 2016 and seed was not harvested. Seed yields of *P. hastata* (started in the fall of 2014) increased with increasing irrigation rate up to the highest rate of 8 inches in 2015. In 2016, seed yields of *P. hastata*, showed a quadratic response to irrigation. Averaged over the 3 years, seed yields of *P. hastata* showed a quadratic response to irrigation with a maximum seed yield of 163 lb/acre and 62 lb/acre at 6.6 and 5 inches of water applied for the 2012 and 2014 stands, respectively. The two stands of *P. hastata* showed a pattern of increased seed yields in the second year and then a decline in the third year.

*Phacelia linearis*. Seed yields of *Phacelia linearis* showed a quadratic response to irrigation in 2013 with a maximum seed yield at 6.2 inches of water applied. In 2014, seed yields of *P. linearis* did not respond to irrigation. Highest seed yields averaged 240 lb/acre over the 2 years. Stand of *P. linearis* was poor at the end of 2014 and the area was replanted in the fall. Stand of

replanted *P. linearis* was very poor in 2015; it was replanted in the fall of 2016 in a different location in the field, but stand in the spring of 2016 was extremely poor.

Stands of *Ligusticum porteri* and *L. canbyi* were poor and uneven and did not permit evaluation of irrigation responses.

### Acknowledgements

This project was funded by the U.S. Forest Service Great Basin Native Plant Project, U.S. Bureau of Land Management, Oregon State University, Malheur County Education Service District, and supported by Formula Grant nos. 2017-31100-06041 and 2017-31200-06041 from the USDA National Institute of Food and Agriculture.

Table 2. Native wildflower flowering, irrigation, and seed harvest dates by species. Malheur Experiment Station, Oregon State University, Ontario, OR, 2013-2017. Continued on next page.

|                  | Flov            | vering da | ites      | Irrigatio | n dates |                                     |
|------------------|-----------------|-----------|-----------|-----------|---------|-------------------------------------|
| Year             | Start           | Peak      | End       | Start     | End     | Harvest                             |
| Achillea millefo | <i>lium,</i> co | mmon ya   | arrow     |           |         |                                     |
| 2017             | 26-Apr          | 7-Jun     | 12-Jul    | 2-May     | 20-Jun  | 26-Jul                              |
| Chaenactis dou   | ıglasii, D      | ouglas' ( | dustyma   | aiden     |         |                                     |
| 2013             | 23-May          | 30-Jun    | 15-Jul    | 22-May    | 3-Jul   | 2-Jul, 22-Jul                       |
| 2014             | 20-May          |           | 15-Jul    | 13-May    | 24-Jun  | poor stand                          |
| 2015             | 5-May           |           | 10-Jul    | 5-May     | 17-Jun  | weekly, 6-8 to 7-15                 |
| 2016             | 23-May          |           | 22-Jul    | 23-May    | 8-Jul   | weekly, 6-17 to 7-7                 |
| 2017             | 25-May          | 7-Jun     | 19-Jul    | 9-May     | 20-Jun  | weekly, 6-16 to 7-6                 |
| Machaeranthera   | a canesc        | ens, hoa  | ary tansy | yaster    |         |                                     |
| 2013             | 13-Aug          |           | 1-Oct     | 17-Jul    | 28-Aug  | 2-Oct                               |
| 2014             | 20-Aug          | 17-Sep    | 5-Oct     | 22-Jul    | 2-Sep   | 6-Oct                               |
| 2015             | 10-Aug          | 17-Sep    | 1-Oct     | 11-Aug    | 22-Sep  | 6-Oct, 15-Oct                       |
| 2016             | 17-Aug          | 20-Sep    | 10-Oct    |           |         | partial winter die-off              |
| 2017             | 29-Aug          |           | 20-Oct    |           |         |                                     |
| Phacelia hastat  | a, silverl      | eaf phac  | elia      |           |         |                                     |
| 2013             | 17-May          |           | 30-Jul    | 22-May    | 3-Jul   | 30-Jul (0 in), 7-Aug, 19-Aug (8 in) |
| 2014             | 5-May           |           | 10-Jul    | 29-Apr    | 10-Jun  | 14-Jul                              |
| 2015 (1st year)  | 28-Apr          | 26-May    | 7-Aug     | 20-May    | 30-Jun  | 6-Aug                               |
| 2015 (3rd year)  | 28-Apr          | 26-May    | 7-Aug     | 29-Apr    | 10-Jun  | 7-Jul (0 in), 21-Jul (4, 8 in)      |
| 2016             | 28-Apr          | -         | 17-Jun    | 27-Apr    | 7-Jun   | 23-Jun                              |
| 2017             | 8-May           | 7-Jun     |           | 2-May     | 20-Jun  | 25-Jul                              |

Table 2. (Continued) Native wildflower flowering, irrigation, and seed harvest dates by species. Malheur Experiment Station, Oregon State University, Ontario, OR, 2013-2017.

|                 |        | Precipitatio    | on (inch)              | Growing degree-days (50-86°F) |
|-----------------|--------|-----------------|------------------------|-------------------------------|
| Year            | Spring | Winter + spring | Fall + winter + spring | Jan–June                      |
| 2013            | 0.9    | 2.4             | 5.3                    | 1319                          |
| 2014            | 1.7    | 5.1             | 8.1                    | 1333                          |
| 2015            | 3.2    | 5.9             | 10.4                   | 1610                          |
| 2016            | 2.2    | 5.0             | 10.1                   | 1458                          |
| 2017            | 4.0    | 9.7             | 12.7                   | 1196                          |
| 5-year average: | 2.4    | 5.6             | 9.3                    | 23-year average: 1207         |

Table 3. Precipitation and growing degree-days at the Malheur Experiment Station, Ontario, OR, 2013-2017.

|                           | -               | Irrigation rate |                     |               |                    |  |  |  |
|---------------------------|-----------------|-----------------|---------------------|---------------|--------------------|--|--|--|
| Species                   | Year            | 0 inches        |                     |               | LSD (0.05)         |  |  |  |
|                           | 0045            |                 |                     | /acre         |                    |  |  |  |
| Chaenactis douglasii      | 2015            | 132.1           | 137.6               | 183.3         | NS <sup>a</sup>    |  |  |  |
|                           | 2016            | 29.1            | 16.0                | 27.2          | NS                 |  |  |  |
|                           | 2017            | 707.1           | 711.1               | 627.3         | NS                 |  |  |  |
| <u> </u>                  | Average         | 289.5           | 288.2               | 279.2         | NS                 |  |  |  |
| Crepis intermedia         | 2015            | 75.5            | 75.8                | 153.7         | 58.1               |  |  |  |
|                           | 2016            | 91.9            | 113.1               | 85.6          | NS                 |  |  |  |
|                           | 2017            | 331.6           | 348.5               | 315.8         | NS                 |  |  |  |
|                           | Average         | 166.3           | 179.1               | 192.0         | NS                 |  |  |  |
| Cymopterus bipinnatus     | 2013            | 194.2           | 274.5               | 350.6         | NS                 |  |  |  |
|                           | 2014            | 1236.2          | 1934                | 2768.5        | 844.7              |  |  |  |
|                           | 2015            | 312.3           | 749.0               | 374.9         | 240.7              |  |  |  |
|                           | 2016            | 1501.4          | 2120.6              | 1799.0        | 546.6 <sup>b</sup> |  |  |  |
|                           | 2017            | 245.4           | 178.6               | 95.8          | NS<br>105 C        |  |  |  |
| Encolionaia nudioculia    | Average         | 732.1           | 1145.7              | 1035.3        | <u>195.6</u>       |  |  |  |
| Enceliopsis nudicaulis    | 2013            | 2.3             | 6.8                 | 5.9           | NS                 |  |  |  |
|                           | 2014            | 1.5             | 34.6                | 29.1          | 20.7               |  |  |  |
|                           | 2015            | 15.7            | 3.2                 | 4.4           | 7.3                |  |  |  |
|                           | 2016            | 10.5            | 47.6                | 45.9          | 34.9               |  |  |  |
|                           | 2017            | 105.0           | 43.2                | 25.0          | 59.6               |  |  |  |
| Heliomeris multiflora     | Average         | 27.0            | 27.6                | 22.1          | NS                 |  |  |  |
| Hellomeris multifiora     | 2013            | 28.7            | 57.6                | 96.9          | NS                 |  |  |  |
|                           | 2014            | 154.6           | 200.9               | 271.7         | 107.3 <sup>b</sup> |  |  |  |
|                           | 2015            | 81.7            | 115.6               | 188.2         | 58.2               |  |  |  |
|                           | 2016<br>2017    | 92.3            | 89.2                | 98.0          | NS                 |  |  |  |
|                           |                 | 87.8            | 75.9<br>106 7       | 89.9          | NS<br>27 F         |  |  |  |
| Inomonoia oggragata       | Average         | 89.0            | 106.7               | 148.9         | 27.5               |  |  |  |
| Ipomopsis aggregata       | 2014<br>2017    | 47.1<br>241.0   | 60.9<br>315.8       | 63.6<br>188.8 | 9.0<br>74 F        |  |  |  |
|                           |                 |                 |                     | 145.1         | 74.5               |  |  |  |
| Machaeranthera canescens  | Average         | 180.3           | <u>261.7</u><br>215 | 124.3         | 97.2               |  |  |  |
| Machaelanthela cariescens | 2013<br>2014    | 206.1<br>946.1  | 1210.2              | 124.3         | 73.6<br>NS         |  |  |  |
|                           | 2014            | 304.1           | 402.6               | 459.1         | NS                 |  |  |  |
|                           |                 | 163.0           | 402.8<br>240.3      | 233.3         | NS                 |  |  |  |
| Nicotiana attenuata       | Average         |                 |                     |               | 81.4               |  |  |  |
| Phacelia hastata          | 2016            | 49.4            | 151.0               | 95.8          |                    |  |  |  |
|                           | 2013<br>2014    | 35.3            | 102.7<br>305.7      | 91.2<br>366.4 | 35.7               |  |  |  |
| (planted fall 2012)       | 2014            | 87.7<br>78.8    | 305.7<br>79.3       | 65.0          | 130.3<br>NS        |  |  |  |
|                           |                 |                 |                     |               | 34.5               |  |  |  |
| Phacelia hastata          | Average         | 67.3            | 162.6               | 174.2         |                    |  |  |  |
|                           | 2015            | 0.0             | 21.4                | 50.4<br>83.1  | 13.7               |  |  |  |
| (planted fall 2014)       | 2016<br>2017    | 82.5<br>20.3    | 125.2<br>23.2       | 03.1<br>23.2  | 26.8<br>NS         |  |  |  |
|                           |                 | 20.3<br>34.3    | 23.2<br>61.7        | 23.2<br>52.2  | 20.7               |  |  |  |
| Phacelia linearis         | Average<br>2013 | 121.4           | 306.2               | 314.2         | 96                 |  |  |  |
|                           | 2013            | 121.4           | 306.2<br>172.9      | 127.2         | 96<br>NS           |  |  |  |
|                           | Average         | 126.7           | 239.5               | 220.7         | 87.2               |  |  |  |
| Thelypodium milleflorum   | 2014            | 200.5           | 239.5               | 205.6         | <br>NS             |  |  |  |
|                           | 2014<br>2016    | 200.5<br>121.9  |                     | 205.6<br>63.3 | NS                 |  |  |  |
|                           |                 | 121.9           | 110.0<br>224.6      | 63.3<br>152.6 | NS                 |  |  |  |
| Achillea millefolium      | Average<br>2017 | 59.2            | 213.3               | 220.4         | 99.8               |  |  |  |
| Actiliea milleronum       |                 | J3.Z            | 213.3               | 220.4         | 33.0               |  |  |  |

Table 4. Native wildflower seed yield (lb/acre) in response to season-long irrigation rate (inches). Malheur Experiment Station, Oregon State University, Ontario, OR, 2013-2017

<sup>a</sup>Not significant. <sup>b</sup>LSD (0.10).

Table 5. Regression analysis for native wildflower seed yield (y) in response to irrigation (x) (inches/season) using the equation  $y = a + b \cdot x + c \cdot x^2$ . For the quadratic equations, the amount of irrigation that resulted in maximum yield was calculated using the formula: -b/2c, where b is the linear parameter and c is the quadratic parameter. Malheur Experiment Station, Oregon State University, Ontario, OR, 2013-2017. Continued on next page.

| Species                | Year    | intercept | linear | quadratic | R <sup>2</sup> | Р               | Maximum<br>seed yield | Water applied<br>for maximum<br>yield |
|------------------------|---------|-----------|--------|-----------|----------------|-----------------|-----------------------|---------------------------------------|
|                        |         |           |        |           |                |                 | lb/acre               | inches/season                         |
| Chaenactis douglasii   | 2015    | 125.4     | 6.4    |           | 0.08           | NS <sup>a</sup> |                       |                                       |
| -                      | 2016    | 25.1      | -0.2   |           | 0.01           | NS              |                       |                                       |
|                        | 2017    | 707.1     | 12.0   | -2.7      | 0.09           | NS              |                       |                                       |
|                        | Average | 289.5     | 0.7    | -0.2      | 0.01           | NS              |                       |                                       |
| Crepis intermedia      | 2015    | 58.6      | 12.7   |           | 0.32           | 0.10            | 160                   | 8.0                                   |
|                        | 2016    | 91.9      | 11.4   | -1.5      | 0.25           | NS              |                       |                                       |
|                        | 2017    | 331.6     | 10.4   | -1.5      | 0.03           | NS              |                       |                                       |
|                        | Average | 166.3     | 3.2    |           | 0.05           | NS              |                       |                                       |
| Cymopterus bipinnatus  | 2013    | 194.9     | 19.6   |           | 0.07           | NS              |                       |                                       |
|                        | 2014    | 1214.6    | 190.6  |           | 0.41           | 0.05            | 2739                  | 8.0                                   |
|                        | 2015    | 312.3     | 210.5  | -25.3     | 0.46           | 0.10            | 750                   | 4.2                                   |
|                        | 2016    | 1501.4    | 272.4  | -29.4     | 0.34           | NS              |                       |                                       |
|                        | 2017    | 308.1     | -24.4  |           | 0.38           | 0.10            | 308                   | 0.0                                   |
|                        | Average | 732.1     | 168.9  | -16.4     | 0.51           | 0.05            | 1168                  | 5.2                                   |
| Enceliopsis nudicaulis | 2013    | 3.1       | 0.4    |           | 0.16           | NS              |                       |                                       |
|                        | 2014    | 1.5       | 13.1   | -1.2      | 0.6            | 0.05            | 37.1                  | 5.4                                   |
|                        | 2015    | 13.4      | -1.4   |           | 0.29           | 0.10            | 13.4                  | 0.0                                   |
|                        | 2016    | 10.5      | 14.1   | -1.2      | 0.57           | 0.05            | 51.6                  | 5.8                                   |
|                        | 2017    | 99.1      | -10.0  |           | 0.44           | 0.05            | 99.1                  | 0.0                                   |
|                        | Average | 27.0      | 0.9    | -0.2      | 0.04           | NS              |                       |                                       |
| Heliomeris multiflora  | 2013    | 27        | 8.5    |           | 0.38           | 0.05            | 95                    | 8                                     |
|                        | 2014    | 150.5     | 14.6   |           | 0.27           | 0.10            | 267                   | 8                                     |
|                        | 2015    | 75.2      | 13.3   |           | 0.48           | 0.05            | 182                   | 8                                     |
|                        | 2016    | 90.7      | 0.7    |           | 0.01           | NS              |                       |                                       |
|                        | 2017    | 83.5      | 0.3    |           | 0.01           | NS              |                       |                                       |
|                        | Average | 84.9      | 7.5    |           | 0.49           | 0.05            | 145                   | 8                                     |

<sup>a</sup>Not significant. There was no statistically significant trend in seed yield in response to amount of irrigation.

Table 5. (Continued) Regression analysis for native wildflower seed yield (y) in response to irrigation (x) (inches/season) using the equation  $y = a + bx + cx^2$ . For the quadratic equations, the amount of irrigation that resulted in maximum yield was calculated using the formula: -b/2c, where b is the linear parameter and c is the quadratic parameter. Malheur Experiment Station, Oregon State University, Ontario, OR, 2013-2017.

| Species                  | Year    | intercept | linear | quadratic | R <sup>2</sup> | Ρ               | Maximum<br>seed yield | Water applied<br>for maximum<br>yield |
|--------------------------|---------|-----------|--------|-----------|----------------|-----------------|-----------------------|---------------------------------------|
|                          |         |           |        |           |                |                 | lb/acre               | inches/season                         |
| lpomopsis aggregata      | 2014    | 48.5      | 2.1    |           | 0.23           | NS <sup>a</sup> |                       |                                       |
|                          | 2017    | 241.0     | 43.9   | -6.3      | 0.52           | 0.05            | 317.5                 | 3.5                                   |
|                          | Average | 180.3     | 45.1   | -6.2      | 0.24           | NS              |                       |                                       |
| Machaeranthera canescens | 2013    | 206.1     | 14.7   | -3.1      | 0.54           | 0.05            | 224                   | 2.4                                   |
|                          | 2014    | 946.1     | 122    | -14       | 0.13           | NS              |                       |                                       |
|                          | 2015    | 311.1     | 19.4   |           | 0.02           | NS              |                       |                                       |
|                          | Average | 163.0     | 29.9   | -2.6      | 0.03           | NS              |                       |                                       |
| Nicotiana attenuata      | 2016    | 49.4      | 45.0   | -4.9      | 0.50           | 0.05            | 153                   | 4.6                                   |
| Phacelia hastata         | 2013    | 35.3      | 26.7   | -2.5      | 0.66           | 0.01            | 107                   | 5.3                                   |
| (planted fall 2012)      | 2014    | 87.7      | 74.2   | -4.9      | 0.76           | 0.01            | 369                   | 7.6                                   |
|                          | 2015    | 78.8      | 2.0    | -0.5      | 0.04           | NS              |                       |                                       |
|                          | Average | 67.3      | 34.3   | -2.6      | 0.9            | 0.001           | 180                   | 6.6                                   |
| Phacelia hastata         | 2015    | -1.3      | 6.3    |           | 0.88           | 0.001           | 49                    | 8                                     |
| (planted fall 2014)      | 2016    | 82.5      | 21.3   | -2.6      | 0.72           | 0.01            | 125.2                 | 4.0                                   |
|                          | 2017    | 20.3      | 1.1    | -0.1      | 0.04           | NS              |                       |                                       |
|                          | Average | 34.3      | 11.5   | -1.2      | 0.56           | 0.05            | 62.8                  | 5.0                                   |
| Phacelia linearis        | 2013    | 121.4     | 68.3   | -5.5      | 0.69           | 0.01            | 333                   | 6.2                                   |
|                          | 2014    | 131.9     | 21.1   | -2.7      | 0.11           | NS              |                       |                                       |
|                          | Average | 126.7     | 44.7   | -4.1      | 0.48           | 0.1             | 249                   | 5.5                                   |
| Thelypodium milleflorum  | 2014    | 200.5     | 22.2   | -2.7      | 0.12           | NS              |                       |                                       |
|                          | 2016    | 121.9     | 1.4    | -1.1      | 0.35           | NS              |                       |                                       |
|                          | Average | 171.7     | 28.8   | -3.9      | 0.20           | NS              |                       |                                       |
| Achillea millefolium     | 2017    | 59.2      | 56.9   | -4.6      | 0.75           | 0.01            | 235                   | 6.2                                   |

<sup>a</sup>Not significant. There was no statistically significant trend in seed yield in response to amount of irrigation.

# NATIVE BEEPLANT SEED PRODUCTION IN RESPONSE TO IRRIGATION IN A SEMI-ARID ENVIRONMENT

Clinton C. Shock, Erik B. G. Feibert, Alicia Rivera, and Lamont D. Saunders, Malheur Experiment Station, Oregon State University, Ontario, OR, 2017

Nancy Shaw and Francis Kilkenny, U.S. Forest Service, Rocky Mountain Research Station, Boise, ID

### Summary

Beeplants (*Cleome* spp.) are annual native range species in the Intermountain West. Beeplant is visited by many classes of pollinators and are thought to be supportive of a wide range of pollinators. Beeplant seed is desired for rangeland restoration activities, but little cultural practice information is known for its seed production. The seed yield response of *Cleome serrulata* (Rocky Mountain beeplant) and *C. lutea* (yellow spiderflower or yellow beeplant) to irrigation was studied. Four biweekly irrigations applying either 0, 1, or 2 inches of water (total of 0, 4 inches, or 8 inches/season) were evaluated over multiple years. Beeplant stands were established through fall plantings each year and were maintained without weed competition. *Cleome serrulata* seed yield was maximized by 8 inches of water applied per season in 2011, but did not respond to irrigation in the following years. *Cleome lutea* seed yield was highest with no irrigation in 2016. *Cleome lutea* seed yield did not respond to irrigation in 2017. Flea beetle control is essential for seed production when flea beetles occur.

### Introduction

Native wildflower seed is needed to restore rangelands of the Intermountain West. Commercial seed production is necessary to provide the quantity of seed needed for restoration efforts. A major limitation to economically viable commercial production of native wildflower (forb) seed is stable and consistent seed productivity over years.

In natural rangelands, the annual variation in spring rainfall and soil moisture results in highly unpredictable water stress at flowering, seed set, and seed development, which for other seed crops is known to compromise seed yield and quality.

Native wildflower plants are not well adapted to croplands; they do not compete well with crop weeds in cultivated fields, which could also limit their seed production. Both sprinkler and furrow irrigation could provide supplemental water for seed production, but these irrigation systems risk further encouraging weeds. Also, sprinkler and furrow irrigation can lead to the loss of plant stand and seed production due to fungal pathogens. By burying drip tapes at 12-inch depth and avoiding wetting the soil surface, we designed experiments to assure flowering and seed set without undue encouragement of weeds or opportunistic diseases. The trials

reported here tested the effects of three low rates of irrigation on the seed yield of *Cleome serrulata* (Rocky Mountain beeplant) and *C. lutea* (yellow beeplant).

### **Materials and Methods**

### Plant establishment

Each species was planted in separate strips containing 4 rows 30 inches apart (a 10-ft-wide strip) and about 450 ft long on Nyssa silt loam at the Malheur Experiment Station, Ontario, Oregon. The soil had a pH of 8.3 and 1.1% organic matter. In October 2010, 2 drip tapes 5 ft apart (T-Tape TSX 515-16-340) were buried at 12-inch depth to irrigate the four rows in the plot. Each drip tape irrigated two rows of plants. The flow rate for the drip tape was 0.34 gal/min/100 ft at 8 psi with emitters spaced 16 inches apart, resulting in a water application rate of 0.066 inch/hour.

Starting in 2010, seed of *Cleome serrulata* was planted each year in 30-inch rows using a custom-made small-plot grain drill with disc openers in mid-November. All seed was planted on the soil surface at 20-30 seeds/ft of row in the same location each year. After planting, sawdust was applied in a narrow band over the seed row at 0.26 oz/ft of row (558 lb/acre). Following planting and sawdust application, the beds were covered with row cover. The row cover (N-sulate, DeWitt Co., Inc., Sikeston, MO) covered four rows (two beds) and was applied with a mechanical plastic mulch layer. Starting in 2011, seed of *C. lutea* was also planted each year. After the newly planted wildflowers had emerged, the row cover was removed in April each year.

Starting in 2013, each spring after the row cover was removed, bird netting was placed over the *Cleome serrulata* and *C. lutea* plots to protect seedlings from bird feeding. The bird netting was placed over No. 9 galvanized wire hoops.

### Flea beetle control

Flea beetles were observed feeding on leaves of *Cleome serrulata* and *C. lutea* in April of 2012. On April 29, 2012, all plots of *C. serrulata* and *C. lutea* were sprayed with Capture<sup>®</sup> at 5 oz/acre to control flea beetles. On June 11, 2012, *C. serrulata* was again sprayed with Capture at 5 oz/acre to control a reinfestation of flea beetles.

Flea beetle feeding occurred earlier in 2013 than in 2012. Upon removal of the row cover in March 2013, the flea beetle damage for both species at seedling emergence was extensive and resulted in full stand loss. Flea beetles were not observed on either species in 2014.

On March 20, 2015, after removal of the row cover, all plots of *C. serrulata* and *C. lutea* were sprayed with Capture at 5 oz/acre to control flea beetles. On April 3, 2015, all plots of *C. serrulata* and *C. lutea* were sprayed with Entrust<sup>®</sup> at 2 oz/acre (0.03 lb ai/acre) to control flea beetles.

On March 18, 2016, after removal of the row cover, all plots of *C. serrulata* and *C. lutea* were sprayed with Radiant<sup>®</sup> at 8 oz/acre and on April 6, all plots were sprayed with Capture at 5 oz/acre to control flea beetles. On June 30, all plots of *C. serrulata* were sprayed with Sivanto<sup>®</sup> at 14 oz/acre to control flea beetles.

The following insecticides were applied to both species for flea beetle control in 2017: April 11, Radiant at 8 oz/acre; May 4, Capture at 5 oz/acre; July 14, Capture at 5 oz/acre and Rimon<sup>®</sup> at 12 oz/acre; July 25 and August 4, Rimon at 12 oz/acre.

Weeds were controlled by hand weeding as necessary.

### Irrigation for seed production

In April 2011, each strip of each wildflower species was divided into 12 30-ft plots. Each plot contained four rows of each species. The experimental design for each species was a randomized complete block with four replicates. The three treatments were a nonirrigated check, 1 inch of water applied per irrigation, and 2 inches of water applied per irrigation. Each treatment received 4 irrigations that were applied approximately every 2 weeks starting with bud formation and flowering. The amount of water applied to each treatment was calculated by the length of time necessary to deliver 1 or 2 inches through the drip system. Irrigations were regulated with a controller and solenoid valves.

The drip-irrigation system was designed to allow separate irrigation of each species due to different timings of flowering and seed formation. Flowering, irrigation, and harvest dates were recorded (Table 1). In 2014, after the four bi-weekly irrigations ended, *Cleome serrulata* and *C. lutea* received three additional bi-weekly irrigations starting on August 12 in an attempt to extend the flowering and seed production period. On August 12, 50 lb nitrogen/acre, 30 lb phosphorus/acre, and 0.2 lb iron/acre were applied through the drip tape to all *Cleome* plots.

### Flowering and harvest

The two species have a long flowering and seed-set period (Table 1), making mechanical harvesting difficult. Mature seed pods were harvested manually 2 to 4 times each year.

|                  |      | Flowering dates |              |             | Irrigatio | n dates |                  |
|------------------|------|-----------------|--------------|-------------|-----------|---------|------------------|
| Species          | Year | Start           | Peak         | End         | Start     | End     | Harvest          |
| Cleome serrulata | 2011 | 25-Jun          | 30-Jul       | 15-Aug      | 21-Jun    | 2-Aug   | 26-Sep           |
|                  | 2012 | 12-Jun          | 30-Jun       | 30-Jul      | 13-Jun    | 25-Jul  | 24-Jul to 30-Aug |
|                  | 2013 | Full stan       | d loss       |             |           |         |                  |
|                  | 2014 | 4-Jun           | 24-Jun       | 22-Jul      | 20-May    | 1-Jul   | 11-Jul to 30-Jul |
|                  | 2015 | 20-May          | 24-Jun       | 15-Sep      | 20-May    | 30-Jun  | 1-Jul to 15-Aug  |
|                  | 2016 | 23-May          |              | 20-Sep      | 16-May    | 29-Jun  | 28-Jun to 15-Aug |
|                  | 2017 | 7-Jun           |              | 29-Sep      | 6-Jun     | 15-Sep  | 31-Jul, 4-Oct    |
| Cleome lutea     | 2012 | 16-May          | 15-Jun       | 30-Jul      | 2-May     | 13-Jun  | 12-Jul to 30-Aug |
|                  | 2013 | Full stan       | d loss, flea | a beetle da | mage      |         |                  |
|                  | 2014 | 29-Apr          | 4-Jun        | 22-Jul      | 23-Apr    | 3-Jun   | 23-Jun to 30-Jul |
|                  | 2015 | 8-Apr           | 13-May       | 6-Jul       | 17-Apr    | 27-May  | 4-Jun to 30-Jul  |
|                  | 2016 | 13-Apr          | 13-May       | 25-Jul      | 18-Apr    | 31-May  | 14 Jun to 22 Jul |
|                  | 2017 | 5-May           |              | 10-Aug      |           |         |                  |

Table 1. *Cleome serrulata* and *C. lutea* flowering, irrigation, and seed harvest dates by species. Malheur Experiment Station, Oregon State University, Ontario, OR.

#### **Statistical analysis**

Seed yield means were compared by analysis of variance and by linear and quadratic regression. Seed yield (y) in response to irrigation or irrigation plus precipitation (x, inches/season) was estimated by the equation  $y = a + b \cdot x + c \cdot x^2$ . For the quadratic equations, the amount of irrigation (x') that resulted in maximum yield (y') was calculated using the formula x' = -b/2c, where a is the intercept, b is the linear parameter, and c is the quadratic parameter. For the linear regressions, the seed yield responses to irrigation were based on the actual greatest amount of water applied plus precipitation and the measured average seed yield.

### **Results and Discussion**

Spring precipitation in 2012 and 2016 was close to the average of 2.9 inches (Table 2). Spring precipitation in 2013 and 2014 was lower than the average and spring precipitation in 2011 and 2017 was higher than the average. The total growing degree-days (50-86°F) in June and July in 2012-2017 were higher than average (Table 2) and were associated with early flowering and seed harvest.

#### Cleome serrulata, Rocky Mountain beeplant

In 2011, seed yields increased with increasing irrigation up to the highest tested of 8 inches (Tables 3 and 4). Seed yields did not respond to irrigation the other years. There was no plant stand in 2013 due to early, severe flea beetle damage. The additional irrigations starting on August 12, 2014 did result in an extension/resumption of flowering, but seed harvested in mid-October was not mature. Flowering in 2015-2017 continued through the end of September, but as in 2014, seed set in September of 2015 and 2016 did not mature. Seed set in September 2017 matured and was harvested. Seed set and seed production were extremely poor in 2016. Continued flea beetle infestations could have caused the poor seed set. A more intensive control program than the three insecticide applications in 2016 might have been necessary. Birds were also observed feeding on seed pods and might also have been responsible for the low seed yields. Five insecticide applications were made in 2017. Seed yields in 2017 were higher than in 2016 and similar to 2014 and 2015. The year 2011 that had the highest seed yield also had the lowest June and July growing degree-days, suggesting the possibility of a negative effect of higher temperatures on sustained flowering and seed set.

#### Cleome lutea, yellow spiderflower or yellow beeplant

Seed yields did not respond to irrigation in 2012, 2014, or 2015 (Tables 3 and 4). In 2016 seed yields were highest with no irrigation. There was no plant stand in 2013. Early attention to flea beetle control is essential for *Cleome lutea* seed production. The additional irrigations starting on August 12, 2014 did not result in an extension or resumption of flowering. In 2017, emergence was poor and uneven and did not allow an evaluation of irrigation responses.

### Acknowledgements

This project was funded by the U.S. Forest Service, U.S. Bureau of Land Management, Oregon State University, Malheur County Education Service District, and supported by Formula Grant

nos. 2017-31100-06041 and 2017-31200-06041 from the USDA National Institute of Food and Agriculture.

|                  |        | Precipitatio   | on (inch)              | Growing degree-days (50-86°F) |  |  |
|------------------|--------|----------------|------------------------|-------------------------------|--|--|
| Year             | Spring | Winter +spring | Fall + winter + spring | June + July                   |  |  |
| 2011             | 4.8    | 9.3            | 14.5                   | 1099                          |  |  |
| 2012             | 2.6    | 6.1            | 8.4                    | 1235                          |  |  |
| 2013             | 0.9    | 2.4            | 5.3                    | 1294                          |  |  |
| 2014             | 1.7    | 5.1            | 8.1                    | 1323                          |  |  |
| 2015             | 3.2    | 5.9            | 10.4                   | 1390                          |  |  |
| 2016             | 2.2    | 5.0            | 10.1                   | 1256                          |  |  |
| 2017             | 4.0    | 9.7            | 12.7                   | 1300                          |  |  |
| 12-year average: | 2.9    | 6.3            | 9.8                    | 23-year average: 1213         |  |  |

Table 2. Early season precipitation and growing degree-days at the Malheur Experiment Station, Oregon State University, Ontario, OR, 2011-2017.

Table 3. *Cleome serrulata* and *C. lutea* seed yield (lb/acre) in response to irrigation rate (inches/season). Malheur Experiment Station, Oregon State University, Ontario, OR, 2011-2017.

|                  |         | Irrigation rate |          |          |                 |  |  |
|------------------|---------|-----------------|----------|----------|-----------------|--|--|
|                  |         |                 |          |          |                 |  |  |
| Species          | Year    | 0 inches        | 4 inches | 8 inches | LSD (0.05)      |  |  |
| Cleome serrulata | 2011    | 446.5           | 499.3    | 593.6    | 100.9ª          |  |  |
|                  | 2012    | 184.3           | 162.9    | 194.7    | NS <sup>b</sup> |  |  |
|                  | 2013    |                 | No stand |          |                 |  |  |
|                  | 2014    | 66.3            | 80       | 91.3     | NS              |  |  |
|                  | 2015    | 54.0            | 41.0     | 37.9     | NS              |  |  |
|                  | 2016    | 0.8             | 2.1      | 1.6      | NS              |  |  |
|                  | 2017    | 46.5            | 52.3     | 34.8     | NS              |  |  |
|                  | Average | 114.5           | 120.0    | 136.4    | NS              |  |  |
|                  |         |                 |          |          |                 |  |  |
| Cleome lutea     | 2012    | 111.7           | 83.7     | 111.4    | NS              |  |  |
|                  | 2013    | No s            | stand    |          |                 |  |  |
|                  | 2014    | 207.1           | 221.7    | 181.7    | NS              |  |  |
|                  | 2015    | 136.9           | 80.5     | 113.0    | NS              |  |  |
|                  | 2016    | 65.6            | 48.9     | 35.0     | 18.7            |  |  |
|                  | 2017    | Poor stand      |          |          |                 |  |  |
|                  | Average | 130.3           | 108.7    | 110.3    | NS              |  |  |

<sup>a</sup>LSD (0.10).

<sup>b</sup>Not significant: There was no statistically significant trend in seed yield in response to the amount of irrigation.

Table 4. Regression analysis for *Cleome serrulata* and *C. lutea* seed yield (y) in response to irrigation (x) (inches/season) using the equation  $y = a + b \cdot x + c \cdot x^2$ . Malheur Experiment Station, Oregon State University, Ontario, OR, 2011-2017.

| -           |           | -      |           |       | -               |                  |                                    |
|-------------|-----------|--------|-----------|-------|-----------------|------------------|------------------------------------|
| Cleome s    | serrulata |        |           |       |                 |                  |                                    |
| Year        | intercept | linear | quadratic | $R^2$ | Р               | Maximum<br>yield | Water applied for maximum<br>yield |
|             |           |        |           |       |                 | lb/acre          | inches/season                      |
| 2011        | 439.6     | 18.4   |           | 0.35  | 0.05            | 586.7            | 8                                  |
| 2012        | 175.4     | 1.3    |           | 0.01  | NS <sup>a</sup> |                  |                                    |
| 2014        | 66.7      | 3.1    |           | 0.16  | NS              |                  |                                    |
| 2015        | 52.4      | -2.0   |           | 0.08  | NS              |                  |                                    |
| 2016        | 0.8       | 0.6    | -0.1      | 0.19  | NS              |                  |                                    |
| 2017        | 46.5      | 4.4    | -0.7      | 0.11  | NS              |                  |                                    |
| Average     | 112.6     | 2.7    |           | 0.32  | 0.1             | 134.6            | 8                                  |
| Cleome I    | utea      |        |           |       |                 |                  |                                    |
| Year        | intercept | linear | quadratic | $R^2$ | Ρ               | Maximum<br>yield | Water applied for maximum<br>yield |
|             |           |        |           |       |                 | lb/acre          | inches/season                      |
| 2012        | 102.4     | -0.031 |           | 0.01  | NS              |                  |                                    |
| 2014        | 207.1     | 10.4   | -1.7      | 0.2   | NS              |                  |                                    |
| 2015        | 122.0     | -3.0   |           | 0.08  | NS              |                  |                                    |
| 2016        | 65.2      | -3.8   |           | 0.45  | 0.05            | 65.2             | 0.0                                |
| Average     | 126.5     | -2.5   |           | 0.04  | NS              |                  |                                    |
| Not signifi | cant      |        |           |       |                 |                  |                                    |

<sup>a</sup>Not significant.

# IRRIGATION REQUIREMENTS FOR NATIVE BUCKWHEAT SEED PRODUCTION IN A SEMI-ARID ENVIRONMENT

Clinton C. Shock, Erik B. G. Feibert, Alicia Rivera, and Lamont D. Saunders, Malheur Experiment Station, Oregon State University, Ontario, OR, 2017

Nancy Shaw and Francis Kilkenny, U.S. Forest Service, Rocky Mountain Research Station, Boise, ID

### Summary

Native buckwheats (*Eriogonum* spp.) are important perennials in the Intermountain West. Buckwheat seed is desired for rangeland restoration activities, but little cultural practice information is available for seed production of native buckwheat. The seed yield of *Eriogonum umbellatum* and *E. heracleoides* was evaluated over multiple years in response to four biweekly irrigations applying either 0, 1, or 2 inches of water (total of 0, 4, or 8 inches/season). Seed yield of *E. umbellatum* responded to irrigation plus spring precipitation in 10 of the 11 years, with 5 to 11 inches of water applied plus spring precipitation maximizing yields, depending on year. Averaged over 11 years, seed yield of *E. umbellatum* showed a quadratic response to irrigation rate plus spring precipitation and was estimated to be maximized at 232 lb/acre/year by irrigation plus spring precipitation of 9.4 inches. Over six seasons, seed yield of *E. heracleoides* responded to irrigation only in 2013, a dry year when seed yield was maximized by 4.9 inches of applied water. Averaged over 6 years, seed yield of *E. heracleoides* showed a quadratic response to irrigation rate; the highest yield was achieved with 5 inches of water applied.

### Introduction

Native wildflower seed is needed to restore rangelands of the Intermountain West. Commercial seed production is necessary to provide the quantity of seed needed for restoration efforts. A major limitation to economically viable commercial production of native wildflower (forb) seed is stable and consistent seed productivity over years.

In native rangelands, the natural variations in spring rainfall and soil moisture result in highly unpredictable water stress at flowering, seed set, and seed development, which for other seed crops is known to compromise seed yield and quality.

Native wildflower plants are not well adapted to croplands because they often are not competitive with crop weeds in cultivated fields, which could limit wildflower seed production. Both sprinkler and furrow irrigation could provide supplemental water for seed production, but these irrigation systems risk further encouraging weeds. Also, sprinkler and furrow irrigation can lead to the loss of plant stand and seed production due to fungal pathogens. By burying drip

tapes at 12-inch depth and avoiding wetting the soil surface, we designed experiments to assure flowering and seed set without undue encouragement of weeds or opportunistic diseases. The trials reported here tested the effects of three low rates of irrigation on the seed yield of *Eriogonum umbellatum* (sulphur-flower buckwheat) and *E. heracleoides* (parsnipflower buckwheat).

### **Materials and Methods**

### Plant establishment

Seed of *Eriogonum umbellatum* was received in late November in 2004 from the Rocky Mountain Research Station (Boise, ID). The plan was to plant the seed in the fall of 2004, but due to excessive rainfall in October, the ground preparation was not completed and planting was postponed to early 2005. To try to ensure germination, we submitted the seed to cold stratification. The seed was soaked overnight in distilled water on January 26, 2005, after which the water was drained and the seed soaked for 20 min in a 10% by volume solution of 13% bleach in distilled water. The water was drained and the seed was placed in thin layers in plastic containers. The plastic containers had lids with holes drilled in them to allow air movement. These containers were placed in a cooler set at approximately 34°F. Every few days the seed was mixed and, if necessary, distilled water added to maintain seed moisture.

In late February 2005, drip tape (T-Tape TSX 515-16-340) was buried at 12-inch depth between two 30-inch rows of a Nyssa silt loam with a pH of 8.3 and 1.1% organic matter. The drip tape was buried in alternating inter-row spaces (5 ft apart). The flow rate for the drip tape was 0.34 gal/min/100 ft at 8 psi with emitters spaced 16 inches apart, resulting in a water application rate of 0.066 inch/hour.

On March 3, 2005, seed of *E. umbellatum* was planted in 30-inch rows using a custom-made small-plot grain drill with disc openers. All seed was planted at 20-30 seeds/ft of row at 0.25-inch depth. The trial was irrigated with a minisprinkler system (R10 Turbo Rotator, Nelson Irrigation Corp., Walla Walla, WA) from March 4 to April 29 for even stand establishment. Risers were spaced 25 ft apart along the flexible polyethylene hose laterals that were spaced 30 ft apart and the water application rate was 0.10 inch/hour. A total of 1.72 inches of water was applied with the minisprinkler system. *Eriogonum umbellatum* started emerging on March 29. Starting June 24, the field was irrigated with the drip system. A total of 3.73 inches of water was applied with the drip system from June 24 to July 7. The field was not irrigated further in 2005.

Plant stands for *E. umbellatum* were uneven, and it did not flower in 2005. In early October 2005, more seed was received from the Rocky Mountain Research Station for replanting. The empty lengths of row were replanted by hand. The seed was replanted on October 26, 2005. In the spring of 2006, the plant stands were excellent.

In early November 2009, drip tape was buried as described above in preparation for planting *Eriogonum heracleoides*. On November 25, 2009 seed of *E. heracleoides* was planted in 30-inch rows using a custom-made small-plot grain drill with disc openers. All seed was planted on the soil surface at 20-30 seeds/ft of row. After planting, sawdust was applied in a narrow band over the seed row at 0.26 oz/ft of row (558 lb/acre). Following planting and sawdust application, the beds were covered with row cover. The row cover (N-sulate, DeWitt Co., Inc., Sikeston, MO)

covered four rows (two beds) and was applied with a mechanical plastic mulch layer. The field was irrigated for 24 hours on December 2, 2009 due to very dry soil conditions.

After *E. heracleoides* emerged, the row cover was removed in April 2010. The irrigation treatments were not applied to *E. heracleoides* in 2010, and stands were not adequate for yield estimates. Gaps in the rows were replanted by hand on November 5, 2010. The replanted seed was covered with a thin layer of a mixture of 50% sawdust and 50% hydro-seeding mulch (Hydrostraw LLC, Manteno, IL) by volume. The mulch mixture was sprayed with water using a backpack sprayer.

### Irrigation for seed production

The planted strips were divided into plots 30 ft long (*Eriogonum umbellatum* in April 2006 and *E. heracleoides* in April 2011). Each plot contained four rows of each species. The experimental designs were randomized complete blocks with four replicates. The three treatments were a nonirrigated check, 1 inch of water applied per irrigation, and 2 inches of water applied per irrigation. Each treatment received 4 irrigations that were applied approximately every 2 weeks starting at bud formation and flowering. The amount of water applied to each treatment was calculated by the length of time necessary to deliver 1 or 2 inches through the drip system. Irrigations were regulated with a controller and solenoid valves. Irrigation dates are found in Table 1.

### Flowering, harvesting, and seed cleaning

Flowering dates for each species were recorded annually (Table 1). The *Eriogonum umbellatum* plots produced seed in 2006, in part because they had emerged in the spring of 2005. *Eriogonum heracleoides* started flowering in 2011. Each year, the middle two rows of each plot were harvested when seed of each species was mature (Table 1). Seed was harvested with a small-plot combine every year, except 2013 and 2016 when seed was harvested manually. *Eriogonum umbellatum* and *E. heracleoides* seeds did not separate from the flowering structures in the combine. In 2006, the unthreshed seed of *E. umbellatum* was taken to the U.S. Forest Service Lucky Peak Nursery (Boise, ID) and run through a dewinger to separate seed. The seed was further cleaned in a small clipper seed cleaner. In subsequent years, the unthreshed seed of both species was run through a meat grinder to separate the seed. The seed was further cleaned in a small clipper seed cleaner.

### **Cultural practices**

On October 27, 2006, 50 lb phosphorus/acre and 2 lb zinc/acre were injected through the drip tape to all plots of *Eriogonum umbellatum*. On November 17, 2006, November 9, 2007, April 15, 2008, December 4, 2009, and November 17, 2010, all plots of *E. umbellatum* had Prowl<sup>®</sup> at 1 lb ai/acre broadcast on the soil surface for weed control. On March 18, 2009, Prowl at 1 lb ai/acre and Volunteer<sup>®</sup> at 8 oz/acre were broadcast on all *E. umbellatum* plots for weed control. On April 3, 2013, Select Max<sup>®</sup> at 32 oz/acre was broadcast for grass weed control on all plots of *E. umbellatum*. On November 9, 2011 and November 7, 2012, Prowl at 1 lb ai/acre was broadcast on all plots of both species. On February 26, 2014, Prowl at 1 lb ai/acre and Select Max at 32 oz/acre were broadcast on all plots of both species. On March 13, 2015, Prowl at 1 lb ai/acre and Poast<sup>®</sup> at 30 oz/acre were broadcast on all plots of *E. umbellatum*. On October 27, 2016, Prowl at 1 lb ai/acre was broadcast on all plots of both species. On April 21, 2017, Prowl at 1 lb ai/acre

ai/acre and Poast<sup>®</sup> at 30 oz/acre were broadcast on all plots of *E. heracleoides*. In addition to herbicides, hand weeding was used as necessary to control weeds.

### Statistical analysis

Seed yield means were compared by analysis of variance and by linear and quadratic regression. Seed yield (y) in response to irrigation or irrigation plus precipitation (x, inches/season) was estimated by the equation  $y = a + b \cdot x + c \cdot x^2$ . For the quadratic equations, the amount of irrigation (x') that resulted in maximum yield (y') was calculated using the formula x' = -b/2c, where a is the intercept, b is the linear parameter, and c is the quadratic parameter. For the linear regressions, the seed yield responses to irrigation were based on the actual greatest amount of water applied plus precipitation and the measured average seed yield.

For each species, seed yields for each year were regressed separately against 1) applied water; 2) applied water plus spring precipitation; 3) applied water plus winter and spring precipitation; and 4) applied water plus fall, winter, and spring precipitation. Winter and spring precipitation occurred in the same year that yield was determined; fall precipitation occurred the prior year.

Adding the seasonal precipitation to the irrigation response equation has the potential to provide a closer estimate of the amount of water required for maximum seed yields of the *Eriogonum* species. Regressions of seed yield each year were calculated on all the sequential seasonal amounts of precipitation and irrigation, but only some of the regressions are reported below. The period of precipitation plus applied water that had the lowest standard deviation for irrigation plus precipitation over the years was chosen as the most reliable independent variable for predicting seed yield.

## **Results and Discussion**

Spring precipitation in 2009, 2012, and 2014 was close to the average of 5.8 inches (Table 2). Spring precipitation in 2009, 2010, 2011, and 2017 was higher than the average and spring precipitation in 2007, 2008, 2013, and 2014 was lower than the average of 2.9 inches. The accumulated growing degree-days (50-86°F) from January through June in 2007, and 2013-2016 were higher than average (Table 2). Both buckwheats flowered and were harvested earlier in 2013-2016 than in 2011-2012 (Table 1), consistent with more early season growing degree-days (Table 2).

### Seed yields

### Eriogonum umbellatum, sulfur-flower buckwheat

Seed yield of *E. umbellatum* exhibited a positive linear response to irrigation rate in 2006 (Tables 3 and 4). In 2007-2009 and 2012-2016, seed yield showed a quadratic response to irrigation rate. In 2010 and 2017, there was no significant difference in yield between the irrigation treatments. In 2011, seed yield was highest with no irrigation. The 2010 and 2011 seasons had unusually cool and wet weather (Table 2). The accumulated spring plus winter precipitation in 2010, 2011, and 2017 was higher than average. The negative effect of irrigation on seed yield in 2011 might have been compounded by the presence of rust. Irrigation could have exacerbated the rust and resulted in lower yields.

Averaged over 12 years, seed yield showed a quadratic response to irrigation rate plus spring precipitation and was estimated to be maximized at 221 lb/acre/year by irrigation plus spring precipitation of 9.4 inches.

#### Eriogonum heracleoides, parsnipflower buckwheat

For *E. heracleoides*, there was only one year where a yield response to irrigation existed, so yield responses only to water applied are reported.

In 2013, seed yields showed a quadratic response to irrigation with a maximum seed yield at 4.9 inches of water applied. Seed yields did not respond to irrigation in 2011, 2012, and 2014-2017 (Tables 3 and 4). Averaged over 7 years, seed yield of *E. heracleoides* showed a quadratic response to irrigation rate with the highest yield achieved with 5 inches of water applied.

### Conclusions

The total irrigation requirements for these arid-land species were low and varied by species. *Eriogonum heracleoides* responded to irrigation only in 2013, a drier than average year. In the other years, natural rainfall was sufficient to maximize seed production in the absence of weed competition. Seed yield of *E. umbellatum* responded to irrigation plus spring precipitation in 10 of the 12 years, with irrigation plus spring precipitation of 9.4 inches maximizing yields. Buckwheat flowering and harvests have been earlier in 2013-2016 than in previous years, probably due to warmer weather.

## Acknowledgements

This project was funded by the U.S. Forest Service Great Basin Native Plant Project, U.S. Bureau of Land Management, Oregon State University, Malheur County Education Service District, and supported by Formula Grant nos. 2017-31100-06041 and 2017-31200-06041 from the USDA National Institute of Food and Agriculture.

Table 1. *Eriogonum umbellatum* and *E. heracleoides* flowering, irrigation, and seed harvest dates by species in 2006-2017, Malheur Experiment Station, Oregon State University, Ontario, OR.

|                        | -    | Flowering dates |        |        | Irrigatio | Irrigation dates |         |
|------------------------|------|-----------------|--------|--------|-----------|------------------|---------|
| Species                | Year | Start           | Peak   | End    | Start     | End              | Harvest |
| Eriogonum umbellatum   | 2006 | 19-May          |        | 20-Jul | 19-May    | 30-Jun           | 3-Aug   |
|                        | 2007 | 25-May          |        | 25-Jul | 2-May     | 24-Jun           | 31-Jul  |
|                        | 2008 | 5-Jun           | 19-Jun | 20-Jul | 15-May    | 24-Jun           | 24-Jul  |
|                        | 2009 | 31-May          |        | 15-Jul | 19-May    | 24-Jun           | 28-Jul  |
|                        | 2010 | 4-Jun           | 15-Jun | 15-Jul | 28-May    | 8-Jul            | 27-Jul  |
|                        | 2011 | 8-Jun           | 30-Jun | 20-Jul | 20-May    | 5-Jul            | 1-Aug   |
|                        | 2012 | 30-May          | 20-Jun | 4-Jul  | 30-May    | 11-Jul           | 24-Jul  |
|                        | 2013 | 8-May           | 27-May | 27-Jun | 8-May     | 19-Jun           | 9-Jul   |
|                        | 2014 | 20-May          | 4-Jun  | 1-Jul  | 13-May    | 24-Jun           | 10-Jul  |
|                        | 2015 | 13-May          | 26-May | 25-Jun | 29-Apr    | 10-Jun           | 2-Jul   |
|                        | 2016 | 16-May          | 26-May | 25-Jun | 27-Apr    | 7-Jun            | 1-Jul   |
|                        | 2017 | 25-May          | 7-Jun  | 10-Jul | 23-May    | 6-Jul            | 26-Jul  |
| Eriogonum heracleoides | 2011 | 26-May          | 10-Jun | 8-Jul  | 27-May    | 6-Jul            | 1-Aug   |
|                        | 2012 | 23-May          | 30-May | 25-Jun | 11-May    | 21-Jun           | 16-Jul  |
|                        | 2013 | 29-Apr          | 13-May | 10-Jun | 24-Apr    | 5-Jun            | 1-Jul   |
|                        | 2014 | 1-May           | 20-May | 12-Jun | 29-Apr    | 10-Jun           | 3-Jul   |
|                        | 2015 | 24-Apr          | 5-May  | 17-Jun | 15-Apr    | 27-May           | 24-Jun  |
|                        | 2016 | 26-Apr          | 6-May  | 16-Jun | 18-Apr    | 31-May           | 23-Jun  |
|                        | 2017 | 10-May          |        | 30-Jun | 2-May     | 20-Jun           | 26-Jul  |

Table 2. Precipitation and growing degree-days at the Malheur Experiment Station, Ontario, OR, 2006-2017.

|                  |        | Growing degree-days (50-86°F) |                        |                       |
|------------------|--------|-------------------------------|------------------------|-----------------------|
| Year             | Spring | spring + winter               | spring + winter + fall | Jan–Jun               |
| 2006             | 3.4    | 10.1                          | 14.5                   | 1273                  |
| 2007             | 1.9    | 3.8                           | 6.2                    | 1406                  |
| 2008             | 1.4    | 3.2                           | 6.7                    | 1087                  |
| 2009             | 4.1    | 6.7                           | 8.9                    | 1207                  |
| 2010             | 4.3    | 8.4                           | 11.7                   | 971                   |
| 2011             | 4.8    | 9.3                           | 14.5                   | 856                   |
| 2012             | 2.6    | 6.1                           | 8.4                    | 1228                  |
| 2013             | 0.9    | 2.4                           | 5.3                    | 1319                  |
| 2014             | 1.7    | 5.1                           | 8.1                    | 1333                  |
| 2015             | 3.2    | 5.9                           | 10.4                   | 1610                  |
| 2016             | 2.2    | 5.0                           | 10.1                   | 1458                  |
| 2017             | 4.0    | 9.7                           | 12.7                   | 1196                  |
| 12-year average: | 2.9    | 6.3                           | 9.8                    | 23-year average: 1207 |

Table 3. *Eriogonum umbellatum* and *E. heracleoides* seed yield in response to irrigation rate (inches/season) in 2006 through 2017. Malheur Experiment Station, Oregon State University, Ontario, OR.

|                          |         |          | Irriga   | tion rate |                 |
|--------------------------|---------|----------|----------|-----------|-----------------|
| Species                  | Year    | 0 inches | 4 inches | 8 inches  | LSD (0.05)      |
|                          |         |          | lk       | o/acre    |                 |
| Eriogonum umbellatum     | 2006    | 155.3    | 214.4    | 371.6     | 92.9            |
|                          | 2007    | 79.6     | 164.8    | 193.8     | 79.8            |
|                          | 2008    | 121.3    | 221.5    | 245.2     | 51.7            |
|                          | 2009    | 132.3    | 223      | 240.1     | 67.4            |
|                          | 2010    | 252.9    | 260.3    | 208.8     | NS <sup>a</sup> |
|                          | 2011    | 248.7    | 136.9    | 121       | 90.9            |
|                          | 2012    | 61.2     | 153.2    | 185.4     | 84.4            |
|                          | 2013    | 113.2    | 230.1    | 219.8     | 77.5            |
|                          | 2014    | 257      | 441.8    | 402.7     | 82.9            |
|                          | 2015    | 136.4    | 124.4    | 90.7      | NS              |
|                          | 2016    | 183.4    | 204.3    | 140.8     | NS              |
|                          | 2017    | 115.6    | 116.4    | 96.5      | NS              |
|                          | Average | 157.3    | 216.5    | 205.7     | 24.2            |
| Eriogonum heracleoides   | 2011    | 55.2     | 71.6     | 49        | NS <sup>a</sup> |
|                          | 2012    | 252.3    | 316.8    | 266.4     | NS              |
|                          | 2013    | 287.4    | 516.9    | 431.7     | 103.2           |
|                          | 2014    | 297.6    | 345.2    | 270.8     | NS              |
|                          | 2015    | 83.6     | 148.2    | 122.3     | NS              |
|                          | 2016    | 421.6    | 486.9    | 437.2     | NS              |
|                          | 2017    | 221.9    | 319.1    | 284.6     | 62.5            |
| 2 Net similiant. These w | Average | 212.9    | 312.2    | 280.1     | 59.4            |

<sup>a</sup> Not significant. There was no statistically significant trend in seed yield in response to amount of irrigation.

Table 4. Regression analysis for *Eriogonum umbellatum* and *E. heracleoides* seed yield (y) in response to irrigation (x) (inches/season) using the equation  $y = a + b \cdot x + c \cdot x^2$ . For the quadratic equations, the amount of irrigation that resulted in maximum yield was calculated using the formula: -b/2c, where b is the linear parameter and c is the quadratic parameter. Malheur Experiment Station, Oregon State University, Ontario, OR.

| Year    | intercept | linear | quadratic | R <sup>2</sup> | Р    | Maximum<br>yield | Water applied plus<br>spring precipitation for<br>maximum yield | Spring precipitation |
|---------|-----------|--------|-----------|----------------|------|------------------|-----------------------------------------------------------------|----------------------|
|         |           |        | •         |                |      | lb/acre          | inches/season                                                   | inch                 |
| 2006    | 66.6      | 22.9   |           | 0.52           | 0.05 | 328.0            | 11.4                                                            | 3.4                  |
| 2007    | 18.7      | 35.0   | -1.8      | 0.69           | 0.05 | 193.8            | 10.0                                                            | 1.9                  |
| 2008    | 66.9      | 41.4   | -2.4      | 0.73           | 0.01 | 246.6            | 8.7                                                             | 1.4                  |
| 2009    | -35.6     | 50.6   | -2.3      | 0.6            | 0.05 | 242.7            | 11.0                                                            | 4.1                  |
| 2010    | 178.5     | 25.2   | -1.8      | 0.08           | NSª  |                  |                                                                 | 4.3                  |
| 2011    | 308.9     | -16.0  |           | 0.58           | 0.01 | 232.7            | 4.8                                                             | 4.8                  |
| 2012    | -30.7     | 40.2   | -1.9      | 0.65           | 0.01 | 185.4            | 10.7                                                            | 2.6                  |
| 2013    | 71.9      | 51.9   | -4.0      | 0.62           | 0.05 | 241.3            | 6.5                                                             | 0.9                  |
| 2014    | 107.7     | 98.4   | -7.0      | 0.76           | 0.01 | 453.7            | 7.0                                                             | 1.7                  |
| 2015    | -35.7     | 70.4   | -5.3      | 0.55           | 0.10 | 199.4            | 6.7                                                             | 3.2                  |
| 2016    | 96.3      | 48.9   | -4.4      | 0.47           | 0.10 | 233.5            | 5.6                                                             | 2.2                  |
| 2017    | 94.2      | 7.9    | -0.6      | 0.16           | NS   |                  |                                                                 | 4.0                  |
| Average | 29.1      | 41.0   | -2.2      | 0.73           | 0.01 | 220.7            | 9.4                                                             | 2.9                  |

#### Eriogonum umbellatum

#### Eriogonum heracleoides

| Year    | intercept | linear | quadratic | R²   | Р    | Maximum<br>yield | Water applied<br>for maximum<br>yield |
|---------|-----------|--------|-----------|------|------|------------------|---------------------------------------|
|         |           |        |           |      |      | lb/acre          | inches/season                         |
| 2011    | 61.7      | -0.8   |           | 0.01 | NS   |                  |                                       |
| 2012    | 271.5     | 1.8    |           | 0.01 | NS   |                  |                                       |
| 2013    | 287.4     | 96.7   | -9.8      | 0.64 | 0.05 | 525.1            | 4.9                                   |
| 2014    | 297.6     | 27.2   | -3.8      | 0.08 | NS   |                  |                                       |
| 2015    | 83.6      | 27.5   | -2.8      | 0.29 | NS   |                  |                                       |
| 2016    | 421.6     | 30.7   | -3.6      | 0.06 | NS   |                  |                                       |
| 2017    | 221.9     | 40.7   | -4.1      | 0.38 | NS   |                  |                                       |
| Average | 212.9     | 41.2   | -4.1      | 0.63 | 0.05 | 316.5            | 5.0                                   |

<sup>a</sup>Not significant, indicating that there was no statistically significant trend in seed yield in response to amount of irrigation in that year.

# PRAIRIE CLOVER AND BASALT MILKVETCH SEED PRODUCTION IN RESPONSE TO IRRIGATION

Clinton C. Shock, Erik B. G. Feibert, Alicia Rivera, and Lamont D. Saunders, Malheur Experiment Station, Oregon State University, Ontario, OR, 2017

Douglas A. Johnson and B. Shaun Bushman, USDA-ARS Forage and Range Research Lab, Logan, UT

Nancy Shaw and Francis Kilkenny, U.S. Forest Service, Rocky Mountain Research Station, Boise, ID

### Summary

Legumes are important components of rangeland vegetation in the Intermountain West due to their supply of protein to wildlife and livestock and contribution of nitrogen to rangeland productivity. Seed of selected native legumes is needed for rangeland restoration, but cultural practices for native legume production are largely unknown. The seed yield response of three native legume species to irrigation was evaluated starting in 2011. Four biweekly irrigations applying either 0, 1, or 2 inches of water (a total of 0, 4, or 8 inches/season) were tested. Over the 7-year study, *Dalea searlsiae* (Searls' prairie clover) seed yield was maximized by 13-17 inches of water applied plus fall, winter, and spring precipitation per season. *Dalea ornata* (Blue Mountain or western prairie clover) seed yield was maximized by 13-16 inches of water applied plus fall, winter, and spring precipitation per season. Seed yield of *Astragalus filipes* (basalt milkvetch) did not respond to irrigation.

### Introduction

Native wildflower seed is needed to restore rangelands of the Intermountain West. Commercial seed production is necessary to provide the quantity of seed needed for restoration efforts. A major limitation to economically viable commercial production of native wildflower (forb) seed is stable and consistent seed productivity over years.

In natural rangelands, variations in spring rainfall and soil moisture result in highly unpredictable water stress at flowering, seed set, and seed development, which for other seed crops is known to compromise seed yield and quality.

Native wildflower plants are not well adapted to croplands; they are often not competitive with crop weeds in cultivated fields, and this could limit wildflower seed production. Both sprinkler and furrow irrigation can provide supplemental water for seed production, but these irrigation systems risk further encouraging weeds. Also, sprinkler and furrow irrigation can lead to the loss of plant stand and seed production due to fungal pathogens. By burying drip tapes at 12-inch depth and avoiding wetting the soil surface, we designed experiments to assure flowering and seed set without undue encouragement of weeds or opportunistic diseases. The trials

reported here tested the effects of three low rates of irrigation on the seed yield of three native wildflower legume species (Table 1) planted in 2009.

Table 1. Wildflower species in the legume family planted in the fall of 2009 at the Malheur Experiment Station, Oregon State University, Ontario, OR.

| Species            | Common names                                         | Growth habit |
|--------------------|------------------------------------------------------|--------------|
| Dalea searlsiae    | Searls' prairie clover                               | Perennial    |
| Dalea ornata       | Western prairie clover, Blue Mountain prairie clover | Perennial    |
| Astragalus filipes | Basalt milkvetch                                     | Perennial    |

### **Materials and Methods**

### Plant establishment

Each of three species was planted in 4 rows 30 inches apart in a 10-ft-wide strip about 450 ft long on Nyssa silt loam at the Malheur Experiment Station, Ontario, Oregon. The soil had a pH of 8.3 and 1.1% organic matter. In October 2009, 2 drip tapes 5 feet apart (T-Tape TSX 515-16-340) were buried at 12-inch depth to irrigate the 4 rows in the plot. Each drip tape irrigated two rows of plants. The flow rate for the drip tape was 0.34 gal/min/100 ft at 8 psi with emitters spaced 16 inches apart, resulting in a water application rate of 0.066 inch/hour.

On November 25, 2009 seed of three species (Table 1) was planted in 30-inch rows using a custom-made small-plot grain drill with disc openers. All seed was planted on the soil surface at 20-30 seeds/ft of row. After planting, sawdust was applied in a narrow band over the seed row at 0.26 oz/ft of row (558 lb/acre). Following planting and sawdust application, the beds were covered with row cover (N-sulate, DeWitt Co., Inc., Sikeston, MO), which covered four rows (two beds) and was applied with a mechanical plastic mulch layer. The field was irrigated for 24 hours on December 2, 2009 due to very dry soil conditions.

After the newly planted wildflowers emerged, the row cover was removed in April 2010. The variable irrigation treatments were not applied until 2011.

Each year, plots were hand-weeded as necessary. Seed from the middle two rows in each plot was harvested manually (Table 2).

### Irrigation for seed production

In April 2011, each strip of each wildflower species was divided into 12 30-ft plots. Each plot contained four rows of each species. The experimental design for each species was a randomized complete block with four replicates. The three treatments were a non-irrigated check, 1 inch of water applied per irrigation, and 2 inches of water applied per irrigation. Each treatment received 4 irrigations applied approximately every 2 weeks starting at bud formation and flowering. The amount of water applied to each treatment was calculated by the length of time necessary to deliver 1 or 2 inches through the drip system. Irrigations were regulated with a controller and solenoid valves.

The drip-irrigation system was designed to allow separate irrigation of the species due to different timings of flowering and seed formation. The irrigation treatments of the two *Dalea* 

spp. were applied together. The *Astragalus filipes* was irrigated separately to correspond to the timing of its flowering and seed set. Flowering, irrigation, and harvest dates were recorded (Table 2).

#### Weed control

On October 27, 2016, Prowl<sup>®</sup> at 1 lb ai/acre was broadcast on all plots of all species for weed control. On April 21, 2017, Prowl at 1 lb ai/acre and Poast<sup>®</sup> at 30 oz/acre were broadcast on all plots of all species.

### Seed beetle control

Harvested seed pods of *Dalea ornata, D. searlsiae*, and *Astragalus filipes* were extensively damaged from feeding by seed weevils in 2013 and 2014, indicating that control measures during and after flowering would be necessary to maintain seed yields. On May 21, 2015, Capture<sup>®</sup> 2EC at 6.4 oz/acre (0.1 lb ai/acre) and Rimon<sup>®</sup> at 12 oz/acre (0.08 lb ai/acre) were broadcast in the evening to minimize harm to pollinators. On May 28, 2015, Rimon at 12 oz/acre was broadcast in the evening to minimize harm to pollinators. Seed beetles were not observed during flowering in 2016 and 2017.

### Statistical analysis

Seed yield means were compared by analysis of variance and by linear and quadratic regression. Seed yield (y) in response to irrigation or irrigation plus precipitation (x, inches/season) was estimated by the equation  $y = a + b \cdot x + c \cdot x^2$ . For the quadratic equations, the amount of irrigation (x') that resulted in maximum yield (y') was calculated using the formula x' = -b/2c, where a is the intercept, b is the linear parameter, and c is the quadratic parameter. For the linear regressions, the seed yield responses to irrigation were based on the actual greatest amount of water applied plus precipitation and the measured average seed yield.

Seed yields for each year were regressed separately against 1) applied water; 2) applied water plus spring precipitation; 3) applied water plus winter and spring precipitation; and 4) applied water plus fall, winter, and spring precipitation. Winter and spring precipitation occurred in the same year that yield was determined; fall precipitation occurred the prior year.

Adding the seasonal precipitation to the irrigation response equation has the potential to provide a closer estimate of the amount of water required for maximum seed yields. Regressions of seed yield each year were calculated on all the sequential seasonal amounts of precipitation and irrigation, but only some of the regressions are reported below. The period of precipitation plus applied water that had the lowest standard deviation for irrigation plus precipitation over the years was chosen as the most reliable independent variable for predicting seed yield. For *Astragalus filipes*, seed yield did not respond to irrigation; consequently, seed yield responses only to water applied are reported without trying to find the optimal amount of irrigation plus seasonal precipitation.

### **Results and Discussion**

Precipitation from January through June was close to average in 2012 and 2014-2016, higher than average in 2011 and 2017, and lower than average in 2013 (Table 3). The accumulation of growing degree-days (50-86°F) was increasingly higher than average from 2012 to 2016, close to

average in 2017, and was below average in 2011 (Table 3). Flowering and seed harvest were early in 2015 and 2016, probably due to warmer weather and greater accumulation of growing degree-days.

#### Dalea searlsiae, Searls' prairie clover

In 2012, and 2014-2016, seed yields showed a quadratic response to irrigation plus fall, winter, and spring precipitation (Table 5). Maximum seed yields were achieved with 15, 17, 17, and 15.4 inches of water applied plus fall, winter, and spring precipitation in 2012 and 2014-2016, respectively. In 2013, seed yields were very low due to seed weevils. In 2011, seed yields were highest with no irrigation plus 14.5 inches of fall, winter, and spring precipitation. In 2017, seed yields did not respond to irrigation. Averaged over the 7 years, maximum seed yields were 227 lb/acre achieved with 16.1 inches of water applied plus fall, winter, and spring precipitation.

#### Dalea ornata, Blue Mountain or western prairie clover

Seed yields showed a quadratic response to irrigation in 2012-2016 with a maximum seed yield at 16.1, 13.3, 14.9, 14.9, and 14.6 inches of water applied plus fall, winter, and spring precipitation, respectively (Tables 4 and 5). Seed yields in 2011 were highest with no irrigation plus 14.5 inches of fall, winter, and spring precipitation. In 2017, seed yields did not respond to irrigation. Averaged over the seven years, maximum seed yields were 350 lb/acre achieved with 15.3 inches of water applied plus fall, winter, and spring precipitation.

Both *Dalea searlsiae* and *D. ornata* showed either a negative response or no response to irrigation in 2011 and 2017, years with higher than average fall, winter, and spring precipitation.

### Astragalus filipes, basalt milkvetch

Seed yields responded to irrigation only in 2013, when 4 inches of applied water was among the irrigation rates resulting in the highest yield (Tables 4 and 5). Low seed yields of *Astragalus filipes* were related to low plant stand and high seed pod shatter that made seed recovery problematic.

### Acknowledgements

This project was funded by the U.S. Forest Service Great Basin Native Plant Project, U.S. Bureau of Land Management, Oregon State University, Malheur County Education Service District, and was supported by Formula Grant nos. 2017-31100-06041 and 2017-31200-06041 from the USDA National Institute of Food and Agriculture.

|            |           |        | Flowering |        | Irriga | ation  |         |
|------------|-----------|--------|-----------|--------|--------|--------|---------|
| Species    | Year      | Start  | Peak      | End    | Start  | End    | Harvest |
| Dalea sea  | rlsiae    |        |           |        |        |        |         |
|            | 2011      | 8-Jun  | 20-Jun    | 20-Jul | 27-May | 6-Jul  | 21-Jul  |
|            | 2012      | 23-May | 10-Jun    | 30-Jun | 11-May | 21-Jun | 10-Jul  |
|            | 2013      | 13-May |           | 15-Jun | 8-May  | 19-Jun | 29-Jun  |
|            | 2014      | 15-May | 4-Jun     | 24-Jun | 6-May  | 17-Jun | 1-Jul   |
|            | 2015      | 13-May | 26-May    | 16-Jun | 5-May  | 17-Jun | 22-Jun  |
|            | 2016      | 11-May | 28-May    | 10-Jun | 3-May  | 14-Jun | 16-Jun  |
|            | 2017      | 23-May | 7-Jun     | 30-Jun | 23-May | 6-Jul  | 3-Jul   |
| Dalea orna | ata       |        |           |        |        |        |         |
|            | 2011      | 8-Jun  | 20-Jun    | 20-Jul | 27-May | 6-Jul  | 22-Jul  |
|            | 2012      | 23-May | 10-Jun    | 30-Jun | 11-May | 21-Jun | 11-Jul  |
|            | 2013      | 13-May | 21-May    | 15-Jun | 8-May  | 19-Jun | 28-Jun  |
|            | 2014      | 15-May | 4-Jun     | 24-Jun | 6-May  | 17-Jun | 1-Jul   |
|            | 2015      | 5-May  | 26-May    | 22-Jun | 5-May  | 17-Jun | 25-Jun  |
|            | 2016      | 3-May  | 26-May    | 10-Jun | 3-May  | 14-Jun | 13-Jun  |
|            | 2017      | 23-May | 7-Jun     | 29-Jun | 23-May | 6-Jul  | 5-Jul   |
| Astragalus | s filipes |        |           |        |        |        |         |
|            | 2011      | 20-May | 26-May    | 30-Jun | 13-May | 23-Jun | 18-Jul  |
|            | 2012      | 28-Apr | 23-May    | 19-Jun | 11-May | 21-Jun | 5-Jul   |
|            | 2013      | 3-May  | 10-May    | 25-May | 8-May  | 19-Jun | 28-Jun  |
|            | 2014      | 5-May  | 13-May    | 28-May | 29-Apr | 10-Jun | 24-Jun  |
|            | 2015      | 17-Apr | 13-May    | 1-Jun  | 21-Apr | 3-Jun  | 16-Jun  |

Table 2. Native wildflower flowering, irrigation, and seed harvest dates by species. Malheur Experiment Station, Oregon State University, Ontario, OR, 2011-2017.

Table 3. Early season precipitation and growing degree-days at the Malheur Experiment Station, Ontario, OR, 2006-2017.

|                  |        | Precipitatio    | on (inch)              | Growing degree-days (50-86°F) |
|------------------|--------|-----------------|------------------------|-------------------------------|
| Year             | Spring | Winter + spring | Fall + winter + spring | Jan–Jun                       |
| 2006             | 3.4    | 10.1            | 14.5                   | 1273                          |
| 2007             | 1.9    | 3.8             | 6.2                    | 1406                          |
| 2008             | 1.4    | 3.2             | 6.7                    | 1087                          |
| 2009             | 4.1    | 6.7             | 8.9                    | 1207                          |
| 2010             | 4.3    | 8.4             | 11.7                   | 971                           |
| 2011             | 4.8    | 9.3             | 14.5                   | 856                           |
| 2012             | 2.6    | 6.1             | 8.4                    | 1228                          |
| 2013             | 0.9    | 2.4             | 5.3                    | 1319                          |
| 2014             | 1.7    | 5.1             | 8.1                    | 1333                          |
| 2015             | 3.2    | 5.9             | 10.4                   | 1610                          |
| 2016             | 2.2    | 5.0             | 10.1                   | 1458                          |
| 2017             | 4.0    | 9.7             | 12.7                   | 1196                          |
| 12-year average: | 2.9    | 6.3             | 9.8                    | 23-year average: 1207         |

|                   |    | Irrigation rate |          |          |                  |  |  |
|-------------------|----|-----------------|----------|----------|------------------|--|--|
| Species Year      | C  | ) inches        | 4 inches | 8 inches | LSD (0.05)       |  |  |
|                   |    |                 | lb/      | acre     |                  |  |  |
| Dalea searlsiae   |    |                 |          |          |                  |  |  |
| 20                | 11 | 262.7           | 231.2    | 196.3    | 50.1             |  |  |
| 20                | 12 | 175.5           | 288.8    | 303.0    | 93.6             |  |  |
| 20                | 13 | 14.8            | 31.7     | 44.4     | 6.1              |  |  |
| 20                | 14 | 60.0            | 181.4    | 232.2    | 72.9             |  |  |
| 20                | 15 | 221.2           | 330.7    | 344.2    | 68.3             |  |  |
| 20                | 16 | 148.7           | 238.8    | 222.3    | 56.0             |  |  |
| 20                | 17 | 222.2           | 223.6    | 206.2    | NS               |  |  |
| Avera             | ge | 157.9           | 218.0    | 221.2    | 13.4             |  |  |
| Dalea ornata      |    |                 |          |          |                  |  |  |
| 20                | 11 | 451.9           | 410.8    | 351.7    | NS <sup>a</sup>  |  |  |
| 20                | 12 | 145.1           | 365.1    | 431.4    | 189.3            |  |  |
| 20                | 13 | 28.6            | 104.6    | 130.4    | 38.8             |  |  |
| 20                | 14 | 119.4           | 422.9    | 476.3    | 144.1            |  |  |
| 20                | 15 | 212.9           | 396.7    | 267.2    | 109.6            |  |  |
| 20                | 16 | 246.3           | 307.9    | 312.4    | NS               |  |  |
| 20                | 17 | 328.2           | 347.0    | 270.1    | NS               |  |  |
| Avera             | ge | 219.6           | 339.9    | 323.1    | 49.9             |  |  |
| Astragalus filipe | s  |                 |          |          |                  |  |  |
| 20                | 11 | 87              | 98.4     | 74       | NS               |  |  |
| 20                | 12 | 22.7            | 12.6     | 16.1     | NS               |  |  |
| 20                | 13 | 8.5             | 9.8      | 6.1      | 2.7 <sup>b</sup> |  |  |
| 20                | 14 | 56.6            | 79.3     | 71.9     | NS               |  |  |
| 20                | 15 | 17.8            | 12.5     | 11.6     | NS               |  |  |
| Avera             | ge | 38.5            | 35.2     | 36.0     | NS               |  |  |

Table 4. Native wildflower seed yield in response to irrigation rate (inches/season). Malheur Experiment Station, Oregon State University, Ontario, OR, 2011-2017.

 $^{a}NS = not significant, ^{b}LSD (0.10)$ 

Table 5. Regression analysis for native wildflower seed yield (y) in response to irrigation (x) (inches/season) plus fall, winter, and spring precipitation using the equation  $y = a + b \cdot x + c \cdot x^2$ . For the quadratic equations, the amount of irrigation that resulted in maximum yield was calculated using the formula: -b/2c, where b is the linear parameter and c is the quadratic parameter. Malheur Experiment Station, Oregon State University, Ontario, OR, 2011-2017.

| Year    | intercept | linear | quadratic | R <sup>2</sup> | Р               | Maximum<br>yield | Water applied<br>plus precipitation<br>for max. yield | Precipitation,<br>fall, winter,<br>spring |
|---------|-----------|--------|-----------|----------------|-----------------|------------------|-------------------------------------------------------|-------------------------------------------|
|         |           |        |           |                |                 | (lb/acre)        | (inches/season)                                       | (inches)                                  |
| 2011    | 383.3     | -8.3   |           | 0.49           | 0.05            | 263.3            | 14.5                                                  | 14.5                                      |
| 2012    | -384.4    | 92.7   | -3.1      | 0.62           | 0.05            | 309.3            | 15.0                                                  | 8.4                                       |
| 2013    | -4.1      | 3.7    |           | 0.54           | 0.01            | 45.1             | 13.3                                                  | 5.3                                       |
| 2014    | -400.8    | 74.8   | -2.2      | 0.79           | 0.001           | 234.0            | 17.0                                                  | 8.1                                       |
| 2015    | -515.3    | 101.9  | -3.0      | 0.56           | 0.05            | 350.4            | 17.0                                                  | 10.4                                      |
| 2016    | -548.3    | 102.8  | -3.3      | 0.56           | 0.05            | 245.2            | 15.4                                                  | 10.1                                      |
| 2017    | 92.1      | 17.7   | -0.6      | 0.04           | NS <sup>a</sup> |                  |                                                       | 12.7                                      |
| Average | -232.0    | 57.1   | -1.8      | 0.60           | 0.05            | 226.8            | 16.1                                                  | 9.8                                       |

#### Dalea ornata

| Year    | intercept | linear | quadratic | R <sup>2</sup> | P     | Maximum<br>yield | Water applied<br>plus precipitation<br>for max. yield | Precipitation,<br>fall, winter,<br>spring |
|---------|-----------|--------|-----------|----------------|-------|------------------|-------------------------------------------------------|-------------------------------------------|
|         |           |        |           |                |       | (lb/acre)        | (inches/season)                                       | (inches)                                  |
| 2011    | 635.9     | -12.5  |           | 0.11           | NS    | 454.9            | 14.5                                                  | 14.5                                      |
| 2012    | -815.6    | 154.8  | -4.8      | 0.65           | 0.01  | 431.8            | 16.1                                                  | 8.4                                       |
| 2013    | -149.4    | 41.9   | -1.6      | 0.88           | 0.001 | 130.4            | 13.4                                                  | 9.4                                       |
| 2014    | -1258.9   | 233.6  | -7.8      | 0.87           | 0.001 | 486.6            | 14.9                                                  | 8.1                                       |
| 2015    | -1597.0   | 267.3  | -8.9      | 0.64           | 0.05  | 399.0            | 14.9                                                  | 10.4                                      |
| 2016    | -1096.9   | 203.5  | -6.9      | 0.55           | 0.10  | 393.0            | 14.6                                                  | 10.1                                      |
| 2017    | -368.8    | 92.9   | -3.0      | 0.13           | NS    |                  |                                                       | 12.7                                      |
| Average | -659.0    | 131.5  | -4.3      | 0.83           | 0.001 | 349.7            | 15.3                                                  | 9.8                                       |

<sup>a</sup>Not significant. There was no statistically significant trend in seed yield in response to the amount of irrigation.

# IRRIGATION REQUIREMENTS FOR LOMATIUM SEED PRODUCTION

Clinton C. Shock, Erik B. G. Feibert, Alicia Rivera, and Lamont D. Saunders, Malheur Experiment Station, Oregon State University, Ontario, OR, 2017

Nancy Shaw and Francis Kilkenny, U.S. Forest Service, Rocky Mountain Research Station, Boise, ID

## Summary

*Lomatium* species are important botanical components in the rangelands of the Intermountain West. Relatively little is known about the cultural practices necessary to produce *Lomatium* seed for use in rangeland restoration activities. The seed yield response to four biweekly irrigations applying either 0, 1, or 2 inches of water (total of 0, 4, or 8 inches/season) was evaluated for four Lomatium species over multiple years starting in 2007. In order to try to improve the accuracy of estimated irrigation water requirements, seed yield responses to irrigation plus precipitation during the previous spring; winter and spring; and fall, winter, and spring were also evaluated. On average, over nine seed production seasons, Lomatium dissectum (fernleaf biscuitroot) seed yield was maximized by 7.7 to 9.5 inches of water applied plus spring precipitation depending on the seed source. On average, over 11 seed production seasons, L. gravi (Gray's biscuitroot) seed yield was maximized by 14.3 inches of water applied plus fall, winter, and spring precipitation. On average, over 11 seed production seasons, L. triternatum (nineleaf biscuitroot) seed yield was maximized by 12.4 inches of water applied plus spring precipitation. Over six seed production seasons, L. nudicaule (barestem biscuitroot) seed yield responded to irrigation only in 2017. In four seed production seasons, seed yield of L. suksdorfii (Suksdorf's desertparsley) responded to irrigation only in 2015.

## Introduction

Native wildflower seed is needed to restore rangelands of the Intermountain West. Commercial seed production is necessary to provide the quantity of seed needed for restoration efforts. A major limitation to economically viable commercial production of native wildflower (forb) seed is stable and consistent seed production over years.

In native rangelands, the natural variation in spring rainfall and soil moisture results in highly unpredictable water stress at flowering, seed set, and seed development, which for other seed crops is known to compromise seed yield and quality.

Native wildflower plants are not well adapted to croplands and often are not competitive with crop weeds in cultivated fields, which could limit wildflower seed production. Supplemental water can be provided by sprinkler or furrow irrigation systems, but these irrigation systems risk further encouraging weeds. Sprinkler and furrow irrigation can lead to the loss of plant stand and seed production due to fungal pathogens. Burying drip tapes at 12-inch depth and avoiding wetting the soil surface could help assure flowering and seed set without undue encouragement

of weeds or opportunistic diseases. The trials reported here tested the effects of three low rates of irrigation on the seed yield of five *Lomatium* species (Table 1).

Subsurface drip irrigation systems were tested for native seed production because they have two potential strategic advantages: a) low water use, and b) the buried drip tape provides water to the plants at depth, precluding most irrigation-induced stimulation of weed seed germination on the soil surface and keeping water away from native plant tissues that are not adapted to a wet environment.

| Species              | Common names                                 |
|----------------------|----------------------------------------------|
| Lomatium dissectum   | fernleaf biscuitroot                         |
| Lomatium triternatum | nineleaf biscuitroot, nineleaf desertparsley |
| Lomatium grayi       | Gray's biscuitroot, Gray's lomatium          |
| Lomatium nudicaule   | barestem biscuitroot, barestem lomatium      |
| Lomatium suksdorfii  | Suksdorf's desertparsley                     |

Table 1. *Lomatium* species planted in the drip irrigation trials at the Malheur Experiment Station, Oregon State University, Ontario, OR.

## **Materials and Methods**

#### Plant establishment

Seed of *Lomatium dissectum*, *L. grayi*, and *L. triternatum* was received in late November in 2004 from the Rocky Mountain Research Station (Boise, ID). The plan was to plant the seed in fall 2004, but due to excessive rainfall in October, ground preparation was not completed and planting was postponed to early 2005. To try to ensure germination, we submitted the seed to cold stratification. The seed was soaked overnight in distilled water on January 26, 2005, after which the water was drained and the seed soaked for 20 min in a 10% by volume solution of 13% bleach in distilled water. The water was drained and the seed was placed in thin layers in plastic containers. The plastic containers had lids with holes drilled in them to allow air movement. These containers were placed in a cooler set at approximately 34°F. Every few days the seed was mixed and, if necessary, distilled water added to maintain seed moisture. In late February, seed of *Lomatium grayi* and *L. triternatum* started to sprout.

In late February 2005, drip tape (T-Tape TSX 515-16-340) was buried at 12-inch depth between two 30-inch rows of a Nyssa silt loam with a pH of 8.3 and 1.1% organic matter. The drip tape was buried in alternating inter-row spaces (5 ft apart). The flow rate for the drip tape was 0.34 gal/min/100 ft at 8 psi with emitters spaced 16 inches apart, resulting in a water application rate of 0.066 inch/hour.

On March 3, 2005, seed of the three species (*Lomatium dissectum*, *L. grayi*, and *L. triternatum*) was planted in 30-inch rows using a custom-made small-plot grain drill with disc openers. All seed was planted at 20-30 seeds/ft of row at 0.5-inch depth. The trial was irrigated from March 4 to April 29 with a minisprinkler system (R10 Turbo Rotator, Nelson Irrigation Corp., Walla Walla, WA) for even stand establishment. Risers were spaced 25 ft apart along the flexible polyethylene hose laterals that were spaced 30 ft apart and the water application rate was 0.10

inch/hour. A total of 1.72 inches of water was applied with the minisprinkler system. *Lomatium triternatum* and *L. grayi* started emerging on March 29. Beginning on June 24, the field was irrigated with the drip irrigation system. A total of 3.73 inches of water was applied with the drip system from June 24 to July 7. The field was not irrigated further in 2005.

Plant stands for *Lomatium triternatum* and *L. grayi* were uneven; *L. dissectum* did not emerge. None of the species flowered in 2005. In early October 2005, more seed was received from the Rocky Mountain Research Station for replanting. The entire row lengths were replanted using the planter on October 26, 2005. In spring 2006, the plant stands were excellent.

On November 25, 2009 seed of *Lomatium nudicaule, L. suksdorfii,* and three selections of *L. dissectum* (LODI 38, LODI 41, and seed from near Riggins, ID) was planted in 30-inch rows using a custom-made small-plot grain drill with disc openers. All seed was planted on the soil surface at 20-30 seeds/ft of row. After planting, sawdust was applied in a narrow band over the seed row at 0.26 oz/ft of row (558 lb/acre). Following planting and sawdust application, the beds were covered with row cover. The row cover (N-sulate, DeWitt Co., Inc., Sikeston, MO) covered four rows (two beds) and was applied with a mechanical plastic mulch layer. The field was irrigated for 24 hours on December 2, 2009 due to very dry soil conditions.

#### Irrigation for seed production

In April 2006 (April 2010 for the species and selections planted in 2009) each planted strip of each species was divided into plots 30 ft long. Each plot contained four rows of each species. The experimental design for each species was a randomized complete block with four replicates. The three treatments were a nonirrigated check, 1 inch of water applied per irrigation, and 2 inches of water applied per irrigation. Each treatment received 4 irrigations applied approximately every 2 weeks starting with flowering. The amount of water applied to each treatment was calculated by the length of time necessary to deliver 1 or 2 inches through the drip system. Irrigations were regulated with a controller and solenoid valves. After each irrigation, the amount of water applied was read on a water meter and recorded to ensure correct water applications.

Irrigation dates are found in Table 2. In 2007, irrigation treatments were inadvertently continued after the fourth irrigation. Irrigation treatments for all species were continued until the last irrigation on June 24, 2007.

#### Flowering, harvesting, and seed cleaning

Flowering dates for each species were recorded (Table 2). Each year, the middle two rows of each plot were harvested manually when seed of each species was mature (Table 2). Seed was cleaned manually.

#### **Cultural practices in 2006**

On October 27, 2006, 50 lb phosphorus (P)/acre and 2 lb zinc (Zn)/acre were injected through the drip tape to all plots. On November 11, 100 lb nitrogen (N)/acre as urea was broadcast to all plots. On November 17, all plots had Prowl<sup>®</sup> at 1 lb ai/acre broadcast on the soil surface. Irrigations for all species were initiated on May 19 and terminated on June 30.

#### Cultural practices in 2007

Irrigations for each species were initiated and terminated on different dates (Table 2).

#### **Cultural practices in 2008**

On November 9, 2007 and on April 15, 2008, Prowl at 1 lb ai/acre was broadcast on all plots for weed control.

#### **Cultural practices in 2009**

On March18, Prowl at 1 lb ai/acre and Volunteer<sup>®</sup> at 8 oz/acre were broadcast on all plots for weed control. On April 9, 50 lb N/acre and 10 lb P/acre were applied through the drip irrigation system to the three *Lomatium* spp.

On December 4, 2009, Prowl at 1 lb ai/acre was broadcast for weed control on all plots.

#### Cultural practices in 2010

On November 17, Prowl at 1 lb ai/acre was broadcast on all plots for weed control.

#### Cultural practices in 2011

On May 3, 2011, 50 lb N/acre was applied to all *Lomatium* spp. plots as URAN (urea ammonium nitrate) injected through the drip tape. On November 9, Prowl at 1 lb ai/acre was broadcast on all plots for weed control.

#### **Cultural practices in 2012**

Iron deficiency symptoms were prevalent in 2012. Liquid fertilizer was injected containing 50 lb N/acre, 10 lb P/acre, and 0.3 lb iron (Fe)/acre using a brief pulse of water through the drip irrigation system to all plots on April 13. On November 7, Prowl at 1 lb ai/acre was broadcast on all plots for weed control.

#### **Cultural practices in 2013**

Liquid fertilizer was injected containing 20 lb N/acre, 25 lb P/acre, and 0.3 lb Fe/acre using a brief pulse of water through the drip irrigation system to all plots on March 29. On April 3, Select Max<sup>®</sup> at 32 oz/acre was broadcast for grass weed control on all plots.

#### **Cultural practices in 2014**

On February 26, Prowl at 1 lb ai/acre and Select Max at 32 oz/acre were broadcast on all plots for weed control. Liquid fertilizer was injected containing 20 lb N/acre, 25 lb P/acre, and 0.3 lb Fe/acre using a brief pulse of water through the drip irrigation system to all plots on April 2.

#### **Cultural practices in 2015**

On March 13, Prowl at 1 lb ai/acre was broadcast on all plots for weed control. Liquid fertilizer was injected containing 20 lb N/acre, 25 lb P/acre, and 0.3 lb Fe/acre using a brief pulse of water through the drip irrigation system to all plots on April 15. On November 6, Prowl at 1 lb ai/acre and Roundup<sup>®</sup> at 24 oz/acre were broadcast on all plots for weed control.

#### **Cultural practices in 2016**

Liquid fertilizer was injected containing 20 lb N/acre, 25 lb P/acre, and 0.3 lb Fe/acre using a brief pulse of water through the drip irrigation system to all plots on March 31. On October 27, Prowl H<sub>2</sub>O at 1 lb ai/acre was broadcast on all plots for weed control.

#### **Cultural practices in 2017**

On March 28, Prowl H<sub>2</sub>O at 1 lb ai/acre and Poast<sup>®</sup> at 0.75 lb ai/acre were broadcast on all plots for weed control. Liquid fertilizer was injected containing 0.3 lb Fe/acre using a brief pulse of water through the drip irrigation system to all plots on April 4.

#### **Statistical analysis**

Seed yield means were compared by analysis of variance and by linear and quadratic regression. Seed yield (y) in response to irrigation or irrigation plus precipitation (x, inches/season) was estimated by the equation  $y = a + b \cdot x + c \cdot x^2$ . For the quadratic equations, the amount of irrigation (x') that resulted in maximum yield (y') was calculated using the formula x' = -b/2c, where a is the intercept, b is the linear parameter, and c is the quadratic parameter. For the linear regressions, the seed yield responses to irrigation were based on the actual amounts of water applied plus precipitation and the measured average seed yield.

For each species, seed yields for each year were regressed separately against 1) applied water; 2) applied water plus spring precipitation; 3) applied water plus winter and spring precipitation; and 4) applied water plus fall, winter, and spring precipitation. Winter and spring precipitation occurred in the same year that yield was determined; fall precipitation occurred the prior year.

Adding the seasonal precipitation to the irrigation response equation potentially could provide a closer estimate of the amount of water required for maximum seed yields of the *Lomatium* species. Regressions of seed yield each year were calculated on all the sequential seasonal amounts of precipitation and irrigation, but only some of the regressions are reported below. The period of precipitation plus applied water that had the lowest standard deviation for irrigation plus precipitation over the years was chosen as the most reliable independent variable for predicting seed yield. For species with few years where a yield response to irrigation existed, yield responses are reported as a function of water applied.

## **Results and Discussion**

Spring precipitation in 2012, 2015, and 2016 was close to the average of 2.8 inches (Table 3). Spring precipitation in 2009-2011 and 2017 was higher, and spring precipitation in 2007, 2008, 2013, and 2014 was lower than average. The accumulated growing degree-days (50-86°F) from January through June in 2006, 2007, and 2013-2016 were higher than average (Table 3). The high accumulated growing degree-days in 2015 probably caused early harvest dates (Table 2).

#### Flowering and seed set

*Lomatium grayi* and *L. triternatum* started flowering and producing seed in 2007 (second year after fall planting in 2005, Tables 2 and 4). *Lomatium dissectum* started flowering and producing seed in 2009 (fourth year after fall planting in 2005). *Lomatium nudicaule* started flowering and produced seed in 2012 (third year after fall planting in 2009), and *L. suksdorfii* started flowering and produced seed in 2013 (fourth year after fall planting in 2009).

#### Seed yields

#### Lomatium dissectum, fernleaf biscuit root

*Lomatium dissectum* had very little vegetative growth during 2006-2008, and produced very few flowers in 2008. All the *Lomatium* species tested were affected by *Alternaria* fungus, but the

infection was greatest on the *L. dissectum* selection planted in this trial. This infection delayed *L. dissectum* plant development. In 2009, vegetative growth and flowering were improved.

Seed yields of *L. dissectum* showed a quadratic response to irrigation rate plus spring precipitation in 2009-2011, 2013-2015, and 2017 (Tables 4 and 6). In 2012, seed yields of *L. dissectum* did not respond to irrigation. In 2016, seed yield increased linearly with increasing irrigation rate plus spring precipitation. Averaged over the 8 years, seed yield showed a quadratic response to irrigation rate plus spring precipitation and was estimated to be maximized at 999 lb/acre/year by spring precipitation plus irrigation of 9.5 inches.

#### Lomatium dissectum Riggins selection

The Riggins selection *L. dissectum* started flowering in 2013, but only in small amounts. Seed yields of this selection showed a quadratic response to irrigation rate plus spring precipitation in 2014 and 2016 (Tables 5 and 7). Seed yields were estimated to be maximized by 6.5 inches of applied water plus spring precipitation in 2014. Seed was inadvertently not harvested in 2015. In 2016, seed yields were estimated to be maximized by 7.5 inches of applied water plus spring precipitation. In 2017, seed yields were estimated to be maximized by 8 inches of applied water plus spring precipitation. Over years, seed yields were estimated to be maximized by 9.3 inches of applied water plus spring precipitation.

#### Lomatium dissectum selections LODI 38 and LODI 41

*Lomatium dissectum* 38 and 41started flowering in 2013, but only in small amounts. Seed yields of LODI 38 did not respond to irrigation in 2014-2017 (Tables 5 and 7) and seed yields of LODI 41 did not respond to irrigation in 2014 and 2016. In 2015 and 2017, seed yields of LODI 41 showed a quadratic response to irrigation rate (Tables 5 and 7). Seed yields of LODI 41 were estimated to be maximized by 8.1 inches of applied water plus spring precipitation in 2015 and by 10.4 inches of applied water plus spring precipitation in 2017. Over years, seed yields were estimated to be maximized by 7.7 inches of applied water plus spring precipitation.

#### Lomatium grayi, Gray's biscuitroot

Seed yields of *L. grayi* showed a quadratic response to irrigation rate plus fall, winter, and spring precipitation in all years from 2007 through 2017, except in 2007, 2009, 2013, and 2017 (Tables 4 and 6). In 2007, 2009, and 2013, seed yield showed a positive linear response to water applied plus precipitation. In 2010, 2011, and 2017 seed yields did not respond to irrigation. In 2010, seed yield did not respond to irrigation, possibly because of the unusually wet spring of 2010. Rodent damage was a further complicating factor in 2010 that compromised seed yields. Extensive vole damage occurred over the 2009-2010 winter. The affected areas were transplanted with 3-year-old *L. grayi* plants from an adjacent area in the spring of 2010. To reduce the habitat attractiveness to voles, all of the *Lomatium* plants were mowed after becoming dormant in early fall of 2010 and in each subsequent year. In 2011 and 2017, seed yield again did not respond to irrigation. The spring of 2011 was unusually cool and wet and the winter and spring of 2017 had higher than average precipitation. On average, seed yields of *L. grayi* were maximized at 730 lb/acre by 14.3 inches of applied water plus fall, winter, and spring precipitation.

#### Lomatium triternatum, nineleaf biscuitroot

Seed yields of *L. triternatum* showed a quadratic response to irrigation plus spring precipitation from 2008 through 2013 (Tables 4 and 6). In 2007 and 2014-2016, seed yield showed a positive

linear response to water applied plus spring precipitation. In 2017, seed yields did not respond to irrigation, probable due to heavy winter and spring precipitation. On average, seed yields of *L. triternatum* were maximized at 1,213 lb/acre by 12.4 inches of applied water plus spring precipitation.

#### Lomatium nudicaule, barestem biscuitroot

Seed yields did not respond to irrigation from 2012 to 2016 (Tables 4 and 6). In 2017, seed yields showed a quadratic response to irrigation rate. Seed yields in 2017 were 212 lb/acre with 8 inches of applied water.

#### Lomatium suksdorfii, Suksdorf's desert parsley

*Lomatium suksdorfii* started flowering in 2013, but only in small amounts. In the 4 years that seed was harvested, seed yields of *L. suksdorfii* responded to irrigation only in 2015 (Tables 5 and 7). In 2015, seed yield increased linearly with increasing water applied up to the highest amount of water applied, 8 inches.

#### **Management applications**

This report describes irrigation practices that can be immediately implemented by seed growers. Multi-year summaries of research findings are found in Tables 4-8.

## Conclusions

The *Lomatium* species were relatively slow to produce ample seed. *Lomatium grayi* and *L. triternatum* had reasonable seed yields starting in the second year, *L. dissectum* and *L. nudicaule* were productive in their fourth year, while *L. suksdorfii* was only moderately productive in the fifth year after planting. The delayed maturity affects the cost of seed production, but these species have proven to be strong perennials, especially when protected from rodent damage.

Due to the arid environment, supplemental irrigation may often be required for successful flowering and seed set because soil water reserves may be exhausted before seed formation. The total irrigation requirements for these arid-land species were low and varied by species (Table 8). *Lomatium nudicaule* and *L. suksdorfii* did not respond to irrigation most years; natural rainfall was sufficient to maximize its seed production in the absence of weed competition. *Lomatium dissectum* required approximately 6 inches of irrigation; *L. grayi* and *L. triternatum* responded quadratically to irrigation with the optimum varying by year. Accounting for precipitation improved the accuracy in the estimates of irrigation necessary for optimal seed production for *L. grayi*, *L. triternatum*, and *L. dissectum*.

## Acknowledgements

This project was funded by the U.S. Forest Service Great Basin Native Plant Project, U.S. Bureau of Land Management, Oregon State University, Malheur County Education Service District, and supported by Formula Grant nos. 2017-31100-06041 and 2017-31200-06041 from the USDA National Institute of Food and Agriculture.

|                   |      |          | Flowering   |        | Irrig            | ation             |                                |
|-------------------|------|----------|-------------|--------|------------------|-------------------|--------------------------------|
| Species           | Year | Start    | Peak        | End    | Start            | End               | Harvest                        |
| Lomatium          |      |          | _           |        | 19-              |                   |                                |
| dissectum         | 2006 | No flowe | -           |        | May              | 30-Jun            |                                |
|                   | 2007 | No flowe | -           |        | 5-Apr            | 24-Jun            |                                |
|                   | 2008 | •        | e flowering |        | 10-Apr           | 29-May            |                                |
|                   | 2009 | 10-Apr   |             | 7-May  | 20-Apr           | 28-May            | 16-Jun                         |
|                   | 2010 | 25-Apr   |             | 20-May | 15-Apr           | 28-May            | 21-Jun                         |
|                   | 2011 | 8-Apr    | 25-Apr      | 10-May | 21-Apr           | 7-Jun             | 20-Jun                         |
|                   | 2012 | 9-Apr    | 16-Apr      | 16-May | 13-Apr           | 24-May            | 4-Jun                          |
|                   | 2013 | 10-Apr   |             | 25-Apr | 4-Apr            | 16-May            | 4-Jun                          |
|                   | 2014 | 28-Mar   |             | 21-Apr | 7-Apr            | 20-May            | 2-Jun                          |
|                   | 2015 | 1-Apr    |             | 24-Apr | 1-Apr            | 13-May            | 26-May (0 in), 1-Jun (4, 8 in  |
|                   | 2016 | 25-Mar   |             | 24-Apr | 31-Mar           | 9-May             | 26-May                         |
|                   | 2017 | 7-Apr    |             | 8-May  | 19-Apr           | 6-Jun             | 6-Jun                          |
| Lomatium<br>grayi | 2006 | No flowe | arina       |        | 19-<br>May       | 30-Jun            |                                |
| giuyi             | 2000 | 5-Apr    | anng        | 10-May | 5-Apr            | 24-Jun            | 30-May, 29-Jun                 |
|                   | 2007 | 25-Mar   |             | 15-May |                  | 24-5011<br>29-May | 30-May, 19-Jun                 |
|                   | 2008 | 20-Mar   |             | 7-May  | 20-Apr           | 28-May            | 16-Jun                         |
|                   | 2009 | 15-Mar   |             | 15-May | 20-Apr<br>15-Apr | 28-May            | 22-Jun                         |
|                   | 2010 | 1-Apr    | 25-Apr      | 13-May | 21-Apr           | 7-Jun             | 22-Jun                         |
|                   | 2011 | 15-Mar   | 25-Apr      | 16-May | 13-Apr           | 24-May            | 14-Jun                         |
|                   | 2012 | 15-Mar   | 20 Арі      | 30-Apr | 4-Apr            | 16-May            | 10-Jun                         |
|                   | 2010 | 28-Mar   |             | 2-May  | 7-Apr            | 20-May            | 10-Jun                         |
|                   | 2015 | 1-Mar    |             | 28-Apr | 1-Apr            | 13-May            | 1-Jun                          |
|                   | 2016 | 7-Mar    |             | 29-Apr | 31-Mar           | 9-May             | 1-Jun                          |
|                   | 2017 | 15-Mar   |             | 12-May | 19-Apr           | 6-Jun             | 8-Jun                          |
| Lomatium          | 2011 | To Mar   |             | 12 May | 19-              | 0 0 dill          | 0 0011                         |
| triternatum       | 2006 | No flowe | ering       |        | May              | 30-Jun            |                                |
|                   | 2007 | 25-Apr   |             | 1-Jun  | 5-Apr            | 24-Jun            | 29-Jun, 16-Jul                 |
|                   | 2008 | 25-Apr   |             | 5-Jun  | 10-Apr           | 29-May            | 3-Jul                          |
|                   | 2009 | 10-Apr   | 7-May       | 1-Jun  | 20-Apr           | 28-May            | 26-Jun                         |
|                   | 2010 | 25-Apr   |             | 15-Jun | 15-Apr           | 28-May            | 22-Jul                         |
|                   | 2011 | 30-Apr   | 23-May      | 15-Jun | 21-Apr           | 7-Jun             | 26-Jul                         |
|                   | 2012 | 12-Apr   | 17-May      | 6-Jun  | 13-Apr           | 24-May            | 21-Jun                         |
|                   | 2013 | 18-Apr   |             | 10-May | 4-Apr            | 16-May            | 4-Jun                          |
|                   | 2014 | 7-Apr    | 29-Apr      | 2-May  | 7-Apr            | 20-May            | 4-Jun                          |
|                   | 2015 | 10-Apr   | 28-Apr      | 20-May | 1-Apr            | 13-May            | 7-Jun (0 in), 15-Jun (4, 8 in) |
|                   | 2016 | 11-Apr   | 28-Apr      | 20-May | 31-Mar           | 9-May             | 15-Jun                         |
|                   | 2017 | 24-Apr   | 15-May      | 30-May | 19-Apr           | 6-Jun             | 27-Jun                         |

Table 2. *Lomatium* flowering, irrigation, and seed harvest dates by species in 2006-2017, Malheur Experiment Station, Oregon State University, Ontario, OR. Continued on next page.

|                     |      |          | Flowering |        |        | ation  |         |
|---------------------|------|----------|-----------|--------|--------|--------|---------|
| Species             | Year | Start    | Peak      | End    | Start  | End    | Harvest |
| Lomatium nudicaule  | 2011 | No flowe | ering     |        |        |        |         |
|                     | 2012 | 12-Apr   | 1-May     | 30-May | 18-Apr | 30-May | 22-Jun  |
|                     | 2013 | 11-Apr   |           | 20-May | 12-Apr | 22-May | 10-Jun  |
|                     | 2014 | 7-Apr    |           | 13-May | 7-Apr  | 20-May | 16-Jun  |
|                     | 2015 | 25-Mar   |           | 5-May  | 1-Apr  | 13-May | 8-Jun   |
|                     | 2016 | 5-Apr    |           | 5-May  | 11-Apr | 23-May | 6-Jun   |
|                     | 2017 | 12-Apr   |           | 15-May | 19-Apr | 6-Jun  | 19-Jun  |
| Lomatium suksdorfii | 2013 | 18-Apr   |           | 23-May |        |        |         |
|                     | 2014 | 15-Apr   |           | 20-May | 7-Apr  | 20-May | 30-Jun  |
|                     | 2015 | 3-Apr    | 27-Apr    | 10-May | 1-Apr  | 13-May | 23-Jun  |
|                     | 2016 | 5-Apr    | 27-Apr    | 31-May | 11-Apr | 23-May | 28-Jun  |
|                     | 2017 | 17-Apr   |           | 2-Jun  | 19-Apr | 6-Jun  | 19-Jun  |

Table 2. Continued. *Lomatium* flowering, irrigation, and seed harvest dates by species in 2006-2017, Malheur Experiment Station, Oregon State University, Ontario, OR.

Table 3. Precipitation and growing degree-days at the Malheur Experiment Station, Oregon State University, Ontario, OR, 2006-2017.

|                  |        | Precipitatio    | on (inch)              | Growing degree-days (50-86°F) |
|------------------|--------|-----------------|------------------------|-------------------------------|
| Year             | Spring | Winter + spring | Fall + winter + spring | Jan-Jun                       |
| 2006             | 3.4    | 10.1            | 14.5                   | 1273                          |
| 2007             | 1.9    | 3.8             | 6.2                    | 1406                          |
| 2008             | 1.4    | 3.2             | 6.7                    | 1087                          |
| 2009             | 4.1    | 6.7             | 8.9                    | 1207                          |
| 2010             | 4.3    | 8.4             | 11.7                   | 971                           |
| 2011             | 4.8    | 9.3             | 14.5                   | 856                           |
| 2012             | 2.6    | 6.1             | 8.4                    | 1228                          |
| 2013             | 0.9    | 2.4             | 5.3                    | 1319                          |
| 2014             | 1.7    | 5.1             | 8.1                    | 1333                          |
| 2015             | 3.2    | 5.9             | 10.4                   | 1610                          |
| 2016             | 2.2    | 5.0             | 10.1                   | 1458                          |
| 2017             | 4.0    | 9.7             | 12.7                   | 1196                          |
| 12-year average: | 2.9    | 6.3             | 9.8                    | 23-year average: 1207         |

|            |           | Ir       | rigation ra  | te       | -                  |            |            | Ir       | rigation ra | te       | -                  |
|------------|-----------|----------|--------------|----------|--------------------|------------|------------|----------|-------------|----------|--------------------|
| Species    | Year      | 0 inches | 4 inches     | 8 inches | LSD (0.05)         | Species    | Year       | 0 inches | 4 inches    | 8 inches | LSD (0.05)         |
| Lomatium o | lissectum |          | lb/acre      | :        |                    | Lomatiu    | m grayi    |          | Ib/acre -   |          |                    |
|            | 2006      | r        | no flowerin  | g        |                    |            | 2006       | n        | no flowerin | g        |                    |
|            | 2007      | r        | no flowerin  | g        |                    |            | 2007       | 36.1     | 88.3        | 131.9    | 77.7 <sup>b</sup>  |
|            | 2008      | - very   | little flowe | ering -  |                    |            | 2008       | 393.3    | 1287.0      | 1444.9   | 141.0              |
|            | 2009      | 50.6     | 320.5        | 327.8    | 196.4 <sup>b</sup> |            | 2009       | 359.9    | 579.8       | 686.5    | 208.4              |
|            | 2010      | 265.8    | 543.8        | 499.6    | 199.6              |            | 2010       | 1035.7   | 1143.5      | 704.8    | NS                 |
|            | 2011      | 567.5    | 1342.8       | 1113.8   | 180.9              |            | 2011       | 570.3    | 572.7       | 347.6    | NS                 |
|            | 2012      | 388.1    | 460.3        | 444.4    | NS                 |            | 2012       | 231.9    | 404.4       | 377.3    | 107.4              |
|            | 2013      | 527.8    | 959.8        | 1166.7   | 282.4              |            | 2013       | 596.7    | 933.4       | 1036.3   | NS                 |
|            | 2014      | 353.4    | 978.9        | 1368.3   | 353.9              |            | 2014       | 533.1    | 1418.1      | 1241.3   | 672.0              |
|            | 2015      | 591.2    | 1094.7       | 1376.0   | 348.7              |            | 2015       | 186.4    | 576.7       | 297.6    | 213.9              |
|            | 2016      | 1039.4   | 1612.7       | 1745.4   | 564.2              |            | 2016       | 483.7    | 644.2       | 322.9    | 218.7              |
|            | 2017      | 488.2    | 713.1        | 674.4    | 220.5 <sup>b</sup> |            | 2017       | 333.5    | 259.5       | 246.3    | NS                 |
| 9-year av  | /erage    | 474.7    | 923.3        | 968.5    | 137.1              | 11-year a  | average    | 438.4    | 718.9       | 621.6    | 210.5              |
|            |           |          |              |          |                    |            |            |          |             |          |                    |
|            |           |          | rigation ra  |          | _                  |            |            |          | rigation ra |          |                    |
| Species    | Year      |          |              |          | LSD (0.05)         | Species    | Year       | 0 inches | 4 inches    | 8 inches | LSD (0.05)         |
| Lomatium r | nudicaule |          | Ib/acre -    |          |                    | Lomatium t | riternatum |          | Ib/acre -   |          |                    |
|            |           |          |              |          |                    |            | 2006       | n        | no flowerin | g        |                    |
|            |           |          |              |          |                    |            | 2007       | 2.3      | 17.5        | 26.7     | 16.9 <sup>b</sup>  |
|            |           |          |              |          |                    |            | 2008       | 195.3    | 1060.9      | 1386.9   | 410.0              |
|            |           |          |              |          |                    |            | 2009       | 181.6    | 780.1       | 676.1    | 177.0              |
|            | 2010      | r        | no flowerin  | g        |                    |            | 2010       | 1637.2   | 2829.6      | 3194.6   | 309.4              |
|            | 2011      | r        | no flowerin  | g        |                    |            | 2011       | 1982.9   | 2624.5      | 2028.1   | 502.3 <sup>b</sup> |
|            | 2012      | 53.8     | 123.8        | 61.1     | NS                 |            | 2012       | 238.7    | 603.0       | 733.2    | 323.9              |
|            | 2013      | 357.6    | 499.1        | 544.0    | NS                 |            | 2013       | 153.7    | 734.4       | 1050.9   | 425.0              |
|            | 2014      | 701.3    | 655.6        | 590.9    | NS                 |            | 2014       | 240.6    | 897.1       | 1496.7   | 157.0              |
|            | 2015      | 430.6    | 406.1        | 309.3    | NS                 |            | 2015       | 403.2    | 440.8       | 954.9    | 446.6              |
|            | 2016      | 363.0    | 403.7        | 332.5    | NS                 |            | 2016       | 395.0    | 475.7       | 638.4    | 175.7              |
|            | 2017      | 53.7     | 159.7        | 212.0    | 49.7               |            | 2017       | 932.8    | 948.9       | 1266.2   | 216.8              |
|            |           |          |              |          |                    |            |            |          |             |          |                    |

Table 4. Seed yield response to irrigation rate (inches/season) for four *Lomatium* species in 2006 through 2017. Malheur Experiment Station, Oregon State University, Ontario, OR.

<sup>a</sup>LSD (0.10)

6-year average

326.7

374.7

341.6

NS

11-year average

1037.5

1211.2

128.2

578.5

Table 5. Seed yield response to irrigation rate (inches/season) for two *Lomatium* species in 2014-2017. Malheur Experiment Station, Oregon State University, Ontario, OR.

|                              |      |          | Irrigation rate | e        |        |
|------------------------------|------|----------|-----------------|----------|--------|
|                              |      |          |                 |          | LSD    |
| Species                      | Year | 0 inches | 4 inches        | 8 inches | (0.05) |
|                              |      |          | lb/acre         |          |        |
| Lomatium dissectum 'Riggins' | 2014 | 276.8    | 497.7           | 398.4    | 163    |
|                              | 2016 | 299.1    | 679.5           | 592.4    | 247.4  |
|                              | 2017 | 315.1    | 405.1           | 440.0    | 87.4   |
| 3-year average               |      | 297.0    | 527.4           | 476.9    | 141.8  |
| Lomatium dissectum '38'      | 2014 | 281.9    | 356.4           | 227.1    | NS     |
|                              | 2015 | 865.1    | 820.9           | 774.6    | NS     |
|                              | 2016 | 474.8    | 634.5           | 620.0    | 70.3   |
|                              | 2017 | 398.8    | 575.0           | 553.2    | NS     |
| 4-year average               |      | 508.4    | 596.7           | 523.7    | NS     |
| Lomatium dissectum '41'      | 2014 | 222.2    | 262.4           | 149.8    | NS     |
|                              | 2015 | 152.2    | 561.9           | 407.4    | 181.4  |
|                              | 2016 | 238.1    | 297.7           | 302.0    | NS     |
|                              | 2017 | 214.9    | 363.0           | 377.5    | 71.0   |
| 4-year average               |      | 206.9    | 371.2           | 309.2    | 124.8  |
| Lomatium suksdorfii          | 2014 | 162.6    | 180.0           | 139.8    | NS     |
|                              | 2015 | 829.6    | 1103.9          | 1832.0   | 750.2  |
|                              | 2016 | 692.6    | 898.8           | 467.5    | NS     |
|                              | 2017 | 1315.5   | 1736.6          | 1315.5   | NS     |
| 4-year average               |      | 1025.7   | 979.8           | 1025.7   | NS     |

Table 6. Regression analysis for native wildflower seed yield (y) in response to irrigation (x) (inches/season) using the equation  $y = a + bx + cx^2$  in 2006-2017, and 9- to 11-year averages. For the quadratic equations, the amount of irrigation that resulted in maximum yield was calculated using the formula: -b/2c, where b is the linear parameter and c is the quadratic parameter. Malheur Experiment Station, Oregon State University, Ontario, OR.

| Lomatium   | dissectum   |        |           |       |       |         | Water applied plus   |                 |
|------------|-------------|--------|-----------|-------|-------|---------|----------------------|-----------------|
|            |             |        |           |       |       | Maximum | spring precipitation | Spring          |
| Year       | intercept   | linear | quadratic | $R^2$ | Р     | yield   | for maximum yield    | precipitation   |
|            | •           |        |           |       |       | lb/acre | inches/season        | inch            |
| 2009       | -922.0      | 307.9  | -16.9     | 0.60  | 0.05  | 478     | 9.1                  | 4.1             |
| 2010       | -178.3      | 128.3  | -5.9      | 0.51  | 0.05  | 514     | 10.8                 | 4.3             |
| 2011       | -1669.6     | 618.7  | -31.4     | 0.86  | 0.001 | 1380    | 9.9                  | 4.8             |
| 2012       | 293.9       | 43.4   | -2.8      | 0.07  | NS    |         |                      | 2.6             |
| 2013       | 407.0       | 148.1  | -7.0      | 0.68  | 0.01  | 1186    | 10.5                 | 0.9             |
| 2014       | 9.7         | 211.4  | -7.4      | 0.83  | 0.001 | 1524    | 14.3                 | 1.7             |
| 2015       | 24.5        | 198.4  | -6.9      | 0.78  | 0.01  | 1441    | 14.3                 | 3.2             |
| 2016       | 916.9       | 88.2   |           | 0.42  | 0.05  | 1623    | 10.2                 | 2.2             |
| 2017       | 134.7       | 139.9  | -8.2      | 0.40  | 0.10  | 730     | 8.5                  | 4.0             |
| Average    | -146.8      | 240.2  | -12.6     | 0.91  | 0.001 | 999     | 9.5                  | 2.9             |
| Lomatium g | grayi       |        |           |       |       |         | Water applied plus   |                 |
|            |             |        |           |       |       |         | fall, winter, and    | Spring, winter, |
|            |             |        |           |       |       | Maximum | spring precipitation | fall            |
| Year       | intercept   | linear | quadratic | $R^2$ | Р     | yield   | for maximum yield    | precipitation   |
|            |             |        |           |       |       | lb/acre | inches/season        | inch            |
| 2007       | -36.6       | 12.0   |           | 0.26  | 0.10  | 59      | 14.2                 | 6.19            |
| 2008       | -2721.1     | 621.3  | -23.0     |       | 0.001 | 1475    | 13.5                 | 6.65            |
| 2009       | 17.8        | 40.8   |           | 0.38  | 0.05  | 344     | 16.8                 | 8.8             |
| 2010       | -2431.4     | 495.9  | -17.1     | 0.22  | NS    |         |                      | 11.7            |
| 2011       | -1335.1     | 234.7  | -7.1      | 0.07  | NS    |         |                      | 14.5            |
| 2012       | -778.8      | 172.8  | -6.2      | 0.66  | 0.01  | 418     | 13.8                 | 8.4             |
| 2013       | 344.3       | 55.0   |           | 0.25  | 0.10  | 1075    | 13.3                 | 5.3             |
| 2014       | -4502.3     | 890.8  | -33.2     | 0.64  | 0.05  | 1477    | 13.4                 | 8.1             |
| 2015       | -3980.4     | 617.7  | -20.9     | 0.71  | 0.01  | 579     | 14.8                 | 10.4            |
| 2016       | -2046.2     | 403.1  | -15.1     | 0.66  | 0.01  | 651     | 13.4                 | 9.1             |
| 2017       | 461.9       | -10.9  |           | 0.22  | NS    |         |                      | 12.7            |
| Average    | -1690.8     | 337.9  | -11.8     | 0.55  | 0.05  | 730     | 14.3                 | 9.8             |
| Lomatium   | triternatum |        |           |       |       |         | Water applied plus   |                 |
|            |             |        |           |       |       | Maximum | spring precipitation | Spring          |
| Year       | intercept   | linear | quadratic | $R^2$ | Р     | yield   | for maximum yield    | precipitation   |
|            |             |        |           |       |       | lb/acre | inches/season        | inch            |
| 2007       | -2.6        | 3.1    |           |       | 0.01  | 28      | 9.9                  | 1.92            |
| 2008       | -245.1      | 332.1  |           |       | 0.01  | 1390    | 9.8                  | 1.43            |
| 2009       | -1148.3     | 416.1  | -22.0     |       | 0.001 | 824     | 9.5                  | 4.1             |
| 2010       | -586.2      | 625.4  |           |       | 0.001 | 3196    | 12.1                 | 4.3             |
| 2011       | -400.3      | 684.1  | -38.7     |       | 0.10  | 2623    | 8.8                  | 4.8             |
| 2012       | -123.6      | 158.4  | -7.3      |       | 0.05  | 734     | 10.8                 | 2.6             |
| 2013       | -3.8        | 192.2  | -8.3      |       | 0.01  | 1115    | 11.6                 | 0.9             |
| 2014       | -22.7       | 157.4  |           |       | 0.001 | 1509    | 9.7                  | 1.7             |
| 2015       | 101.8       | 69.0   |           |       | 0.01  | 875     | 11.2                 | 3.2             |
| 2016       | 313.9       | 30.4   |           |       | 0.10  | 624     | 10.2                 | 2.2             |
| 2017       | 717.1       | 41.7   | _         | 0.20  | NS    | 1217    | 12.0                 | 4.0             |
| Average    | -159.2      | 221.2  | -8.9      | 0.81  | 0.001 | 1213    | 12.4                 | 2.9             |

Table 7. Regression analysis for seed yield response to irrigation rate (inches/season) in 2012-2017 for *Lomatium nudicaule, L. suksdorfii*, and three selections of *L. dissectum* planted in 2009. For the quadratic equations, the amount of irrigation that resulted in maximum yield was calculated using the formula: -b/2c, where b is the linear parameter and c is the quadratic parameter. Malheur Experiment Station, Oregon State University, Ontario, OR.

| Lomatium n             | udicaule               |                |                |              |          |                  |                                         |               |
|------------------------|------------------------|----------------|----------------|--------------|----------|------------------|-----------------------------------------|---------------|
| Year                   | intercent              | linear         | quadratic      | $R^2$        | Р        | Maximum          | Water applied for                       |               |
| real                   | intercept              | lineal         | quadratic      | Π-           | Ρ        | yield<br>lb/acre | maximum yield<br>inches/season          |               |
| 2012                   | 53.8                   | 34.1           | -4.1           | 0.18         | NS       | 10/0010          |                                         |               |
| 2013                   | 357.6                  | 47.5           | -3.0           | 0.11         | NS       |                  |                                         |               |
| 2014                   | 704.5                  | -13.8          |                | 0.08         | NS       |                  |                                         |               |
| 2015                   | 430.6                  | 2.9            | -2.3           | 0.15         | NS       |                  |                                         |               |
| 2016                   | 363.0                  | 24.1           | -3.5           | 0.07         | NS       |                  |                                         |               |
| 2017                   | 53.7                   | 33.2           | -1.7           | 0.75         |          | 218              | 9.9                                     |               |
| Average                | 399.2                  | -1.2           |                | 0.01         | NS       |                  |                                         | <u>.</u>      |
| Lomatium su            | uksdorfii              |                |                |              |          |                  |                                         |               |
| Year                   | intercept              | linear         | quadratic      | $R^2$        | Ρ        | Maximum<br>yield | Water applied for<br>maximum yield      |               |
| 0011                   | 400.0                  |                | 4.0            | 0.04         |          | lb/acre          | inches/season                           |               |
| 2014                   | 162.6                  | 11.5           | -1.8           | 0.01         | NS       | 4750             | 0.0                                     |               |
| 2015                   | 753.9                  | 125.3          | 10.0           |              | 0.05     | 1756             | 8.0                                     |               |
| 2016<br>2017           | 692.6<br>750.7         | 131.2<br>422.4 | -19.9<br>-44.0 | 0.17<br>0.39 | NS<br>NS |                  |                                         |               |
|                        | 608.9                  | 422.4          | -44.0          | 0.39         | NS       |                  |                                         |               |
| Average<br>Lomatium di |                        |                | -10.2          | 0.20         | NO       |                  | Water applied plus                      |               |
| Lomatium u             |                        | Jyins          |                |              |          | Maximum          | spring precipitation                    | Spring        |
| Year                   | intercept              | linear         | quadratic      | $R^2$        | Р        | yield            | for maximum yield                       | precipitation |
| 1041                   | intercept              | inteal         | quadrano       |              |          | lb/acre          | inches/season                           | inch          |
| 2014                   | 82.1                   | 129.9          | -10.0          | 0.57         | 0.05     | 503              | 6.5                                     | 1.7           |
| 2016                   | -113.8                 | 218.4          | -14.6          |              | 0.05     | 703              | 7.5                                     | 2.2           |
| 2017                   | 262.3                  | 15.6           |                |              | 0.05     | 387              | 8.0                                     | 4.0           |
| Average                | -209.5                 | 162.4          | -8.8           | 0.65         | 0.01     | 542              | 9.3                                     | 2.8           |
| Lomatium di            | issectum '38'          |                |                |              |          |                  |                                         |               |
|                        |                        |                |                |              |          | Maximum          | Water applied for                       | Spring        |
| Year                   | intercept              | linear         | quadratic      | $R^2$        | Р        | yield            | maximum yield                           | precipitation |
|                        |                        |                |                |              |          | lb/acre          | inches/season                           | inch          |
| 2014                   | 281.9                  | 44.1           | -6.4           | 0.11         | NS       |                  |                                         | 1.7           |
| 2015                   | 865.4                  | -11.3          |                | 0.01         | NS       |                  |                                         | 3.2           |
| 2016                   | 474.8                  | 61.7           | -5.4           | 0.32         | NS       |                  |                                         | 2.2           |
| 2017                   | 398.8                  | 68.8           | -6.2           | 0.38         | NS<br>NS |                  |                                         | 4.0           |
| Average                | 508.4<br>issectum '41' | 42.2           | -5.0           | 0.1          | 112      |                  | Motor onalised alue                     | 2.8           |
| Lomatium u             | SSectum 41             |                |                |              |          | Maximum          | Water applied plus spring precipitation | Spring        |
| Year                   | intercept              | linear         | quadratic      | $R^2$        | Р        | yield            | for maximum yield                       | precipitation |
|                        |                        |                | 10001000       |              |          | lb/acre          | inches/season                           | inch          |
| 2014                   | 222.2                  | 29.1           | -4.8           | 0.13         | NS       |                  |                                         | 1.7           |
| 2015                   | -587.4                 | 286.5          | -17.6          | 0.67         |          | 576              | 8.1                                     | 3.2           |
| 2016                   | 181.3                  | 29.4           | -1.7           |              |          | -                |                                         | 2.2           |
| 2017                   | -64.2                  | 86.9           | -4.2           | 0.70         |          | 388              | 10.4                                    | 4.0           |
|                        |                        |                |                |              | 0.05     | 377              | 7.7                                     | 2.8           |

Table 8. Amount of irrigation water plus precipitation for maximum *Lomatium* seed yield, years to seed set, and life span. A summary of multi-year research findings, Malheur Experiment Station, Oregon State University, Ontario, OR.

| Species              | Optimum amount of irrigation<br>plus precipitation               | Critical precipitation<br>period | Years to first seed set | Life<br>span |
|----------------------|------------------------------------------------------------------|----------------------------------|-------------------------|--------------|
|                      | inches                                                           |                                  | from fall<br>planting   | years        |
| Lomatium dissectum   | 7.7-9.5ª                                                         | spring                           | 4                       | 9+           |
| Lomatium grayi       | 14.3                                                             | fall, winter, and spring         | 2                       | 9+           |
| Lomatium nudicaule   | no response in 5 out of 6 years,<br>8 inches in 2017             |                                  | 3                       | 4+           |
| Lomatium triternatum | 12.4                                                             | spring                           | 2                       | 9+           |
| Lomatium suksdorfii  | no response in 2014, 2016, and 2017, 8 inches irrigation in 2015 | undetermined                     | 5                       | 5+           |

<sup>a</sup>The amount of recommended irrigation plus precipitation varied with the *L. dissectum* seed source.

## IRRIGATION REQUIREMENTS FOR SEED PRODUCTION OF FIVE NATIVE PENSTEMON SPECIES

Clinton C. Shock, Erik B. G. Feibert, Alicia Rivera, and Lamont D. Saunders, Malheur Experiment Station, Oregon State University, Ontario, OR, 2017

Nancy Shaw and Francis Kilkenny, U.S. Forest Service, Rocky Mountain Research Station, Boise, ID

## Summary

Penstemon is an important wildflower genus in the Great Basin of the United States. Seed of *Penstemon* species is desired for rangeland restoration activities, but little cultural practice information is known for seed production of native penstemons. The seed yield response of five *Penstemon* species to four biweekly irrigations applying either 0, 1, or 2 inches of water (a total of 0, 4, or 8 inches of water/season) was evaluated over multiple years. Penstemon acuminatus (sharpleaf penstemon) seed yields were maximized by 4-8 inches of water applied per season in warmer, drier years and did not respond to irrigation in cooler, wetter years. In 7 years of testing, P. cyaneus (blue penstemon) responded to irrigation only in 2013, a dry year with 4 inches of water applied maximizing yields. In 7 years of testing, P. pachyphyllus (thickleaf beardtongue) seed yields responded to irrigation only in 2013 with 8 inches of water applied maximizing yields. In 7 years of testing, seed yields of *P. deustus* (scabland penstemon) responded to irrigation only in 2015, with highest yields resulting from 5.4 inches of water applied. From 2006 to 2017, P. speciosus showed a quadratic response to irrigation in 7 out of the 11 years. *Penstemon speciosus* showed either no response or a negative response to irrigation in 3 years with higher than average spring precipitation. Averaged over the 12 years of testing, P. speciosus seed yields were maximized by 8.8 inches of water applied plus spring precipitation.

## Introduction

Native wildflower seed is needed to restore rangelands of the Intermountain West. Commercial seed production is necessary to provide the quantity of seed needed for restoration efforts. A major limitation to economically viable commercial production of native wildflower (forb) seed is stable and consistent seed productivity over years.

In native rangelands, the natural variation in spring rainfall and soil moisture results in highly unpredictable water stress at flowering, seed set, and seed development, which for other seed crops is known to compromise seed yield and quality.

Native wildflower plants are not well adapted to croplands; they often do not compete with crop weeds in cultivated fields, and this could limit wildflower seed production. Both sprinkler and furrow irrigation could provide supplemental water for seed production, but these irrigation systems risk further encouraging weeds. Also, sprinkler and furrow irrigation can lead to the

loss of plant stand and seed production due to fungal pathogens. By burying drip tapes at 12inch depth and avoiding wetting the soil surface, we designed experiments to assure flowering and seed set without undue encouragement of weeds or opportunistic diseases. The trials reported here tested the effects of three low rates of irrigation on the seed yield of five species of *Penstemon* native to the Intermountain West (Table 1).

Table 1. *Penstemon* species planted in the drip-irrigation trials at the Malheur Experiment Station, Oregon State University, Ontario, OR.

| Species                | Common names                             |
|------------------------|------------------------------------------|
| Penstemon acuminatus   | sharpleaf penstemon, sand-dune penstemon |
| Penstemon cyaneus      | blue penstemon                           |
| Penstemon deustus      | scabland penstemon, hotrock penstemon    |
| Penstemon pachyphyllus | thickleaf beardtongue                    |
| Penstemon speciosus    | royal penstemon, sagebrush penstemon     |

## **Materials and Methods**

#### Plant establishment: Penstemon acuminatus, P. deustus, and P. speciosus

Seed of *Penstemon acuminatus, P. deustus,* and *P. speciosus* was received in late November in 2004 from the Rocky Mountain Research Station (Boise, ID). The plan was to plant the seed in the fall of 2004, but due to excessive rainfall in October, the ground preparation was not completed and planting was postponed to early 2005. To try to ensure germination, the seed was submitted to cold stratification. The seed was soaked overnight in distilled water on January 26, 2005, after which the water was drained and the seed soaked for 20 min in a 10% by volume solution of 13% bleach in distilled water. The water was drained and the seed was placed in thin layers in plastic containers. The plastic containers had lids with holes drilled in them to allow air movement. These containers were placed in a cooler set at approximately 34°F. Every few days the seed was mixed and, if necessary, distilled water added to maintain seed moisture.

In late February 2005, drip tape (T-Tape TSX 515-16-340) was buried at 12-inch depth between two 30-inch rows of a Nyssa silt loam with a pH of 8.3 and 1.1% organic matter. The drip tape was buried in alternating inter-row spaces (5 ft apart). The flow rate for the drip tape was 0.34 gal/min/100 ft at 8 psi with emitters spaced 16 inches apart, resulting in a water application rate of 0.066 inch/hour.

On March 3, the seed was planted in 30-inch rows using a custom-made small-plot grain drill with disc openers. All seed was planted at 20-30 seeds/ft of row. The seed was planted at 0.25-inch depth. The trial was irrigated with a minisprinkler system (R10 Turbo Rotator, Nelson Irrigation Corp., Walla Walla, WA) for even stand establishment from March 4 to April 29. Risers were spaced 25 ft apart along the flexible polyethylene hose laterals that were spaced 30 ft apart and the water application rate was 0.10 inch/hour. A total of 1.72 inches of water was applied with the minisprinkler system. Seed emerged by late April. Starting June 24, the field was irrigated with the drip system. A total of 3.73 inches of water was applied with the drip system from June 24 to July 7. The field was not irrigated further in 2005.

Plant stands were uneven. None of the species flowered in 2005. In early October 2005, more seed was received from the Rocky Mountain Research Station for replanting. The empty lengths of row were replanted by hand on October 26, 2005 and fall and winter moisture was allowed to germinate the seed. In the spring of 2006, the plant stands of the replanted species were excellent, except for *Penstemon deustus*. On November 11, 2006, the *P. deustus* plots were replanted again at 30 seeds/ft of row.

#### **Cultural practices in 2006**

On October 27, 2006, 50 lb phosphorus (P)/acre and 2 lb zinc (Zn)/acre were injected through the drip tape to all plots of each species. On November 17, all plots had Prowl<sup>®</sup> at 1 lb ai/acre broadcast on the soil surface for weed control. Irrigations for all species were initiated on May 19 and terminated on June 30.

#### **Cultural practices in 2007**

*Penstemon acuminatus* and *P. speciosus* were sprayed with Aza-Direct<sup>®</sup> at 0.0062 lb ai/acre on May 14 and 29 for lygus bug control. Irrigations for each species were initiated and terminated on different dates (Table 2).

#### **Cultural practices in 2008**

On November 9, 2007 and on April 15, 2008, Prowl at 1 lb ai/acre was broadcast on all plots for weed control. Capture<sup>®</sup> 2EC at 0.1 lb ai/acre was sprayed on all plots of *Penstemon acuminatus* and *P. speciosus* on May 20 for lygus bug control. Irrigations for each species were initiated and terminated on different dates (Table 2). Due to substantial stand loss, all plots of *P. deustus* were disked out.

#### **Cultural practices in 2009**

On March 18, Prowl at 1 lb ai/acre and Volunteer<sup>®</sup> at 8 oz/acre were broadcast on all plots for weed control. On December 4, 2009, Prowl at 1 lb ai/acre was broadcast for weed control on all plots.

#### **Cultural practices in 2010**

On November 17, Prowl at 1 lb ai/acre was broadcast on all plots for weed control. Due to substantial stand loss, all plots of *P. acuminatus* were disked out.

#### **Cultural practices in 2011**

On November 9, Prowl at 1 lb ai/acre was broadcast on all plots for weed control.

#### **Cultural practices in 2013**

On April 3, Select Max<sup>®</sup> at 32 oz/acre was broadcast for grass weed control on all plots of *Penstemon speciosus*.

#### **Cultural practices in 2014**

On April 18, Orthene<sup>®</sup> at 8 oz/acre was broadcast on all plots of *Penstemon speciosus* for lygus bug control. On April 29, 5 lb iron (Fe)/acre was applied through the drip tape to all plots of *P*. *speciosus*.

#### **Cultural practices in 2015**

On April 20, Orthene at 8 oz/acre was broadcast on all plots of *Penstemon speciosus* for lygus bug control.

Stand of *P. speciosus* was poor in 2015 due to die-off, especially in the plots with the highest irrigation rate. On November 2, seed of *P. speciosus* was planted on the soil surface at 30 seeds/ft of row. Following planting, the beds were covered with row cover. The row cover (N-sulate, DeWitt Co., Inc., Sikeston, MO) covered four rows (two beds) and was applied with a mechanical plastic mulch layer.

Weeds were controlled in the first year after fall planting by hand-weeding. In subsequent years, weeds were controlled by yearly applications of Prowl (soil active herbicide) and hand-weeding. Stands of *P. speciosus* have regenerated by natural reseeding, but replanting was required in 2015. Prowl was not applied after 2011 to encourage natural reseeding.

#### **Cultural practices in 2016**

On March 2, Poast<sup>®</sup> at 30 oz/acre was broadcast on all plots for grass control. On October 27, Prowl at 1 lb ai/acre was broadcast on all plots for weed control.

While natural reseeding might be advantageous for maintaining stands for irrigation research, it might be disadvantageous for seed production, because of changes in the genetic composition of the stand over time.

#### Plant establishment: Penstemon cyaneus, P. deustus, and P. pachyphyllus

On November 25, 2009 seed of *Penstemon cyaneus*, *P. deustus*, and *P. pachyphyllus* was planted in 30-inch rows using a custom-made small-plot grain drill with disc openers. All seed was planted on the soil surface at 20-30 seeds/ft of row. After planting, sawdust was applied in a narrow band over the seed row at 0.26 oz/ft of row (558 lb/acre). Following planting and sawdust application, the beds were covered with row cover. The row cover (N-sulate) covered four rows (two beds) and was applied with a mechanical plastic mulch layer. The field was irrigated for 24 hours on December 2, 2009 due to very dry soil conditions.

#### **Cultural practices in 2010**

After the newly planted wildflowers had emerged, the row cover was removed in April. The irrigation treatments were not applied to these wildflowers in 2010. Stands of *Penstemon cyaneus* and *P. pachyphyllus* were not adequate for yield estimates.

Gaps in the rows were replanted by hand on November 5. The replanted seed was covered with a thin layer of 50% sawdust and 50% hydroseeding mulch (Hydrostraw LLC, Manteno, IL) by volume. The mulch mixture was sprayed with water using a backpack sprayer.

#### **Cultural practices in 2011**

Seed from the middle 2 rows in each plot of *Penstemon deustus* was harvested with a small plot combine. Seed from the middle 2 rows in each plot of the other species was harvested manually.

#### **Cultural practices in 2012**

Many areas of the wildflower seed production were suffering from severe iron deficiency early in the spring of 2012. On April 13, 2012, 50 lb nitrogen/acre, 10 lb P/acre, and 0.3 lb Fe/acre

was applied to all plots as liquid fertilizer injected through the drip tape. On April 23, 2012, 0.3 lb Fe/acre was applied to all plots as liquid fertilizer injected through the drip tape.

A substantial amount of plant death occurred in the *Penstemon deustus* plots during the winter and spring of 2011-2012. For *P. deustus*, only the undamaged parts in each plot were harvested. Seed of all species was harvested and cleaned manually. On October 26, dead *P. deustus* plants were removed and the empty row lengths were replanted by hand at 20-30 seeds/ft of row. After planting, sawdust was applied in a narrow band over the seed row. Following planting and sawdust application, the beds were covered with row cover.

#### Cultural practices in 2013

Seed of *Penstemon cyaneus* and *P. pachyphyllus* was harvested manually. The replanted *P. deustus* did not flower in 2013.

Weeds were controlled by hand weeding as necessary.

#### **Cultural practices in 2014**

On April 29, 0.3 lb Fe/acre was applied through the drip tape to all plots.

Seed of *Penstemon deustus* was harvested with a small plot combine. Seed of the other species was harvested manually.

#### **Cultural practices in 2015**

Seed of *Penstemon deustus* was harvested with a small plot combine. Seed of the other species was harvested manually.

Stands of *P. deustus* and *P. speciosus* were poor at the end of 2015 due to die-off. On November 5, 2015, seed of *P. deustus* and *P. speciosus* was planted on the soil surface at 30 seeds/ft of row. Following planting, the beds were covered with row cover. The row cover (N-sulate) covered four rows (two beds) and was applied with a mechanical plastic mulch layer.

Stands of *P. cyaneus* and *P. pachyphyllus* are currently poor, but might regenerate from natural reseeding. While natural reseeding might be advantageous for maintaining stands for irrigation research, natural reseeding might be disadvantageous for seed production, because of changes in the genetic composition of the stand over time. Weeds were controlled each year by hand weeding.

#### **Cultural practices in 2016**

On October 27, 2016, Prowl at 1 lb ai/acre was broadcast on all plots for weed control.

#### Irrigation for seed production

In April, 2006 each planted strip of *Penstemon acuminatus*, *P. deustus*, and *P. speciosus* was divided into plots 30 ft long. Each plot contained four rows of each species. The experimental designs were randomized complete blocks with four replicates. The three treatments were a nonirrigated check, 1 inch of water applied per irrigation, and 2 inches of water applied per irrigation. Each treatment received 4 irrigations that were applied approximately every 2 weeks starting with bud formation and flowering. The amount of water applied to each treatment was calculated by the length of time necessary to deliver 1 or 2 inches through the drip system. Irrigations were regulated with a controller and solenoid valves. After each irrigation, the

amount of water applied was read on a water meter and recorded to ensure correct water applications.

In March of 2007, the drip-irrigation system was modified to allow separate irrigation of the species due to different timings of flowering. *Penstemon deustus* and *P. speciosus* were irrigated together, but separately from *P. acuminatus*.

Irrigation dates are found in Table 2. In 2007, irrigation treatments were inadvertently continued after the fourth irrigation. Irrigation treatments for all species were continued until the last irrigation on June 24, 2007.

*Penstemon cyaneus, P. deustus* (second planting), and *P. pachyphyllus* were irrigated together starting in 2011 using the same procedures as previously described.

#### Flowering, harvesting, and seed cleaning

Flowering dates for each species were recorded (Table 2). Each year, the middle two rows of each plot were harvested when seed of each species was mature (Table 2). The plant stand for the first planting of *P. deustus* was too poor to result in reliable seed yield estimates. Replanting of *P. deustus* in the fall of 2006 did not result in adequate plant stand in the spring of 2007.

All species were harvested with a Wintersteiger small plot combine. *Penstemon deustus* seed pods were too hard to be opened in the combine; the unthreshed seed was precleaned in a small clipper seed cleaner and then seed pods were broken manually by rubbing the pods on a ribbed rubber mat. The seed was then cleaned again in the small clipper seed cleaner. The other species were threshed in the combine and the seed was further cleaned using a small clipper seed cleaner. Seed of *P. cyaneus, P. pachyphyllus,* and *P. speciosus* were harvested by hand when stands became too poor for combining.

#### Statistical analysis

Seed yield means were compared by analysis of variance and by linear and quadratic regression. Seed yield (y) in response to irrigation or irrigation plus precipitation (x, inches/season) was estimated by the equation  $y = a + b \cdot x + c \cdot x^2$ . For the quadratic equations, the amount of irrigation (x') that resulted in maximum yield (y') was calculated using the formula x' = -b/2c, where a is the intercept, b is the linear parameter, and c is the quadratic parameter. For the linear regressions, the seed yield responses to irrigation were based on the actual greatest amount of water applied plus precipitation and the measured average seed yield.

For *P. speciosus*, seed yields for each year were regressed separately against 1) applied water; 2) applied water plus spring precipitation; 3) applied water plus winter and spring precipitation; and 4) applied water plus fall, winter, and spring precipitation. Winter and spring precipitation occurred in the same year that yield was determined; fall precipitation occurred the prior year.

Adding the seasonal precipitation to the irrigation response equation could potentially provide a closer estimate of the amount of water required for maximum seed yields for *P. speciosus*. Regressions of seed yield each year were calculated on all the sequential seasonal amounts of precipitation and irrigation, but only some of the regressions are reported below. The period of precipitation plus applied water that had the lowest standard deviation for irrigation plus precipitation over the years was chosen as the most reliable independent variable for predicting seed yield. For the other species, there were few years where a yield response to irrigation existed, so yield responses only to water applied are reported.

## **Results and Discussion**

Precipitation showed large year-to-year variation over the 12 years of irrigation trials (Table 3). The accumulated growing degree-days (50-86°F) from January through June in 2006, 2007, and 2013-2016 were higher than average (Table 3).

#### Flowering and seed set

*Penstemon acuminatus* and *P. speciosus* had poor seed set in 2007, partly due to a heavy lygus bug infestation that was not adequately controlled by the applied insecticides. In the Treasure Valley, the first hatch of lygus bugs occurs when 250 degree-days (52°F base) are accumulated. Data collected by an AgriMet weather station adjacent to the field indicated that the first lygus bug hatch occurred on May 14, 2006; May 1, 2007; May 18, 2008; May 19, 2009; and May 29, 2010. The average (1995-2010) lygus bug hatch date was May 18. *Penstemon acuminatus* and *P. speciosus* start flowering in early May (Table 2). The earlier lygus bug hatch in 2007 probably resulted in harmful levels of lygus bugs present during a larger part of the *Penstemon* spp. flowering period than normal. Poor seed set for *P. acuminatus* and *P. speciosus* in 2007 also was related to poor vegetative growth compared to 2006 and 2008. In 2009, all plots of *P. acuminatus* in 2009, killing all plants in two of the four plots of the wettest treatment (2 inches per irrigation). Root rot affected the wetter plots of *P. speciosus* in 2009, but the stand partially recovered due to natural reseeding.

#### Seed yields

#### Penstemon speciosus, royal penstemon

In 2006-2009, 2012, 2014, and 2015, seed yield of *P. speciosus* showed a quadratic response to irrigation rate plus spring precipitation (Tables 4 and 5). Seed yields were maximized by 7.7, 6.1, 6.4, 8.3, 6.5, 6.9, and 8.2 inches of water applied plus spring precipitation in 2006, 2007, 2008, 2009, 2012, 2014, and 2015, respectively. In 2011 and 2017 there was no difference in seed yield between treatments. In 2010, seed yields were highest with no irrigation and 4.3 inches of spring precipitation. In 2013, seed yield increased with increasing water application, up to 8.9 inches, the highest amount tested (includes 0.9 inches of spring precipitation). Seed yield was low in 2007 due to lygus bug damage, as discussed previously. Seed yield in 2009 was low due to stand loss from root rot. The plant stand recovered somewhat in 2010 and 2011, due in part to natural reseeding, especially in the nonirrigated plots. The replanting of *P. speciosus* in the fall of 2015 resulted in a good stand in 2016. The new stand of *P. speciosus* did not flower in 2016.

#### Penstemon acuminatus, sharpleaf penstemon

There was no significant difference in seed yield between irrigation treatments for *P. acuminatus* in 2006 (Tables 4 and 5). Precipitation from March through June was 6.4 inches in 2006. The 64-year-average precipitation from March through June is 3.6 inches. The wet weather in 2006 could have attenuated the effects of the irrigation treatments. In 2007, seed yield showed a quadratic response to irrigation rate. Seed yields were maximized by 4.0 inches of water applied in 2007. In 2008, seed yield showed a linear response to applied water. In 2009 seed yield showed a negative response to irrigation. The negative effects of irrigation in 2009 were exacerbated by root rot, which was more pronounced in the irrigated plots. By 2010, substantial

lengths of row contained only dead plants. Measurements in each plot showed that plant death increased with increasing irrigation rate. The stand loss was 51.3, 63.9, and 88.5% for the 0-, 4-, and 8-inch irrigation treatments, respectively. The trial area was disked out in 2010. Following the 2005 planting, seed yields were substantial in 2006 and moderate in 2008. *Penstemon acuminatus* performed as a short-lived perennial.

#### Penstemon cyaneus, blue penstemon

From 2011 to 2017, seed yields were responsive to irrigation only in 2013 (Tables 4 and 5). In 2013, seed yields showed a quadratic response to irrigation with a maximum seed yield at 4 inches of water applied.

#### Penstemon deustus, scabland penstemon

Seed yields did not respond to irrigation in any year except 2011 and 2015. In 2011, seed yields were highest with no irrigation (Tables 4 and 5). In 2015, seed yield showed a quadratic response to irrigation with a maximum seed yield at 5.4 inches of water applied.

#### Penstemon pachyphyllus, thickleaf beardtongue

From 2011 to 2017, seed yields only responded to irrigation in 2013 (Tables 4 and 5). In 2013, seed yields increased with increasing irrigation up to the greatest level of 8 inches.

## Conclusions

Subsurface drip-irrigation systems were tested for native seed production because they have two potential strategic advantages: a) low water use, and b) the buried drip tape provides water to the plants at depth, precluding most irrigation-induced stimulation of weed seed germination on the soil surface and keeping water away from native plant tissues that are not adapted to a wet environment.

Due to the semi-arid environment, supplemental irrigation was occasionally required for successful flowering and seed set. The total irrigation requirements for these semi-arid-land species were low and varied by species and years (Table 6). In 4 years of testing, *Penstemon acuminatus* showed a quadratic response to irrigation in 2007 and 2008 and a negative response to irrigation in 2009. The years 2007 and 2008 had lower than average spring precipitation. From 2011 to 2017, *Penstemon cyaneus* and *P. pachyphyllus* responded to irrigation only in 2013, which had the lowest spring precipitation of the 7 years. From 2006 to 2017, *P. speciosus* showed a quadratic response to irrigation in 7 out of the 11 years. Similar to *P. pachyphyllus* and *P. cyaneus*, *P. speciosus* showed a positive linear response to irrigation in 3 years with higher than average spring precipitation.

## Acknowledgements

This project was funded by the U.S. Forest Service Great Basin Native Plant Project, U.S. Bureau of Land Management, Oregon State University, Malheur County Education Service District, and was supported by Formula Grant nos. 2017-31100-06041 and 2017-31200-06041 from the USDA National Institute of Food and Agriculture.

|                        |      | Flo        | owering dat | es     | Irrigatio | n dates |         |
|------------------------|------|------------|-------------|--------|-----------|---------|---------|
| Species                | Year | Start      | Peak        | End    | Start     | End     | Harvest |
| Penstemon acuminatus   | 2006 | 2-May      | 10-May      | 19-May | 19-May    | 30-Jun  | 7-Jul   |
|                        | 2007 | 19-Apr     | ,           | 25-May | 19-Apr    | 24-Jun  | 9-Jul   |
|                        | 2008 | 29-Apr     |             | 5-Jun  | 29-Apr    | 11-Jun  | 11-Jul  |
|                        | 2009 | 2-May      |             | 10-Jun | 8-May     | 12-Jun  | 10-Jul  |
| Penstemon cyaneus      | 2011 | 23-May     | 15-Jun      | 8-Jul  | 13-May    | 23-Jun  | 18-Jul  |
|                        | 2012 | 16-May     | 30-May      | 10-Jun | 27-Apr    | 7-Jun   | 27-Jun  |
|                        | 2013 | 3-May      | 21-May      | 5-Jun  | 24-Apr    | 5-Jun   | 11-Jul  |
|                        | 2014 | 5-May      | 13-May      | 8-Jun  | 29-Apr    | 10-Jun  | 14-Jul  |
|                        | 2015 | 5-May      |             | 12-Jun | 21-Apr    | 3-Jun   | 13-Jul  |
|                        | 2016 | 29-Apr     |             | 15-Jun | 18-Apr    | 31-May  | 8-Jul   |
|                        | 2017 | 8-May      | 15-May      | 7-Jun  | 2-May     | 20-Jun  | 17-Jul  |
| Penstemon deustus      | 2006 | 10-May     | 19-May      | 30-May | 19-May    | 30-Jun  | 4-Aug   |
|                        | 2007 | 5-May      | 25-May      | 25-Jun | 19-Apr    | 24-Jun  | -       |
|                        | 2008 | 5-May      | -           | 20-Jun | 18-Apr    | 31-May  |         |
|                        | 2011 | 23-May     | 20-Jun      | 14-Jul | 13-May    | 23-Jun  | 16-Aug  |
|                        | 2012 | 16-May     | 30-May      | 4-Jul  | 27-Apr    | 7-Jun   | 7-Aug   |
|                        | 2013 | 3-May      | 18-May      | 15-Jun | 24-Apr    | 5-Jun   | -       |
|                        | 2014 | 10-May     | 20-May      | 19-Jun | 29-Apr    | 10-Jun  | 21-Jul  |
|                        | 2015 | 1-May      |             | 10-Jun | 21-Apr    | 3-Jun   | 23-Jul  |
|                        | 2016 | no floweri | ng          |        | 18-Apr    | 31-May  |         |
|                        | 2017 | 15-May     | -<br>7-Jun  | 30-Jun | 2-May     | 20-Jun  | 1-Aug   |
| Penstemon pachyphyllus | 2011 | 10-May     | 30-May      | 20-Jun | 13-May    | 23-Jun  | 15-Jul  |
|                        | 2012 | 23-Apr     | 2-May       | 10-Jun | 27-Apr    | 7-Jun   | 26-Jun  |
|                        | 2013 | 26-Apr     |             | 21-May | 24-Apr    | 5-Jun   | 8-Jul   |
|                        | 2014 | 22-Apr     | 5-May       | 4-Jun  | 29-Apr    | 10-Jun  | 13-Jul  |
|                        | 2015 | 24-Apr     | 5-May       | 26-May | 21-Apr    | 3-Jun   | 10-Jul  |
|                        | 2016 | 18-Apr     |             | 13-May | 18-Apr    | 31-May  | 22-Jun  |
|                        | 2017 | 1-May      | 15-May      | 7-Jun  | 2-May     | 20-Jun  | 29-Jun  |
| Penstemon speciosus    | 2006 | 10-May     | 19-May      | 30-May | 19-May    | 30-Jun  | 13-Jul  |
|                        | 2007 | 5-May      | 25-May      | 25-Jun | 19-Apr    | 24-Jun  | 23-Jul  |
|                        | 2008 | 5-May      |             | 20-Jun | 29-Apr    | 11-Jun  | 17-Jul  |
|                        | 2009 | 14-May     |             | 20-Jun | 19-May    | 24-Jun  | 10-Jul  |
|                        | 2010 | 14-May     |             | 20-Jun | 12-May    | 22-Jun  | 22-Jul  |
|                        | 2011 | 25-May     | 30-May      | 30-Jun | 20-May    | 5-Jul   | 29-Jul  |
|                        | 2012 | 2-May      | 20-May      | 25-Jun | 2-May     | 13-Jun  | 13-Jul  |
|                        | 2013 | 2-May      | 10-May      | 20-Jun | 2-May     | 12-Jun  | 11-Jul  |
|                        | 2014 | 29-Apr     | 13-May      | 9-Jun  | 29-Apr    | 10-Jun  | 11-Jul  |
|                        | 2015 | 28-Apr     | 5-May       | 5-Jun  | 21-Apr    | 3-Jun   | 30-Jun  |
|                        | 2016 | no floweri | ng          |        |           |         |         |
|                        | 2017 | 8-May      | 15-May      | 7-Jun  | 2-May     | 20-Jun  | 17-Jul  |

Table 2. *Penstemon* flowering, irrigation, and seed harvest dates by species in 2006-2017, Malheur Experiment Station, Oregon State University, Ontario, OR.

|                  |        | Precipitation (inch) |                        |                          |  |  |  |  |  |  |  |
|------------------|--------|----------------------|------------------------|--------------------------|--|--|--|--|--|--|--|
| Year             | Spring | Winter + spring      | Fall + winter + spring | Jan–Jun                  |  |  |  |  |  |  |  |
| 2006             | 3.4    | 10.1                 | 14.5                   | 1273                     |  |  |  |  |  |  |  |
| 2007             | 1.9    | 3.8                  | 6.2                    | 1406                     |  |  |  |  |  |  |  |
| 2008             | 1.4    | 3.2                  | 6.7                    | 1087                     |  |  |  |  |  |  |  |
| 2009             | 4.1    | 6.7                  | 8.9                    | 1207                     |  |  |  |  |  |  |  |
| 2010             | 4.3    | 8.4                  | 11.7                   | 971                      |  |  |  |  |  |  |  |
| 2011             | 4.8    | 9.3                  | 14.5                   | 856                      |  |  |  |  |  |  |  |
| 2012             | 2.6    | 6.1                  | 8.4                    | 1228                     |  |  |  |  |  |  |  |
| 2013             | 0.9    | 2.4                  | 5.3                    | 1319                     |  |  |  |  |  |  |  |
| 2014             | 1.7    | 5.1                  | 8.1                    | 1333                     |  |  |  |  |  |  |  |
| 2015             | 3.2    | 5.9                  | 10.4                   | 1610                     |  |  |  |  |  |  |  |
| 2016             | 2.2    | 5.0                  | 10.1                   | 1458                     |  |  |  |  |  |  |  |
| 2017             | 4.0    | 9.7                  | 12.7                   | 1196                     |  |  |  |  |  |  |  |
| 12-year average: | 2.9    | 6.3                  | 9.8                    | 23-year average:<br>1207 |  |  |  |  |  |  |  |

Table 3. Early season precipitation and growing degree-days at the Malheur Experiment Station, Oregon State University, Ontario, OR, 2006-2017.

Table 4. Native wildflower seed yield in response to irrigation rate (inches/season) in 2006 through 2017. Malheur Experiment Station, Oregon State University, Ontario, OR.

|                                   |         | Irrigation rate |               |          |                   |                                  |         | Ir       |             |          |                  |
|-----------------------------------|---------|-----------------|---------------|----------|-------------------|----------------------------------|---------|----------|-------------|----------|------------------|
| Species                           | Year    | 0 inches        | 4 inches      | 8 inches | LSD<br>(0.05)     | Species                          | Year    | 0 inches | 4 inches    | 8 inches | LSD<br>(0.05)    |
| Openies                           | TCal    |                 | lb/a          |          | (0.00)            | 000000                           | rear    |          |             | acre     | . ,              |
| Penstemon acuminatus <sup>a</sup> | 2006    | 538.4           | 10/a<br>611.1 | 544      | NS                | Penstemon pachyphyllus           | 2011    | 569.9    | 337.6       | 482.2    | NS               |
|                                   | 2000    | 19.3            | 50.1          | 19.1     | 25.5 <sup>b</sup> | r enstemen paenyphynas           | 2011    | 280.5    | 215         | 253.7    | NS               |
|                                   | 2008    | 56.2            | 150.7         | 187.1    | 79                |                                  | 2012    | 159.4    | 196.8       | 249.7    | 83.6             |
|                                   |         |                 |               |          |                   |                                  |         |          |             |          |                  |
|                                   | 2009    | 20.7            | 12.5          | 11.6     | NS                |                                  | 2014    | 291.7    | 238.6       | 282.1    | NS               |
|                                   | 2010    |                 | nd disked     |          |                   | -                                | 2015    | 89.5     | 73.5        | 93.3     | NS               |
| Penstemon cyaneus                 | 2011    | 857.2           | 821.4         | 909.4    | NS                |                                  | 2016    | 142.7    | 186.3       | 169.7    | NS               |
|                                   | 2012    | 343.3           | 474.6         | 581.1    | NS                |                                  | 2017    | 111.2    | 108.1       | 99.1     | NS               |
|                                   | 2013    | 221.7           | 399.4         | 229.2    | 74.4              |                                  | Average | 235.0    | 193.7       | 232.8    | NS               |
|                                   | 2014    | 213.9           | 219.8         | 215.1    | NS                | Penstemon speciosus <sup>a</sup> | 2006    | 163.5    | 346.2       | 213.6    | 134.3            |
|                                   | 2015    | 148.4           | 122.5         | 216.8    | NS                |                                  | 2007    | 2.5      | 9.3         | 5.3      | 4.7 <sup>b</sup> |
|                                   | 2016    | 36.0            | 84.1          | 79.6     | NS                |                                  | 2008    | 94       | 367         | 276.5    | 179.6            |
|                                   | 2017    | 117.7           | 196.6         | 173.1    | NS                |                                  | 2009    | 6.8      | 16.1        | 9        | 6.0 <sup>b</sup> |
|                                   | Average | 276.9           | 326.5         | 343.5    | NS                |                                  | 2010    | 147.2    | 74.3        | 69.7     | NS               |
| Penstemon deustus <sup>c</sup>    | 2006    | 1246.4          | 1200.8        | 1068.6   | NS                | -                                | 2011    | 371.1    | 328.2       | 348.6    | NS               |
|                                   | 2007    | 120.3           | 187.7         | 148.3    | NS                |                                  | 2012    | 103.8    | 141.1       | 99.1     | NS               |
|                                   | 2008    | Sta             | nd disked     | out      |                   |                                  | 2013    | 8.7      | 80.7        | 138.6    | 63.7             |
|                                   | 2011    | 637.6           | 477.8         | 452.6    | NS                |                                  | 2014    | 76.9     | 265.6       | 215.1    | 76.7             |
|                                   | 2012    | 308.7           | 291.8         | 299.7    | NS                |                                  | 2015    | 105.4    | 207.3       | 173.7    | 50.3             |
|                                   | 2013    |                 | o flowering   |          |                   |                                  | 2016    |          | no flowerin |          |                  |
|                                   | 2014    | 356.4           | 504.8         | 463.2    | NS                |                                  | 2017    | 88.6     | 117.1       | 82.3     | NS               |
|                                   | 2015    | 20.0            | 76.9          | 67.0     | 43.7 <sup>b</sup> |                                  | Average | 106.4    | 174.8       | 147.1    | 33.9             |
|                                   | 2017    | 205.4           | 258.8         | 247.6    | NS                | -                                |         |          |             |          |                  |
|                                   | Average | 314.5           | 323.0         | 305.6    | NS                |                                  |         |          |             |          |                  |

<sup>a</sup>Planted March, 2005, areas of low stand replanted by hand in October 2005. <sup>b</sup>LSD (0.10).

<sup>c</sup>Planted March, 2005, areas of low stand replanted by hand in October 2005 and whole area replanted in October 2006. Yields in 2006 are based on small areas with adequate stand. Yields in 2007 are based on whole area of very poor and uneven stand.

Table 5. Regression analysis for native wildflower seed yield (y) in response to irrigation (x) (inches/season) using the equation  $y = a + b \cdot x + c \cdot x^2$  in 2006-2017, and 4- to 11-year averages. For the quadratic equations, the amount of irrigation that resulted in maximum yield was calculated using the formula: -b/2c, where b is the linear parameter and c is the quadratic parameter. Malheur Experiment Station, Oregon State University, Ontario, OR. (Continued on next page.)

| Penstemo | n acumina | tus    |           |       |                 |               |                                 |
|----------|-----------|--------|-----------|-------|-----------------|---------------|---------------------------------|
| Year     | Intercept | linear | quadratic | $R^2$ | Р               | Maximum yield | Water applied for maximum yield |
| 2006     | 538.4     | 35.6   | -4.4      | 0.03  | NS <sup>a</sup> |               |                                 |
| 2007     | 19.3      | 15.4   | -1.9      | 0.44  | 0.10            | 50.5          | 4.1                             |
| 2008     | 56.2      | 30.9   | -1.8      | 0.63  | 0.05            | 188.8         | 8.6                             |
| 2009     | 19.5      | -1.1   |           | 0.28  | 0.10            | 11.4          | 8.0                             |
| Average  | 165.6     | 17.1   | -1.8      | 0.1   | NS              |               |                                 |
| Penstemo | n cyaneus |        |           |       |                 |               |                                 |
| Year     | intercept | linear | quadratic | $R^2$ | Р               | Maximum yield | Water applied for maximum yield |
|          |           |        |           |       |                 | lb/acre       | inches/season                   |
| 2011     | 836.6     | 6.5    |           | 0.01  | NS              |               |                                 |
| 2012     | 347.4     | 29.7   |           | 0.21  | NS              |               |                                 |
| 2013     | 221.7     | 87.9   | -10.9     | 0.63  | 0.05            | 398.9         | 4                               |
| 2014     | 215.7     | 0.1    |           | 0.01  | NS              |               |                                 |
| 2015     | 128.4     | 8.5    |           | 0.09  | NS              |               |                                 |
| 2016     | 36.0      | 18.6   | -1.6      | 0.29  | NS              |               |                                 |
| 2017     | 117.7     | 32.5   | -3.2      | 0.19  | NS              |               |                                 |
| Average  | 282.3     | 8.3    |           | 0.36  | 0.05            | 348.9         | 8                               |
| Penstemo | n deustus |        |           |       |                 |               |                                 |
| Year     | intercept | linear | quadratic | $R^2$ | Р               | Maximum yield | Water applied for maximum yield |
|          |           |        |           |       |                 | lb/acre       | inches/season                   |
| 2006     | 1260.9    | -22.2  |           | 0.05  | NS              |               |                                 |
| 2007     | 120.3     | 30.2   | -3.3      | 0.19  | NS              |               |                                 |
| 2011     | 615.2     | -23.1  |           | 0.35  | 0.05            | 615.2         | 0                               |
| 2012     | 304.6     | -1.1   |           | 0.01  | NS              |               |                                 |
| 2014     | 356.4     | 60.8   | -5.9      | 0.26  | NS              |               |                                 |
| 2015     | 20.0      | 22.6   | -2.1      | 0.42  | 0.10            | 81.0          | 5.4                             |
| 2017     | 205.4     | 21.4   | -2.0      | 0.08  | NS              |               |                                 |
| Average  | 314.5     | 5.4    | -0.8      | 0.03  | NS              |               |                                 |

<sup>a</sup>Not significant. There was no statistically significant trend in seed yield in response to the amount of irrigation.

| Penstem | on pachyp | ohyllus |           |        |       | Maximum          | Water applied for                         | •                       |
|---------|-----------|---------|-----------|--------|-------|------------------|-------------------------------------------|-------------------------|
| Year    | intercept | linear  | quadratic | $R^2$  | Р     | yield            | maximum yield                             | _                       |
|         |           |         |           |        |       | lb/acre          | inches/season                             |                         |
| 2011    | 507.1     | -11     |           | 0.04   | NS    |                  |                                           |                         |
| 2012    | 263.1     | -3.3    |           | 0.01   | NS    |                  |                                           |                         |
| 2013    | 156.8     | 11.3    |           | 0.33   | 0.1   | 247.2            | 8.0                                       |                         |
| 2014    | 275.6     | -1.2    |           | 0.01   | NS    |                  |                                           |                         |
| 2015    | 83.6      | 0.5     |           | 0.01   | NS    |                  |                                           |                         |
| 2016    | 142.7     | 18.4    | -1.9      | 0.07   | NS    |                  |                                           |                         |
| 2017    | 112.2     | -1.5    |           | 0.02   | NS    |                  |                                           |                         |
| Average | 221.6     | -0.3    |           | 0.0004 | NS    |                  |                                           |                         |
| Penstem | on specio | sus     |           |        |       |                  | Water applied plus                        |                         |
| Year    | intercept | linear  | quadratic | $R^2$  | Р     | Maximum<br>yield | spring precipitation<br>for maximum yield | Spring<br>precipitation |
| 1001    | intercept | inteal  | quadratio |        | •     | lb/acre          | inches/season                             | inch                    |
| 2006    | -238.2    | 151.9   | -9.9      | 0.66   | 0.05  | 347.2            | 7.7                                       | 3.4                     |
| 2007    | -5.1      | 4.7     | -0.4      | 0.48   | 0.10  | 9.3              | 6.1                                       | 1.9                     |
| 2008    | -91.7     | 146.1   | -11.4     | 0.56   | 0.05  | 378.4            | 6.4                                       | 1.4                     |
| 2009    | -19.5     | 8.6     | -0.5      | 0.54   | 0.05  | 16.2             | 8.3                                       | 4.1                     |
| 2010    | 177.8     | -9.7    |           | 0.28   | 0.10  | 135.8            | 4.3                                       | 4.3                     |
| 2011    | 374.0     | -2.8    |           | 0.01   | NS    |                  |                                           | 4.8                     |
| 2012    | 6.5       | 46.7    | -3.6      | 0.54   | 0.05  | 158.8            | 6.5                                       | 2.6                     |
| 2013    | -2.8      | 16.2    |           | 0.77   | 0.001 | 141.0            | 8.9                                       | 0.9                     |
| 2014    | -78.8     | 102.9   | -7.5      | 0.62   | 0.05  | 275.5            | 6.9                                       | 1.7                     |
| 2015    | -75.1     | 69.7    | -4.2      | 0.64   | 0.05  | 211.6            | 8.2                                       | 3.2                     |
| 2017    | -2.4      | 30.8    | -2.0      | 0.27   | NS    |                  |                                           | 4.0                     |
| Average | -56.6     | 53.0    | -3.0      | 0.60   | 0.05  | 177.0            | 8.8                                       | 2.9                     |

Table 5. (Continued) Regression analysis for native wildflower seed yield in response to irrigation rate (inches/season) in 2006-2017, and 4- to 11-year averages. Malheur Experiment Station, Oregon State University, Ontario, OR.

<sup>a</sup>Not significant. There was no statistically significant trend in seed yield in response to the amount of irrigation.

Table 6. Amount of irrigation water for maximum *Penstemon* seed yield, years to seed set, and life span. A summary of multi-year research findings, Malheur Experiment Station, Oregon State University, Ontario, OR.

|                 |                                                                | Year of<br>first seed | Approximate |
|-----------------|----------------------------------------------------------------|-----------------------|-------------|
| Species         | Optimum amount of irrigation for seed production               | set                   | life span   |
|                 | inches/season                                                  | from fall<br>planting | years       |
| P. acuminatus   | 0 in wetter years, 4 in warm, dry years                        | 1                     | 3           |
| P. deustus      | response to irrigation in 1 out of 7 years                     | 2                     | 3           |
| P. cyaneus      | no response in 6 out of 7 years, 4 inches in 2013 (drier year) | 1                     | 3           |
| P. pachyphyllus | no response in 6 out of 7 years, 8 inches in 2013 (drier year) | 1-2                   | 3           |
| P. speciosus    | 0 in cool, wet years, 4-8 in warm, dry years                   | 1-2                   | 3           |

# 2017 POTATO VARIETY TRIALS

Clinton C. Shock, Erik B. G. Feibert, Alicia Rivera, Lamont D. Saunders, and Kyle Wieland Malheur Experiment Station, Oregon State University, Ontario, OR

Brian Charlton, Klamath Agricultural Research and Extension Center, Oregon State University, Klamath Falls, OR

Vidyasagar Sathuvalli, Hermiston Agricultural Research and Extension Center, Oregon State University, Hermiston, OR

Solomon Yilma, Department of Crop and Soil Science, Oregon State University, Corvallis, OR

## Introduction

New potato varieties were evaluated in 2017 for their productivity and their suitability for fresh market and processing. Potatoes in Malheur County, Oregon, are grown under contract for processors to make frozen potato products for the food service industry and grocery chain stores. There is very little production for fresh pack or open market, and very few growers store potatoes on their farms. There is also no local production of varieties for making potato chips.

The varieties grown for processing in Malheur County are mainly 'Ranger Russet', 'Shepody', and 'Russet Burbank'. Harvest begins in July and potatoes arrive at processing plants for storage or processing directly from the field.

Prolonged vine health supports increased potato yield, but the "early die" syndrome can limit tuber bulking later than mid-August. Early die causes early senescence of the vines of susceptible varieties such as Shepody and Russet Burbank. A complex of soil pathogens, including bacteria, nematodes, and fungi, particularly Verticillium wilt, causes early die in Malheur County. Early die is worse when the crop rotation between potato crops is shorter.

Small acreages of new varieties or advanced selections are sometimes grown under contract to study the feasibility of expanding their use. To replace an existing processing variety, a new potato variety must have numerous outstanding characteristics. The yield should be at least as high as the yield of the currently contracted varieties. The tubers need to have low reducing sugars for light fry color, and high specific gravity. A new variety should be resistant to tuber defects or deformities caused by disease, water stress, or heat. It should begin tuber bulking early and grow rapidly for early harvest. Late-harvested varieties resistant to early die can continue bulking into September.

Potato variety development trials at the Malheur Experiment Station in 2017 included the Tristate Russet Trial with 14 entries, the Oregon Statewide Russet Trial with 12 entries, the Preliminary Yield Russet Trial with 73 entries, the Oregon Statewide Specialty Trial of 5 colored skin and/or flesh potato varieties, the Western Region Specialty Trial of 11 colored skin and/or flesh potato varieties, the Preliminary Yield Specialty Trial of 7 colored skin and/or flesh potato varieties, the Preliminary Yield Specialty Trial of 7 colored skin and/or flesh potato varieties, the Preliminary Yield Specialty Trial of 7 colored skin and/or flesh potato varieties, the Oregon Statewide Chip Trial with 7 entries, and the Preliminary Yield Chip Trial with 18 entries. Through these trials and active cooperation with other scientists in Oregon, Idaho, and Washington, promising new lines are bred and evaluated. Eventually, the lines may be released as new varieties.

## **Materials and Methods**

The potato variety trials were grown in 2017 on Greenleaf silt loam, following winter wheat using sprinkler irrigation. Based on a soil test, 166 lb potassium/acre, 175 lb sulfur/acre, 9 lb manganese/acre, 3 lb copper/acre, and 4 lb boron/acre were broadcast in the fall of 2016, prior to planting of the wheat. The field was fumigated with 20 gal/acre of Telone<sup>®</sup> II and bedded on 36-inch row spacing in the fall of 2016. On April 11, 2017, 100 lb nitrogen/acre and 20 oz/acre of Admire<sup>®</sup> (imidacloprid) were shanked in the bed center.

Seed of all varieties was cut by hand into 2-oz seed pieces, treated with Maxim MZ dust, and stored briefly to suberize. Potato seed pieces were planted in single-row plots using a 2-row assist-feed planter with 9-inch seed spacing in 36-inch rows. Red potatoes were planted at the end of each plot as markers to separate the potato plots at harvest, except in the specialty trials where russeted potatoes were used as markers.

The Oregon Statewide Chip Trial, State Russet Trial, and the TriState Russet Early Trial were planted on April 13. The Regional Specialty Trial, Chip Preliminary Yield Trial, and the Russet Preliminary Yield Trial were planted on April 17. The State Specialty Trial and the Specialty Preliminary Yield Trial were planted on April 18.

All trials, except the preliminary yield trials, had plots that were a single bed wide with 30 seed pieces (23 ft long) replicated 4 times. The preliminary yield trials had unreplicated plots that were two beds with 20 seed pieces (15 ft long).

After planting, hills were re-formed over the rows with a Lilliston rolling cultivator. The herbicides Prowl<sup>®</sup> H<sub>2</sub>O at 0.95 lb ai/acre, Dual Magnum<sup>®</sup> at 1.27 lb ai/acre, and Roundup<sup>®</sup> at 2 pt/acre were applied as a tank mix for weed control on April 25. The herbicides were incorporated by sprinkler irrigation with approximately 0.5 inch of water. Roundup at 2 pt/acre was applied again on May 8. Matrix<sup>®</sup> at 0.25 oz ai/acre was applied on June 9 through the sprinkler system. On June 17 and August 6, Bravo<sup>®</sup> at 1 pt/acre (0.75 lb ai/acre) was broadcast aerially.

Emergence started on May 20. Irrigation scheduling was based on a soil water tension criterion of 50-60 cb. Soil water tension was measured at seed piece depth (8-inch depth) using 6 Watermark soil moisture sensors (Model 200SS, Irrometer Co., Inc., Riverside, CA) connected to a datalogger. Irrigations were managed to maintain the soil water tension below 60 cb. Irrigation decisions were based on the average of all six sensors. The last irrigation was on September 5.

Fertilization during plant growth was based on petiole and soil solution tests taken on July 4, 11, 17, and 31. Based on the tissue and soil tests, a total of 60 lb nitrogen/acre and 53 lb potassium/acre were applied during the growing season. Fertilizer was injected into the sprinkler system during irrigation.

The vines in the Tristate Russet trial were flailed on August 16 and on August 23 the potatoes were harvested. For the other trials, the vines were flailed on September 19. The harvest dates for the other trials were September 25 for the Oregon Statewide Specialty and Preliminary Yield Specialty, September 27 for the Oregon Statewide Russet and Oregon Statewide Chip, and September 28 for the Preliminary Yield Russet Trial and the Preliminary Yield Chip Trial. At harvest, potatoes in each plot were lifted with a two-row digger that laid the tubers back onto the soil in each row.

At harvest, visual evaluations were made that included observations of desirable traits (i.e., high yield of large, smooth, uniformly shaped and sized, oblong to long, attractively russeted tubers, with shallow eyes evenly distributed over the tuber length). Observations were also taken of the external tuber defects including growth cracks, knobs, thumbnail cracks, curved or irregularly shaped tubers, pointed ends, stem-end decay, attached stolons, heat sprouts, chain tubers, folded bud ends, scab, rough skin due to excessive russeting, and pigmented eyes. A note was made for each plot to keep or discard the clone based on the overall appearance of the tubers.

Tubers were placed into burlap sacks and placed in a barn where they were kept under tarps until grading. Tubers were graded by market class (U.S. No. 1 and U.S. No. 2) and weight (<4 oz, 4-6 oz, 6-12 oz, and >12 oz). Tubers were graded as U.S. No. 2 if any of the following conditions occurred: growth cracks, bottleneck shape, abnormally curved shape, or two or more knobs. Marketable tubers are U.S. No. 1 and U.S. No. 2 larger than 4 oz. A 20-tuber sample from each plot was placed into storage. The storage temperature was gradually reduced to 45°F.

After 6 weeks in storage, a 10-tuber sample from each plot of the Tristate Russet Trial, Oregon Statewide Russet Trial, the Preliminary Yield Russet Trial, the Oregon Statewide Chip Trial, and the Preliminary Yield Chip Trial was evaluated for tuber quality traits for processing. Ten tubers per plot of the Tristate Russet Trial, Oregon Statewide Russet trial, and the Preliminary Yield Russet Trial were cut lengthwise and the 10 center slices were fried for 2.5 min in 375°F soybean oil. For the Oregon Statewide Chip Trial, 10 tubers per plot were cut into 0.06-inch slices and fried for 2.5 min in 375°F soybean oil. Percent light reflectance was measured on the stem and bud ends of each slice for the russet varieties and in the slice center for the chip varieties. Percent light reflectance was measured using a Photovolt Reflectance Meter model 577A (Photovolt Instruments, Inc., Minneapolis, MN), with a green tristimulus filter, calibrated to read 0% light reflectance on the black standard cup and 77.1% light reflectance on the white porcelain standard plate. Specific gravity of all varieties was measured from a 10-tuber sample from each plot using the weight-in-air, weight-in-water method. All varieties were evaluated for internal tuber defects from a 10-tuber sample from each plot.

Data from all trials were analyzed with the General Linear Models analysis of variance procedure in NCSS (Number Cruncher Statistical Systems, Kaysville, UT). Means comparisons were made using Fisher's protected LSD (least significant difference) at the 95% confidence level.

## **Results and Discussion**

Due to excessive precipitation in the winter of 2016-2017, the potatoes were planted 1 week to 10 days later than the ideal planting date of April 7. Excessive heat in July was detrimental to the crop, with daily maximum and minimum air temperatures higher than average.

#### **Tristate Russet Trial**

The clones Russet Burbank, AO7098-4, AO7088-6, AOR07821-1, AO7705-4, and AO8422-2Vrsto were among those with the highest total yields (Table 1). The clones AO7088-6, AO8422-4Vrsto, AO7098-4', AO8422-2Vrsto, and AOR07821-1 were among the clones with the highest U.S. No. 1 yields.

A07088-6 and AO71012-4BF were among the clones with the highest specific gravity (measure of tuber solids) in this trial (Table 1). The tuber internal defects encountered were hollow heart and black spot bruise (Table 2). Observations on visual appearance at harvest can be found in Table 3.

#### **Oregon Statewide Russet Trial**

The clones OR12133-10, AOR10633-1, and AOR10140-1 were among those with the highest total yields (Table 4). AOR10633-1, OR12133-10, and AOR10140-1 were among the clones with the highest U.S. No. 1 yields.

AOR11018-2, AOR11217-3, and AOR10633-1 were among the clones with the lightest tuber fry color in this trial (Table 4). The tuber internal defects encountered for each clone are listed in Table 5. Observations on visual appearance at harvest can be found in Table 6.

#### **Preliminary Yield Russet Trial**

Some of the varieties had significantly higher yield and grade and better processing quality than the three commercial varieties in the trial (Table 7). Of the 70 clones tested, 13 were selected for further testing based on visual observations at harvest (Table 8). Some of the clones had better visual appearance at harvest than 'Russet Norkotah', Ranger Russet, and Russet Burbank. Tuber internal defects for the clones are listed in Table 9.

#### **Colored Flesh Potato Trials**

Potato tubers with red to yellow carotenoid or red, blue, and purple anthocyanin pigments are of interest because of the anti-oxidant properties of these pigments in human nutrition. Three trials tested specialty potato varieties in 2017: Oregon Statewide Specialty, Preliminary Yield Specialty, and Western Region Specialty.

#### **Oregon Statewide Specialty Trial**

The clones 'Red LaSoda' and POR14PG14-5 were among those with the highest total yield (Table 10). Red LaSoda had the highest yield of tubers over 14 oz, an undesirable trait. POR14PG22-3KK had the highest yield of tubers under 4 oz, followed by POR14PG14-5. POR14PG14-1 had the highest yield of cull tubers, due to sprouting. The three experimental clones had substantial sprouting at harvest (Table 12).

Clones POR14PG14-1 and POR14PG14-5 were among those with the highest tuber specific gravity. Tuber internal defects for the clones are listed in Table 11.

#### **Preliminary Yield Specialty Trial**

The variety Red LaSoda was among those with the highest total yield and yield of tubers over 14 oz (Table 13). Clones POR15PG036-3, POR15PG015-3, and POR15PG009-1 had high yields of cull tubers due to sprouting at harvest (Table 15). Clones POR15PG036-3, POR15PG034-1, and POR15NCKY021-2 had high yields of tubers under 4 oz. 'Yukon Gold' and two of the clones had internal brown spot (Table 14). Exterior appearance observations can be found in Table 15.

#### Western Region Specialty Trial

The clones Red LaSoda, 'Chieftain', AC03534-2R/Y, and CO05035-1PW/Y were among those with the highest total yield (Table 16). Red LaSoda had the highest yield of tubers over 14 oz, an undesirable trait. Clone AC03534-2R/Y had the highest yield of tubers under 4 oz.

All varieties and clones had the internal defect internal brown spot, except COA07365-4RY (Table 17). Exterior appearance observations can be found in Table 18.

#### **Oregon Statewide Chip Trial**

Clone AOR11470-1 had the highest total yield (Table 19). Clone AOR11470-1 also had the highest yield of tubers over 10 oz, an undesirable trait. Clone AOR11470-1 also had the highest specific gravity. Tuber internal defects for the clones are listed in Table 20. Clones AOR11470-1 and AOR12197-2 had substantial sprouting at harvest (Table 21).

#### **Preliminary Yield Chip Trial**

Clones AOR13136-4, NYOR14Q9-5, and 'Snowden' were among those with the highest total yield (Table 22). Snowden and NYOR14Q9-5 were among those with the highest yield of tubers more than 10 oz. Snowden, 'Atlantic', and AOR13125-9 were among the clones with the highest specific gravity. Tuber internal defects for the clones are listed in Table 23. Exterior appearance observations can be found in Table 24.

## Acknowledgements

This project was funded by the USDA/ARS, Oregon Potato Commission, Oregon State University, Malheur County Education Service District, and was supported by Formula Grant nos. 2017-31100-06041 and 2017-31200-06041 from the USDA National Institute of Food and Agriculture.

Table 1. Tristate Russet Trial potato yield, grade, and processing quality, Malheur Experiment Station, Oregon State University, Ontario, OR, 2017.

|                 |         |       |       | U.S. | No. 1 |       |           |       |            |       |      | Average | No. of |              |                    | Average fry  |       |
|-----------------|---------|-------|-------|------|-------|-------|-----------|-------|------------|-------|------|---------|--------|--------------|--------------------|--------------|-------|
|                 | Percent | Total |       | >20  | 10 to | 6 to  |           | U.S.  |            |       |      | tuber   | tubers |              | Specific           | color, light | Sugar |
| Variety         | No. 1   | yield | Total | οz   | 20 oz | 10 oz | 4 to 6 oz | No. 2 | Marketable | <4 oz | Cull | weight  | /plant | Length/width | gravity            | reflectance  | ends  |
|                 | %       |       |       |      |       | (     | wt/acre   |       |            |       |      | oz      |        | ratio        | g cm <sup>-3</sup> | %            |       |
| Ranger Russet   | 64.2    | 417.0 | 270.9 | 2.0  | 69.5  | 152.6 | 46.7      | 106.2 | 377.1      | 34.9  | 5.0  | 5.9     | 5.9    | 2.0          | 1.093              | 45.9         | 0.0   |
| Russet Burbank  | 44.7    | 503.0 | 226.9 | 5.5  | 29.4  | 104.6 | 87.3      | 187.0 | 413.9      | 76.6  | 12.6 | 5.1     | 8.1    | 2.1          | 1.077              | 37.4         | 2.5   |
| Russet Norkotah | 76.0    | 393.3 | 300.3 | 2.3  | 76.7  | 144.4 | 76.9      | 26.6  | 326.9      | 63.1  | 3.4  | 5.3     | 6.1    | 1.9          | 1.075              | 37.7         | 2.5   |
| A07088-6        | 83.7    | 478.2 | 400.3 | 0.0  | 77.7  | 225.6 | 97.1      | 25.0  | 425.2      | 50.0  | 2.9  | 5.8     | 6.8    | 1.6          | 1.097              | 50.6         | 0.0   |
| A07098-4        | 73.4    | 492.3 | 357.8 | 0.0  | 46.7  | 189.8 | 121.4     | 56.0  | 413.8      | 67.4  | 11.2 | 5.4     | 7.6    | 1.9          | 1.080              | 41.4         | 0.0   |
| A071012-4BF     | 74.1    | 412.7 | 309.1 | 0.0  | 60.8  | 159.2 | 89.1      | 23.8  | 332.9      | 61.8  | 18.1 | 5.4     | 6.3    | 1.6          | 1.102              | 43.9         | 0.0   |
| A07705-4        | 57.0    | 447.9 | 257.5 | 0.0  | 2.2   | 88.0  | 167.3     | 12.0  | 269.5      | 167.1 | 11.4 | 3.4     | 11.0   | 1.6          | 1.081              | 40.0         | 0.0   |
| A07769-4        | 78.2    | 393.2 | 308.7 | 0.0  | 47.2  | 154.4 | 107.0     | 18.9  | 327.6      | 63.4  | 2.2  | 5.3     | 6.1    | 1.6          | 1.090              | 41.2         | 0.0   |
| A08422-2Vrsto   | 78.1    | 438.3 | 342.2 | 0.0  | 35.0  | 199.4 | 107.8     | 15.7  | 357.9      | 75.1  | 5.3  | 4.9     | 7.4    | 1.6          | 1.087              | 44.2         | 0.0   |
| A08422-4Vrsto   | 90.4    | 410.6 | 371.8 | 0.0  | 119.2 | 182.1 | 70.6      | 7.3   | 379.1      | 29.1  | 2.4  | 6.4     | 5.3    | 1.6          | 1.090              | 49.4         | 0.0   |
| A08510-1LB      | 54.0    | 261.2 | 142.3 | 0.0  | 2.6   | 48.2  | 91.5      | 10.6  | 153.0      | 100.8 | 7.5  | 3.3     | 6.6    | 1.5          | 1.095              | 48.9         | 0.0   |
| A10021-5TE      | 72.1    | 409.5 | 296.0 | 7.2  | 103.6 | 130.9 | 54.3      | 51.7  | 347.6      | 50.5  | 11.3 | 6.0     | 5.6    | 2.0          | 1.090              | 50.5         | 0.0   |
| AOR06576-1      | 71.0    | 409.5 | 291.1 | 0.0  | 15.1  | 146.5 | 129.4     | 28.6  | 319.7      | 84.2  | 5.7  | 4.1     | 8.3    | 1.8          | 1.086              | 46.3         | 0.0   |
| AOR07821-1      | 74.3    | 448.0 | 332.6 | 2.1  | 60.1  | 156.7 | 113.9     | 28.3  | 360.9      | 86.2  | 1.0  | 4.5     | 8.4    | 1.7          | 1.094              | 43.8         | 0.0   |
| Mean            | 70.8    | 422.5 | 300.5 | 1.4  | 53.3  | 148.7 | 97.2      | 42.7  | 343.2      | 72.2  | 7.1  | 5.1     | 7.1    | 1.7          | 1.0884             | 44.4         | 0.4   |
| LSD (0.05)      | 9.2     | 77.9  | 75.1  | NS   | 36.3  | 44.5  | 36.8      | 35.1  | 74.5       | 28.0  | NS   | 0.7     | 1.5    | 0.1          | 0.0050             | 1.6          | NS    |

| Variety         | Vascular discoloration | Hollow<br>heart | Internal brown<br>spot | Black spot<br>bruise |
|-----------------|------------------------|-----------------|------------------------|----------------------|
|                 |                        | 9               | /6                     |                      |
| Ranger Russet   | 0.0                    | 0.0             | 0.0                    | 0.0                  |
| Russet Burbank  | 0.0                    | 0.0             | 0.0                    | 0.0                  |
| Russet Norkotah | 0.0                    | 0.0             | 0.0                    | 0.0                  |
| A07088-6        | 0.0                    | 0.0             | 0.0                    | 0.0                  |
| A07098-4        | 0.0                    | 0.0             | 0.0                    | 0.0                  |
| A071012-4BF     | 0.0                    | 0.0             | 0.0                    | 0.0                  |
| A07705-4        | 0.0                    | 0.0             | 0.0                    | 0.0                  |
| A07769-4        | 0.0                    | 0.0             | 0.0                    | 0.0                  |
| A08422-2Vrsto   | 0.0                    | 0.0             | 0.0                    | 0.0                  |
| A08422-4Vrsto   | 0.0                    | 2.5             | 0.0                    | 0.0                  |
| A08510-1LB      | 0.0                    | 0.0             | 0.0                    | 5.0                  |
| A10021-5TE      | 0.0                    | 0.0             | 0.0                    | 0.0                  |
| AOR06576-1      | 0.0                    | 0.0             | 0.0                    | 0.0                  |
| AOR07821-1      | 0.0                    | 0.0             | 0.0                    | 0.0                  |
| Average         | 0.0                    | 0.2             | 0.0                    | 0.4                  |
| LSD (0.05)      | NS                     | NS              | NS                     | NS                   |

Table 2. Tristate Russet Trial tuber internal defects, Malheur Experiment Station, Oregon State University, Ontario, OR, 2017.

Table 3. Tristate Russet Trial tuber visual observations at harvest, Malheur Experiment Station, Oregon State University, Ontario, OR, 2017. Tuber defect observations are from four plots for each clone. K = clone should be saved, D = clone should be discarded. Capital letters denote a higher intensity of an observation compared to lower case letters. Since there were four replicates, a clone could be scored for the same attribute up to four times.

| Clone           | K or D     | Description                                                                                                                               |
|-----------------|------------|-------------------------------------------------------------------------------------------------------------------------------------------|
| Ranger Russet   | 3D, 1d     | 3 curved, 1 Curved, 2 Irregular, 2 irreg., 1 Pointed, 3 bottleneck, 1 Bottleneck, 2 dumbbell, 1 growth cracks, 1 sprouts, 1 jelly end rot |
| Russet Burbank  | 4 D        | 3 Pointed, 1 pointed, 1 sprouts, 1 heart, 3 growth cracks, 1 knobs, 4 Irregular, 3 Dumbbell, 1 dumbbell, 1 Bottleneck, 1 bottleneck       |
| Russet Norkotah | 2k, 2K     | 3 irregular, 1 pointed                                                                                                                    |
| A07088-6        | 4K         | 2 folded bud end, 2 irregular, 2 growth cracks                                                                                            |
| A07098-4        | 3k, 1K     | 3 heart, 1 growth cracks, 3 irregular, 1 swollen lenticels, 1 bottleneck, 1 sprouts                                                       |
| A071012-4BF     | 3k, 1K     | 1 knobs, 2 irregular, 1 Pointed, 1 heart                                                                                                  |
| A07705-4        | 3D, 1?     | 2 sprouts, 2 small, 2 pointed                                                                                                             |
| A07769-4        | 2K, 2k     | 1 small, 1 pointed, 1 growth cracks                                                                                                       |
| A08422-2Vrsto   | 1d, 2K,1k  | 2 heart, 1 irregular, 2 wedge shape, 1 pointed                                                                                            |
| A08422-4Vrsto   | 2k, 2K     | 1 heart, 2 growth cracks, 3 pointed, 1 wedge shape, 1 folded bud end                                                                      |
| A08510-1LB      | 2d, 1D, 1? | 4 small                                                                                                                                   |
| A10021-5TE      | 2k, 2d     | 1 irregular, 2 alligator hide, 2 rough skin, 1 growth cracks, 2 folded bud end, 1 heart, 1 sprouts, 1 curved                              |
| AOR06576-1      | 3k, 1?     | 1 irregular, 2 pointed, 1 small                                                                                                           |
| AOR07821-1      | 2k, 1D, 1d | 3 pointed, 1 Pointed, 1 small, 1 irregular, 2 heart, 1 alligator hide                                                                     |

Table 4. Oregon Statewide Russet Trial potato yield, grade, and processing quality, Malheur Experiment Station, Oregon State University, Ontario, OR, 2017.

|                 |         |       |       | U.S. | No. 1 |       |           |       |            |       |      | Average | No. of |         |                    | Average fry  |       |
|-----------------|---------|-------|-------|------|-------|-------|-----------|-------|------------|-------|------|---------|--------|---------|--------------------|--------------|-------|
|                 | Percent | Total |       | >20  | 10 to | 6 to  |           | U.S.  |            |       |      | tuber   | tubers | Length/ | Specific           | color, light | Sugar |
| Variety         | No. 1   | yield | Total | oz   | 20 oz | 10 oz | 4 to 6 oz | No. 2 | Marketable | <4 oz | Cull | weight  | /plant | width   | gravity            | reflectance  | ends  |
|                 | %       |       |       |      |       | C     | wt/acre   |       |            |       |      | oz      |        | ratio   | g/cm <sup>-3</sup> | %            |       |
| Ranger Russet   | 71.6    | 507.4 | 361.7 | 15.8 | 113.1 | 156.7 | 76.2      | 105.1 | 466.8      | 40.5  | 0.0  | 7.4     | 5.7    | 1.8     | 1.0894             | 43.9         | 0.0   |
| Russet Burbank  | 65.1    | 494.8 | 322.8 | 0.0  | 39.2  | 141.5 | 142.1     | 84.8  | 407.6      | 86.9  | 0.3  | 5.0     | 8.2    | 2.0     | 1.0803             | 36.9         | 12.5  |
| Russet Norkotah | 73.8    | 321.4 | 237.1 | 0.0  | 42.8  | 125.7 | 68.6      | 18.4  | 255.5      | 65.9  | 0.0  | 5.1     | 5.3    | 1.8     | 1.0853             | 39.4         | 0.0   |
| AOR08540-1      | 73.3    | 508.7 | 374.6 | 0.0  | 64.1  | 184.7 | 125.7     | 37.3  | 411.9      | 94.3  | 2.5  | 5.0     | 8.4    | 1.8     | 1.0880             | 39.9         | 5.0   |
| AOR11018-2      | 68.0    | 472.1 | 321.6 | 4.5  | 112.4 | 128.9 | 75.8      | 75.5  | 397.1      | 71.8  | 3.2  | 5.6     | 7.0    | 1.9     | 1.0873             | 48.5         | 0.0   |
| AOR11141-2      | 72.3    | 438.8 | 317.2 | 0.0  | 46.5  | 134.9 | 135.7     | 18.8  | 335.9      | 94.8  | 8.1  | 4.4     | 8.2    | 1.5     | 1.0767             | 41.9         | 5.0   |
| AOR10140-1      | 85.5    | 526.6 | 449.8 | 4.4  | 168.9 | 189.9 | 86.6      | 24.0  | 473.8      | 52.8  | 0.0  | 6.9     | 6.3    | 1.7     | 1.0800             | 42.3         | 0.0   |
| AOR10204-3      | 64.2    | 449.0 | 292.3 | 2.1  | 59.4  | 134.9 | 95.9      | 97.2  | 389.5      | 59.5  | 0.0  | 5.7     | 6.5    | 1.8     | 1.0867             | 46.2         | 0.0   |
| AOR11217-3      | 77.1    | 439.8 | 338.6 | 0.0  | 48.3  | 165.2 | 125.1     | 14.6  | 353.1      | 86.7  | 0.0  | 5.4     | 6.8    | 1.8     | 1.0810             | 48.1         | 0.0   |
| OR12133-10      | 81.6    | 595.5 | 485.1 | 2.0  | 90.3  | 244.3 | 148.5     | 31.2  | 516.3      | 79.2  | 0.0  | 6.0     | 8.2    | 1.7     | 1.0814             | 41.3         | 0.0   |
| AOR12144-1      | 45.7    | 294.8 | 134.0 | 0.0  | 0.0   | 34.1  | 100.0     | 5.5   | 139.5      | 154.9 | 0.3  | 3.1     | 7.8    | 1.7     | 1.0883             | 38.5         | 0.0   |
| AOR10633-1      | 90.6    | 541.1 | 491.2 | 9.6  | 224.4 | 182.3 | 74.9      | 18.6  | 509.9      | 31.2  | 0.0  | 7.7     | 5.8    | 1.8     | 1.0850             | 46.9         | 2.5   |
| Mean            | 72.4    | 465.8 | 343.8 | 3.2  | 84.1  | 151.9 | 104.6     | 44.2  | 388.1      | 76.5  | 1.2  | 5.6     | 7.0    | 1.8     | 1.0841             | 42.8         | 2.1   |
| LSD (0.05)      | 7.9     | 81.1  | 73.1  | NS   | 45.7  | 41.7  | 30.4      | 37.0  | 74.8       | 18.3  | 4.3  | 0.9     | 1.0    | 0.2     | NS                 | 2.5          | NS    |

| Variety         | Vascular discoloration | Hollow<br>heart | Internal<br>brown spot | Brown center | Black spot<br>bruise |
|-----------------|------------------------|-----------------|------------------------|--------------|----------------------|
|                 |                        |                 | %                      |              |                      |
| Ranger Russet   | 0.0                    | 0.0             | 0.0                    | 0.0          | 0.0                  |
| Russet Burbank  | 0.0                    | 0.0             | 0.0                    | 0.0          | 0.0                  |
| Russet Norkotah | 0.0                    | 0.0             | 0.0                    | 0.0          | 0.0                  |
| AOR08540-1      | 0.0                    | 0.0             | 0.0                    | 0.0          | 0.0                  |
| AOR11018-2      | 0.0                    | 0.0             | 0.0                    | 0.0          | 0.0                  |
| AOR11141-2      | 0.0                    | 0.0             | 0.0                    | 0.0          | 0.0                  |
| AOR10140-1      | 0.0                    | 0.0             | 0.0                    | 0.0          | 0.0                  |
| AOR10204-3      | 0.0                    | 0.0             | 0.0                    | 0.0          | 0.0                  |
| AOR11217-3      | 0.0                    | 0.0             | 0.0                    | 0.0          | 0.0                  |
| OR12133-10      | 0.0                    | 0.0             | 0.0                    | 0.0          | 0.0                  |
| AOR12144-1      | 0.0                    | 0.0             | 0.0                    | 0.0          | 0.0                  |
| AOR10633-1      | 0.0                    | 0.0             | 0.0                    | 10.0         | 5.0                  |
| Mean            | 0.0                    | 0.0             | 0.0                    | 0.8          | 0.4                  |
| LSD (0.05)      | NS                     | NS              | NS                     | NS           | NS                   |

Table 5. Oregon Statewide Russet Trial tuber internal defects, Malheur Experiment Station, Oregon State University, Ontario, OR, 2017.

Table 6. Oregon Statewide Russet Trial tuber visual observations at harvest, Malheur Experiment Station, Oregon State University, Ontario, OR, 2017. Tuber defect observations are from four plots for each clone. K = clone should be saved, D = clone should be discarded. Capital letters denote a higher intensity of an observation compared to lower case letters. Since there were four replicates, a clone could be scored for the same attribute up to four times.

| Clone           | K or D      | Description                                                                       |
|-----------------|-------------|-----------------------------------------------------------------------------------|
| Ranger Russet   | 3d, 1D      | 2 knobs, 4 curved, 4 growth cracks, 2 heart shape, 1 bottleneck                   |
| Russet Burbank  | 4D          | 4 curved, 4 irregular shape, 4 knobs, 4 pointed, 4 growth cracks                  |
| Russet Norkotah | 3k, 1d      | low yield, irregular shape, knobs, heart shape                                    |
| AOR08540-1      | 3k, 1?      | bottleneck, pointed, knobs, 2 curved, 2 growth cracks, chain                      |
| AOR11018-2      | 3d, 1k      | 3 bottleneck, 1 heart shape, 3 irregular shape, 1 growth cracks, 2 knobs, 1 Knobs |
| AOR11141-2      | 3D, 1d      | 4 sprouts, 4 chain, 1 knobs                                                       |
| AOR10140-1      | 2k, 1K, 1d  | sprouts , irregular shape                                                         |
| AOR10204-3      | 2k, 2d      | pointed, heart shape, 2 bottleneck, 2 Bottleneck                                  |
| AOR11217-3      | 3k, 1K      | small, bottleneck, growth cracks                                                  |
| OR12133-10      | 2K, 1d, 1k? | 2 curved, 2 irregular shape, heart                                                |
| AOR12144-1      | 4d          | 4 small                                                                           |
| AOR10633-1      | 1k, 2K, 1d  | 4 growth cracks, 1 curved, 1 bottleneck                                           |

Table 7. Preliminary Yield Russet Trial yield, grade, and processing quality for selected varieties, Malheur Experiment Station, Oregon State University, Ontario, OR, 2017.

|                 |                  |                |       |           | U.S. N         | o. 1          |           |                  |            |         |      |                            |                            |                  |                     |                                            |               |
|-----------------|------------------|----------------|-------|-----------|----------------|---------------|-----------|------------------|------------|---------|------|----------------------------|----------------------------|------------------|---------------------|--------------------------------------------|---------------|
| Variety         | Percent<br>No. 1 | Total<br>yield | Total | >20<br>oz | 10 to<br>20 oz | 6 to<br>10 oz | 4 to 6 oz | U.S.<br>No.<br>2 | Marketable | e <4 oz | Cull | Average<br>tuber<br>weight | No. of<br>tubers<br>/plant | Length/<br>width | Specific<br>gravity | Average fry<br>color, light<br>reflectance | Sugar<br>ends |
|                 | %                |                |       |           |                | cwt           | /acre     |                  |            |         |      | OZ                         |                            | ratio            | g/cm <sup>-3</sup>  | %                                          |               |
| Ranger Russet   | 80.0             | 500.9          | 401.0 | 46.5      | 149.8          | 162.0         | 42.7      | 72.7             | 473.7      | 27.2    | 0.0  | 8.6                        | 4.8                        | 1.80             | 1.0886              | 45.4                                       | 0.0           |
| Russet Burbank  | 69.2             | 450.9          | 311.9 | 0.0       | 51.9           | 131.8         | 128.2     | 45.0             | 356.9      | 94.0    | 0.0  | 18.4                       | 7.9                        | 1.96             | 1.0785              | 37.9                                       | 0.0           |
| Russet Norkotah | 81.0             | 360.6          | 292.1 | 0.0       | 84.8           | 110.9         | 96.4      | 15.9             | 308.0      | 52.7    | 0.0  | 19.4                       | 5.2                        | 1.75             | 1.0714              | 42.0                                       | 0.0           |
| AOR12145-3      | 84.2             | 435.0          | 366.0 | 0.0       | 88.7           | 202.3         | 75.1      | 21.6             | 387.7      | 41.5    | 5.8  | 20.2                       | 6.2                        | 1.79             | 1.1047              | 46.6                                       | 0.0           |
| AOR12149-1      | 86.2             | 453.7          | 391.0 | 0.0       | 166.9          | 155.1         | 68.9      | 18.0             | 408.9      | 44.8    | 0.0  | 21.0                       | 5.6                        | 1.83             | 1.0855              | 48.8                                       | 0.0           |
| AOR12342-2      | 91.2             | 498.3          | 454.4 | 0.0       | 204.4          | 186.9         | 63.0      | 16.0             | 470.4      | 27.9    | 0.0  | 22.3                       | 5.4                        | 1.72             | 1.0970              | 49.9                                       | 0.0           |
| AOR12344-21     | 84.3             | 556.6          | 469.4 | 0.0       | 109.4          | 203.2         | 156.7     | 19.5             | 488.8      | 67.7    | 0.0  | 19.6                       | 7.7                        | 1.64             | 1.0909              | 48.7                                       | 0.0           |
| AOR12350-5      | 88.4             | 411.4          | 363.6 | 6.7       | 111.7          | 172.3         | 72.9      | 5.8              | 369.3      | 42.0    | 0.0  | 20.8                       | 5.1                        | 1.76             | 1.0819              | 51.3                                       | 0.0           |
| AOR13011-1      | 91.9             | 593.3          | 545.3 | 6.6       | 199.7          | 262.0         | 77.0      | 14.8             | 560.1      | 33.2    | 0.0  | 22.0                       | 6.6                        | 1.65             | 1.0846              | 47.5                                       | 0.0           |
| AOR13011-2      | 91.2             | 583.7          | 532.4 | 13.6      | 254.0          | 194.1         | 70.8      | 3.2              | 535.6      | 48.0    | 0.0  | 21.8                       | 6.6                        | 1.62             | 1.0827              | 45.0                                       | 0.0           |
| AOR13018-5      | 95.3             | 462.5          | 440.9 | 0.0       | 166.0          | 204.9         | 70.1      | 2.9              | 443.8      | 18.7    | 0.0  | 22.0                       | 5.2                        | 1.58             | 1.0769              | 49.4                                       | 0.0           |
| AOR13038-1      | 86.3             | 477.5          | 412.0 | 0.0       | 132.4          | 188.0         | 91.7      | 32.1             | 444.2      | 33.3    | 0.0  | 21.1                       | 5.7                        | 2.14             | 1.0928              | 53.3                                       | 0.0           |
| AOR13082-6      | 86.0             | 593.1          | 509.9 | 0.0       | 142.2          | 237.5         | 130.2     | 10.1             | 520.0      | 73.1    | 0.0  | 20.1                       | 7.9                        | 1.88             | 1.0806              | 54.9                                       | 0.0           |
| AOR13343-16     | 78.5             | 599.7          | 470.6 | 0.0       | 70.9           | 246.8         | 152.9     | 17.9             | 488.6      | 111.1   | 0.0  | 5.4                        | 6.9                        | 1.60             | 1.0977              | 47.5                                       | 0.0           |
| OR14SP016-3     | 87.4             | 589.3          | 515.2 | 0.0       | 141.3          | 253.7         | 120.2     | 6.7              | 521.9      | 63.2    | 4.3  | 6.3                        | 5.8                        | 1.92             | 1.0799              | 44.7                                       | 0.0           |
| AOR13064-2      | 75.2             | 562.3          | 422.8 | 0.0       | 59.6           | 179.5         | 183.7     | 6.5              | 429.3      | 133.0   | 0.0  | 4.9                        | 7.1                        | 1.75             | 1.0942              | 49.9                                       | 0.0           |
| Average         | 84.8             | 508.0          | 431.2 | 4.6       | 133.4          | 193.2         | 100.0     | 19.3             | 450.4      | 57.0    | 0.6  | 17.1                       | 6.2                        | 1.77             | 1.0868              | 47.7                                       | 0.0           |

Table 8. Preliminary Yield Russet Trial tuber visual observations at harvest for selected varieties, Malheur Experiment Station, Oregon State University, Ontario, OR, 2017. K = clone should be saved, D = clone should be discarded. Capital letters denote a higher intensity of an observation compared to lower case letters.

| Clone           | K or D |                                      |
|-----------------|--------|--------------------------------------|
| Ranger Russet   | d      | growth cracks, Curved, heart shape   |
| Russet Burbank  | D      | bottleneck, Curved, knobs, dumbbell  |
| Russet Norkotah | k      | heart shape                          |
| AOR12145-3      | k      | growth cracks                        |
| AOR12149-1      | k      | irregular shape                      |
| AOR12342-2      | k      | curved, irregular shaped             |
| AOR12344-21     | k      | growth cracks, bottleneck            |
| AOR12350-5      | k      | irregular shape                      |
| AOR13011-1      | k      | heart shape                          |
| AOR13011-2      | K      | heart shape                          |
| AOR13018-5      | k      | irregular shape, heart shape         |
| AOR13038-1      | k      | heart shape, curved                  |
| AOR13082-6      | K      | small, pointed                       |
| AOR13343-16     | k      | small, irregular shape               |
| OR14SP016-3     | К      |                                      |
| AOR13064-2      | k      | pointed, irregular shape, bottleneck |

| Table 9. Preliminary Yield Russet Trial tuber internal defects, Malheur Experiment |
|------------------------------------------------------------------------------------|
| Station, Oregon State University, Ontario, OR, 2017.                               |

| Variety         | Vascular<br>discoloration | Hollow<br>heart | Internal brown<br>spot | Brown<br>center | Black spot<br>bruise |
|-----------------|---------------------------|-----------------|------------------------|-----------------|----------------------|
| •               |                           |                 | · %                    |                 |                      |
| Ranger Russet   | 0.0                       | 0.0             | 0.0                    | 0.0             | 0.0                  |
| Russet Burbank  | 0.0                       | 0.0             | 0.0                    | 0.0             | 0.0                  |
| Russet Norkotah | 10.0                      | 0.0             | 0.0                    | 0.0             | 0.0                  |
| AOR12145-3      | 0.0                       | 0.0             | 10.0                   | 0.0             | 10.0                 |
| AOR12149-1      | 0.0                       | 0.0             | 0.0                    | 0.0             | 0.0                  |
| AOR12342-2      | 0.0                       | 0.0             | 10.0                   | 0.0             | 0.0                  |
| AOR12344-21     | 0.0                       | 0.0             | 0.0                    | 0.0             | 0.0                  |
| AOR12350-5      | 0.0                       | 0.0             | 0.0                    | 0.0             | 0.0                  |
| AOR13011-1      | 0.0                       | 0.0             | 0.0                    | 0.0             | 0.0                  |
| AOR13011-2      | 0.0                       | 0.0             | 0.0                    | 0.0             | 0.0                  |
| AOR13018-5      | 0.0                       | 0.0             | 0.0                    | 0.0             | 0.0                  |
| AOR13038-1      | 0.0                       | 0.0             | 30.0                   | 0.0             | 0.0                  |
| AOR13082-6      | 0.0                       | 0.0             | 40.0                   | 0.0             | 0.0                  |
| AOR13343-16     | 0.0                       | 0.0             | 0.0                    | 0.0             | 0.0                  |
| OR14SP016-3     | 0.0                       | 0.0             | 0.0                    | 0.0             | 0.0                  |
| AOR13064-2      | 0.0                       | 0.0             | 0.0                    | 0.0             | 0.0                  |
| Average         | 0.6                       | 0.0             | 5.6                    | 0.0             | 0.6                  |

|               |                |             |       |              | U.S. No.      | 1              |           | -             |       |                 | Average         | No. of           |                  |                     |
|---------------|----------------|-------------|-------|--------------|---------------|----------------|-----------|---------------|-------|-----------------|-----------------|------------------|------------------|---------------------|
| Clone/Variety | Total<br>yield | <1¾<br>inch | <4 oz | 4 to 6<br>oz | 6 to 10<br>oz | 10 to<br>14 oz | >14<br>oz | U.S.<br>No. 2 | Cull  | Twos +<br>culls | tuber<br>weight | tubers<br>/plant | Length/<br>width | Specific<br>gravity |
|               |                |             |       |              | cwt/          | acre           |           |               |       |                 | ΟZ              |                  | ratio            | g cm <sup>-3</sup>  |
| Yukon Gold    | 369.6          | 1.0         | 60.3  | 78.5         | 116.8         | 69.8           | 29.8      | 13.9          | 0.4   | 14.3            | 5.4             | 5.6              | 1.1              | 1.0822              |
| Red LaSoda    | 561.0          | 2.6         | 60.0  | 83.4         | 194.4         | 139.3          | 62.4      | 17.4          | 4.0   | 21.4            | 6.3             | 7.3              | 1.3              | 1.0759              |
| POR14PG14-1   | 344.1          | 3.6         | 72.8  | 14.5         | 8.8           | 0.0            | 0.0       | 6.2           | 241.7 | 248.0           | 2.3             | 12.2             | 1.2              | 1.0879              |
| POR14PG14-5   | 444.1          | 4.7         | 164.5 | 97.2         | 70.3          | 21.1           | 2.2       | 51.1          | 37.6  | 88.8            | 4.3             | 9.6              | 1.4              | 1.0912              |
| POR14PG22-3KK | 400.1          | 12.6        | 285.2 | 56.6         | 19.6          | 1.1            | 0.0       | 16.6          | 21.1  | 37.7            | 2.0             | 16.5             | 1.0              | 1.0817              |
| Mean          | 423.8          | 4.9         | 128.6 | 66.1         | 82.0          | 46.3           | 18.9      | 21.0          | 61.0  | 82.0            | 4.1             | 10.3             | 1.2              | 1.0838              |
| LSD (0.05)    | 131.9          | 5.8         | 47.8  | 28.3         | 54.3          | 46.5           | 29.6      | 20.6          | 40.2  | 31.6            | 1.6             | 2.9              | 0.2              | 0.0044              |

Table 10. Oregon Statewide Specialty Trial yield and grade of colored flesh clones, Malheur Experiment Station, Oregon State University, Ontario, OR, 2017.

| Clone/Variety | Vascular<br>discoloration | Hollow<br>heart | Internal brown<br>spot<br>% | Brown<br>center | Black spot bruise |
|---------------|---------------------------|-----------------|-----------------------------|-----------------|-------------------|
| Yukon Gold    | 0.0                       | 0.0             | 7.5                         | 0.0             | 0.0               |
| Red LaSoda    | 2.5                       | 0.0             | 7.5                         | 0.0             | 0.0               |
| POR14PG14-1   | 0.0                       | 0.0             | 0.0                         | 0.0             | 2.5               |
| POR14PG14-5   | 0.0                       | 0.0             | 0.0                         | 0.0             | 0.0               |
| POR14PG22-3KK | 0.0                       | 0.0             | 7.5                         | 0.0             | 0.0               |
| Mean          | 0.5                       | 0.0             | 4.5                         | 0.0             | 0.5               |
| LSD (0.05)    | NS                        | NS              | NS                          | NS              | NS                |

Table 11. Oregon Statewide Specialty Trial tuber internal defects of colored flesh clones, Malheur Experiment Station, Oregon State University, Ontario, OR, 2017.

Table 12. Oregon Statewide Specialty Trial tuber visual observations at harvest, Malheur Experiment Station, Oregon State University, Ontario, OR, 2017. Tuber defect observations are from four plots for each clone. K = clone should be saved, D = clone should be discarded. Capital letters denote a higher intensity of an observation compared to lower case letters. Since there were four replicates, a clone could be scored for the same attribute up to four times.

| Clone         | K or D | Description                                                            |
|---------------|--------|------------------------------------------------------------------------|
| Yukon Gold    | 3K, 1d | 1 scab, 1 greening                                                     |
| Red LaSoda    | 4d     | growth cracks                                                          |
| POR14PG14-1   | 2d, 2D | 3 sprouts, 1 Sprouts, mixed variety                                    |
| POR14PG14-5   | D      | 1 Sprouts, 1 sprouts, irregular shape, 2 rough skin, nice yellow flesh |
| POR14PG22-3KK | 4D     | 2 Sprouts, 2 sprouts, 1 nice                                           |

Table 13. Preliminary Yield Specialty Trial yield and grade of colored flesh clones, Malheur Experiment Station, Oregon State University, Ontario, OR, 2017.

|                |                |       |       |              | U.S. No. 1 |                |           | -             |       |                 |                         | No. of           |                  |                     |
|----------------|----------------|-------|-------|--------------|------------|----------------|-----------|---------------|-------|-----------------|-------------------------|------------------|------------------|---------------------|
| Variety/Clone  | Total<br>yield | <1.75 | <4 oz | 4 to 6<br>oz | 6-10 oz    | 10 to<br>14 oz | >14<br>oz | U.S.<br>No. 2 | Cull  | Twos +<br>culls | Average<br>tuber weight | tubers<br>/plant | Length/<br>width | Specific<br>gravity |
|                |                |       |       |              | CW         | t/acre         |           |               |       |                 | oz                      |                  | ratio            | g/cm <sup>-3</sup>  |
| Yukon Gold     | 331.0          | 1.6   | 67.0  | 86.2         | 107.0      | 58.1           | 11.8      | 0.9           | 0.0   | 0.9             | 5.4                     | 5.1              | 1.10             | 1.0840              |
| Red LaSoda     | 627.9          | 2.8   | 104.0 | 107.4        | 214.2      | 124.2          | 67.3      | 10.8          | 0.0   | 10.8            | 6.7                     | 7.7              | 1.24             | 1.0805              |
| POR15NCKY021-2 | 385.6          | 5.4   | 251.6 | 55.5         | 1.9        | 0.0            | 0.0       | 5.4           | 71.2  | 76.6            | 2.1                     | 14.9             | 1.35             | 1.0890              |
| POR15PG034-1   | 299.1          | 10.4  | 253.9 | 19.8         | 4.1        | 0.0            | 0.0       | 14.1          | 7.3   | 21.3            | 1.8                     | 13.7             | 1.04             | 1.0840              |
| POR15PG036-3   | 403.8          | 13.2  | 249.6 | 5.8          | 0.0        | 0.0            | 0.0       | 61.3          | 87.1  | 148.4           | 1.4                     | 23.9             | 1.82             | 1.0667              |
| POR15PG015-3   | 431.4          | 9.0   | 133.1 | 22.6         | 3.8        | 0.0            | 0.0       | 24.9          | 247.0 | 271.9           | 2.2                     | 16.3             | 1.04             | 1.0725              |
| POR15PG009-1   | 396.0          | 10.4  | 67.2  | 1.7          | 0.0        | 0.0            | 0.0       | 7.6           | 319.4 | 327.0           | 1.7                     | 18.8             | 1.10             | 1.0955              |
| Mean           | 410.7          | 7.5   | 160.9 | 42.7         | 47.3       | 26.0           | 11.3      | 17.8          | 104.6 | 122.4           | 3.1                     | 14.3             | 1.24             | 1.0817              |

Table 14. Preliminary Yield Specialty Trial tuber internal defects of colored flesh clones, Malheur Experiment Station, Oregon State University, Ontario, OR, 2017.

| Variety/Clone  | Vascular discoloration | Hollow heart | Internal brown spot | Brown center | Black spot bruise |
|----------------|------------------------|--------------|---------------------|--------------|-------------------|
|                |                        |              | %                   |              |                   |
| Yukon Gold     | 0.0                    | 0.0          | 30.0                | 0.0          | 0.0               |
| Red LaSoda     | 0.0                    | 0.0          | 0.0                 | 0.0          | 0.0               |
| POR15NCKY021-2 | 0.0                    | 0.0          | 30.0                | 0.0          | 0.0               |
| POR15PG034-1   | 10.0                   | 0.0          | 0.0                 | 0.0          | 0.0               |
| POR15PG036-3   | 0.0                    | 0.0          | 0.0                 | 0.0          | 0.0               |
| POR15PG015-3   | 0.0                    | 0.0          | 50.0                | 0.0          | 0.0               |
| POR15PG009-1   | 0.0                    | 0.0          | 0.0                 | 0.0          | 0.0               |
| Mean           | 1.4                    | 0.0          | 15.7                | 0.0          | 0.0               |

Table 15. Preliminary Yield Specialty Trial tuber visual observations at harvest, Malheur Experiment Station, Oregon State University, Ontario, OR, 2017. K = clone should be saved, D = clone should be discarded. Capital letters denote a higher intensity of an observation compared to lower case letters.

| Clone          | K or D | Description                           |
|----------------|--------|---------------------------------------|
| Yukon Gold     | К      |                                       |
| Red LaSoda     | d      | deep eyes, irregular shape            |
| POR15NCKY021-2 | D      | sprouts                               |
| POR15PG034-1   | k      | mixed variety, white variety mixed in |
| POR15PG036-3   | D      | sprouts                               |
| POR15PG015-3   | D      | sprouts                               |
| POR15PG009-1   | D      | sprouts                               |

Table 16. Western Region Specialty Trial yield and grade of colored flesh clones, Malheur Experiment Station, Oregon State University, Ontario, OR, 2017.

|                        |                |             |       |              | U.S. No. 1    |                |           | -             |      |                 | Average         | No. of           |                  |                     |
|------------------------|----------------|-------------|-------|--------------|---------------|----------------|-----------|---------------|------|-----------------|-----------------|------------------|------------------|---------------------|
| Clone/Variety          | Total<br>yield | <1¾<br>inch | <4 oz | 4 to 6<br>oz | 6 to 10<br>oz | 10 to<br>14 oz | >14<br>oz | U.S.<br>No. 2 | Cull | Twos<br>+ culls | tuber<br>weight | tubers<br>/plant | Length/<br>width | Specific<br>gravity |
|                        |                |             |       |              | cwt/a         | acre           |           |               |      |                 | oz              |                  | ratio            | g cm <sup>-3</sup>  |
| Chieftain              | 517.1          | 1.3         | 60.2  | 141.1        | 234.7         | 71.3           | 4.8       | 17.7          | 1.3  | 19.0            | 5.8             | 7.4              | 1.20             | 1.0775              |
| Red LaSoda             | 569.5          | 2.3         | 58.6  | 92.2         | 205.4         | 142.4          | 55.6      | 35.1          | 0.0  | 35.1            | 6.4             | 7.4              | 1.24             | 1.0781              |
| COTX00104-6R           | 314.0          | 1.4         | 31.8  | 55.6         | 108.3         | 94.8           | 18.2      | 13.1          | 0.0  | 13.1            | 6.6             | 3.9              | 1.22             | 1.0761              |
| PORTX03PG25-2R/R       | 281.0          | 4.8         | 225.3 | 49.9         | 5.2           | 0.0            | 0.0       | 22.5          | 0.6  | 23.1            | 1.9             | 12.1             | 2.11             | 1.0733              |
| AC03534-2R/Y           | 513.5          | 11.3        | 313.7 | 161.2        | 38.0          | 0.0            | 0.0       | 67.9          | 0.6  | 68.5            | 2.5             | 16.8             | 1.08             | 1.0721              |
| CO05035-1PW/Y          | 506.7          | 3.3         | 128.1 | 132.8        | 165.6         | 38.4           | 17.9      | 20.9          | 20.9 | 41.8            | 4.2             | 10.0             | 1.32             | 1.0809              |
| COA07365-4RY           | 327.8          | 5.7         | 196.1 | 96.9         | 33.1          | 1.1            | 0.0       | 32.9          | 0.2  | 33.1            | 2.7             | 10.2             | 1.21             | 1.0775              |
| NDTX059759-3RY/Y Pinto | 361.3          | 1.6         | 144.1 | 114.3        | 82.4          | 17.8           | 2.6       | 2.4           | 0.0  | 2.4             | 3.7             | 8.2              | 1.23             | 1.0843              |
| Yukon Gold             | 378.0          | 1.9         | 69.0  | 89.8         | 139.3         | 65.9           | 6.9       | 25.3          | 0.0  | 25.3            | 5.2             | 6.0              | 1.15             | 1.0849              |
| A06336-2Y              | 435.8          | 4.0         | 167.5 | 174.0        | 88.7          | 4.8            | 0.0       | 37.6          | 0.0  | 37.6            | 3.3             | 10.8             | 1.47             | 1.0647              |
| A06336-5Y              | 416.9          | 9.8         | 269.1 | 104.0        | 20.5          | 1.2            | 0.0       | 22.0          | 22.0 | 44.1            | 2.3             | 14.9             | 1.09             | 1.0778              |
| Mean                   | 420.1          | 4.3         | 151.2 | 110.2        | 101.9         | 39.8           | 9.6       | 27.0          | 4.2  | 31.2            | 4.1             | 9.8              | 1.3              | 1.0770              |
| LSD (0.05)             | 79.6           | 3.2         | 32.6  | 37.3         | 36.6          | 25.2           | 18.1      | 25.7          | 10.7 | 30.2            | 0.5             | 2.0              | 0.12             | NS                  |

| Clone/Variety          | Vascular discoloration | Hollow<br>heart | Internal<br>brown spot | Brown<br>center | Black spot<br>bruise |
|------------------------|------------------------|-----------------|------------------------|-----------------|----------------------|
|                        |                        |                 | %                      |                 |                      |
| Chieftain              | 0.0                    | 0.0             | 15.0                   | 0.0             | 0.0                  |
| Red LaSoda             | 0.0                    | 0.0             | 12.5                   | 0.0             | 0.0                  |
| COTX00104-6R           | 0.0                    | 0.0             | 5.0                    | 0.0             | 0.0                  |
| PORTX03PG25-2R/R       | 0.0                    | 0.0             | 2.5                    | 0.0             | 5.0                  |
| AC03534-2R/Y           | 0.0                    | 0.0             | 7.5                    | 0.0             | 0.0                  |
| CO05035-1PW/Y          | 0.0                    | 0.0             | 5.0                    | 0.0             | 0.0                  |
| COA07365-4RY           | 0.0                    | 0.0             | 0.0                    | 0.0             | 5.0                  |
| NDTX059759-3RY/Y Pinto | 0.0                    | 0.0             | 10.0                   | 0.0             | 0.0                  |
| Yukon Gold             | 0.0                    | 0.0             | 16.7                   | 0.0             | 0.0                  |
| A06336-2Y              | 0.0                    | 0.0             | 3.3                    | 0.0             | 0.0                  |
| A06336-5Y              | 0.0                    | 0.0             | 5.0                    | 0.0             | 0.0                  |
| Mean                   | 0.0                    | 0.0             | 7.5                    | 0.0             | 0.9                  |
| LSD (0.05)             | NS                     | NS              | NS                     | NS              | NS                   |

Table 17. Western Region Specialty Trial tuber internal defects of colored flesh clones, Malheur Experiment Station, Oregon State University, Ontario, OR, 2017.

Table 18. Western Region Specialty Trial tuber visual observations at harvest, Malheur Experiment Station, Oregon State University, Ontario, OR, 2017. Tuber defect observations are from four plots for each clone. K = clone should be saved, D = clone should be discarded. Capital letters denote a higher intensity of an observation compared to lower case letters. Since there were four replicates, a clone could be scored for the same attribute up to four times.

| Clone/Variety          | K or D   | Description                                                         |
|------------------------|----------|---------------------------------------------------------------------|
| Chieftain              | 4 k      | 3 dull skin, growth cracks, irregular shape                         |
| Red LaSoda             | 3 D, 1 d | 4 Irregular shape, 3 deep eyes, 2 folded bud end, growth crack      |
| COTX00104-6R           | 4 d      | 2 oversize, 3 dull skin                                             |
| PORTX03PG25-2R/R       | 3 K, 1 k |                                                                     |
| AC03534-2R/Y           | 4 k      | knobs, dull skin, 2 sprouts, chain tubers                           |
| CO05035-1PW/Y          | 2 D, 2 d | 4 sprouts, 2 oversize, 2 scab, 2 greening, knobs                    |
| COA07365-4RY           | 3 k, 1 K | 3 knobs, chain tubers                                               |
| NDTX059759-3RY/Y Pinto | 4 k      |                                                                     |
| Yukon Gold             | 2 k, 1 d | oversize, folded bud end, knobs, heart shape, growth cracks         |
| A06336-2Y              | 2 d, 1 D | 3 sprouts, greening, 2 chain tubers, irregular, folded, heart shape |
| A06336-5Y              | 4 D      | 4 Sprouts, chain tubers                                             |

| Variety    | Total<br>yield | >10<br>oz | 6 to<br>10 oz | 4 to 6<br>oz | <4 oz | >4<br>inch | Two's | cull | Average<br>tuber<br>weight | No. of<br>tubers<br>/plant | Length/width | Specific<br>gravity | Average fry<br>color, light<br>reflectance | Sugar<br>end |
|------------|----------------|-----------|---------------|--------------|-------|------------|-------|------|----------------------------|----------------------------|--------------|---------------------|--------------------------------------------|--------------|
|            |                |           |               | cwt/acr      | e     |            |       |      | ΟZ                         |                            | ratio        | g/cm <sup>-3</sup>  | % -                                        |              |
| Atlantic   | 430.2          | 44.0      | 70.1          | 166.0        | 139.8 | 42.1       | 7.3   | 2.9  | 6.4                        | 5.5                        | 1.04         | 1.0958              | 33.3                                       | 7.5          |
| Snowden    | 551.4          | 83.7      | 161.9         | 223.8        | 65.1  | 16.7       | 14.2  | 2.6  | 5.3                        | 8.6                        | 1.04         | 1.0899              | 33.2                                       | 12.5         |
| AOR11484-2 | 455.1          | 39.1      | 105.3         | 221.2        | 84.7  | 18.2       | 4.7   | 0.0  | 6.1                        | 6.2                        | 1.04         | 1.0846              | 32.1                                       | 5.0          |
| AOR11488-1 | 477.2          | 157.0     | 155.5         | 137.7        | 3.5   | 0.0        | 12.2  | 11.1 | 3.8                        | 10.3                       | 1.06         | 1.0899              | 30.8                                       | 15.0         |
| AOR11470-1 | 643.6          | 233.7     | 187.2         | 96.8         | 2.6   | 0.0        | 104.4 | 18.8 | 3.3                        | 16.1                       | 1.06         | 1.1113              | 35.2                                       | 0.0          |
| AOR12197-2 | 466.4          | 142.2     | 108.1         | 72.7         | 3.7   | 0.0        | 76.6  | 63.2 | 3.5                        | 11.0                       | 1.08         | 1.0887              | 33.8                                       | 5.0          |
| AOR12197-4 | 455.7          | 120.8     | 155.6         | 161.0        | 14.4  | 0.0        | 1.5   | 2.4  | 4.0                        | 9.4                        | 1.05         | 1.0848              | 34.5                                       | 7.5          |
| Mean       | 497.1          | 117.2     | 134.8         | 154.2        | 44.9  | 11.0       | 31.6  | 14.4 | 4.6                        | 9.6                        | 1.05         | 1.0921              | 33.3                                       | 7.5          |
| LSD (0.05) | 69.5           | 23.0      | 36.2          | 58.4         | 39.8  | 20.0       | 35.3  | 33.0 | 0.6                        | 1.2                        | NS           | 0.0034              | NS                                         | NS           |

Table 19. Oregon Statewide Chip Trial yield and grade, Malheur Experiment Station, Oregon State University, Ontario, OR, 2017.

| Variety    | Vascular discoloration | Hollow<br>heart | Internal brown<br>spot | Brown<br>center | Black spot<br>bruise |
|------------|------------------------|-----------------|------------------------|-----------------|----------------------|
|            |                        |                 | %                      |                 |                      |
| Atlantic   | 0.0                    | 0.0             | 2.5                    | 0.0             | 0.0                  |
| Snowden    | 0.0                    | 0.0             | 0.0                    | 0.0             | 0.0                  |
| AOR11484-2 | 0.0                    | 0.0             | 0.0                    | 0.0             | 0.0                  |
| AOR11488-1 | 0.0                    | 0.0             | 5.0                    | 0.0             | 0.0                  |
| AOR11470-1 | 0.0                    | 0.0             | 0.0                    | 0.0             | 0.0                  |
| AOR12197-2 | 0.0                    | 0.0             | 0.0                    | 0.0             | 0.0                  |
| AOR12197-4 | 0.0                    | 0.0             | 0.0                    | 0.0             | 0.0                  |
| Mean       | 0.0                    | 0.0             | 1.1                    | 0.0             | 0.0                  |
| LSD (0.05) | NS                     | NS              | NS                     | NS              | NS                   |

Table 20. Oregon Statewide Chip Trial tuber internal defects for selected clones, Malheur Experiment Station, Oregon State University, Ontario, OR, 2017.

Table 21. Oregon Statewide Chip Trial tuber visual observations at harvest, Malheur Experiment Station, Oregon State University, Ontario, OR, 2017. K = clone should be saved, D = clone should be discarded. Capital letters denote a higher intensity of an observation compared to lower case letters. Since there were four replicates, a clone could be scored for the same attribute up to four times.

| Clone/Variety | K or D     | Description                         |
|---------------|------------|-------------------------------------|
| Atlantic      | 2d, 2k     | 3 oversized, greening, folded, scab |
| Snowden       | 2k, 2K     | 1 oversized                         |
| AOR11484-2    | 2K, 2k     | 1 died early                        |
| AOR11488-1    | 1d, 2k, 1K | 3 small, 1 few sprouts              |
| AOR11470-1    | 4D         | 4 chain, 2 Sprouts, 2 sprouts       |
| AOR12197-2    | 3k, 1D     | 3 sprouts, 2 knobs                  |
| AOR12197-4    | 4K         | scab                                |

| Table 22. Preliminary Yield Chip Trial yield and grade, Malheur Experiment Station, Oregon State University, Ontar | io, OR, |
|--------------------------------------------------------------------------------------------------------------------|---------|
| 2017.                                                                                                              |         |

| Variety     | Total<br>yield | >10<br>oz | 6 to<br>10 oz | 4 to 6<br>oz | <4 oz | >4<br>inch | Two  | Culls | Average<br>tuber<br>weight | No. of<br>tubers<br>/plant | Length/width | Specific gravity   | Average fry<br>color, light<br>reflectance | Sugar<br>end |
|-------------|----------------|-----------|---------------|--------------|-------|------------|------|-------|----------------------------|----------------------------|--------------|--------------------|--------------------------------------------|--------------|
|             |                |           |               | cwt/         | acre  |            |      |       | ΟZ                         |                            | ratio        | g/cm <sup>-3</sup> | %                                          |              |
| Atlantic    | 545.8          | 246.3     | 190.5         | 56.4         | 44.8  | 105.1      | 0.0  | 7.8   | 7.7                        | 5.9                        | 1.03         | 1.0979             | 43.2                                       | 0.0          |
| Snowden     | 606.2          | 172.9     | 237.0         | 125.3        | 71.0  | 65.7       | 0.0  | 0.0   | 6.5                        | 7.7                        | 1.03         | 1.0922             | 45.9                                       | 0.0          |
| AOR13125-2  | 389.5          | 76.0      | 175.6         | 81.5         | 51.2  | 15.4       | 0.0  | 5.2   | 5.9                        | 5.5                        | 1.00         | 1.0852             | 45.1                                       | 0.0          |
| AOR13125-9  | 483.1          | 62.0      | 163.9         | 138.6        | 118.6 | 0.0        | 0.0  | 0.0   | 4.7                        | 8.5                        | 0.97         | 1.1045             | 35.5                                       | 10.0         |
| AOR13136-2  | 389.4          | 34.5      | 95.5          | 124.8        | 130.5 | 5.3        | 2.8  | 1.3   | 4.2                        | 7.8                        | 1.07         | 1.0756             | 34.5                                       | 10.0         |
| AOR13136-4  | 614.8          | 136.0     | 201.9         | 143.2        | 112.1 | 73.7       | 14.4 | 7.2   | 5.2                        | 9.8                        | 1.21         | 1.0841             | 35.8                                       | 0.0          |
| NYOR14Q9-5  | 602.0          | 263.6     | 197.7         | 78.3         | 52.0  | 73.4       | 3.2  | 7.1   | 7.3                        | 6.9                        | 1.03         | 1.0854             | 43.5                                       | 0.0          |
| NYOR14Q9-9  | 575.6          | 88.7      | 216.4         | 182.0        | 88.5  | 18.9       | 0.0  | 0.0   | 5.2                        | 9.1                        | 1.07         | 1.0907             | 40.6                                       | 0.0          |
| NYOR14Q12-1 | 505.1          | 49.7      | 167.9         | 127.2        | 140.7 | 5.7        | 19.5 | 0.0   | 4.3                        | 9.7                        | 1.03         | 1.0903             | 44.4                                       | 0.0          |
| Mean        | 523.5          | 125.5     | 182.9         | 117.5        | 89.9  | 40.3       | 4.4  |       | 5.7                        | 7.9                        | 1.05         | 1.0895             | 40.9                                       | 2.2          |

Table 23. Preliminary Yield Chip Trial tuber internal defects for selected clones, Malheur Experiment Station, Oregon State University, Ontario, OR, 2017.

| Variety     | Vascular discoloration | Hollow heart | Internal brown spot | Brown center | Black spot bruise |
|-------------|------------------------|--------------|---------------------|--------------|-------------------|
|             |                        |              | %                   |              |                   |
| Atlantic    | 0                      | 0            | 0                   | 0            | 0                 |
| Snowden     | 0                      | 0            | 0                   | 0            | 0                 |
| AOR13125-2  | 0                      | 0            | 0                   | 0            | 0                 |
| AOR13125-9  | 0                      | 0            | 0                   | 0            | 0                 |
| AOR13136-2  | 0                      | 0            | 0                   | 0            | 0                 |
| AOR13136-4  | 0                      | 0            | 0                   | 0            | 20                |
| NYOR14Q9-5  | 0                      | 0            | 0                   | 0            | 0                 |
| NYOR14Q9-9  | 0                      | 0            | 0                   | 0            | 0                 |
| NYOR14Q12-1 | 0                      | 0            | 0                   | 0            | 0                 |
| Mean        | 0.0                    | 0.0          | 0.0                 | 0.0          | 2.2               |

Table 24. Preliminary Yield Chip Trial tuber visual observations at harvest, Malheur Experiment Station, Oregon State University, Ontario, OR, 2017. K = clone should be saved, D = clone should be discarded. Capital letters denote a higher intensity of an observation compared to lower case letters.

| Clone       | K or D |          |
|-------------|--------|----------|
| Atlantic    | k      | oversize |
| Snowden     | k      |          |
| AOR13125-2  | k      | greening |
| AOR13125-9  | k      | greening |
| AOR13136-2  | k      |          |
| AOR13136-4  | k      |          |
| NYOR14Q9-5  | К      |          |
| NYOR14Q9-9  | k      |          |
| NYOR14Q12-1 | k      |          |

## EVALUATION OF POTATO PEST MANAGEMENT PROGRAMS

Stuart Reitz, Malheur County Extension Oregon State University, Ontario, OR

Clinton C. Shock, Erik B. G. Feibert, Alicia Rivera, and Lamont D. Saunders Malheur Experiment Station, Oregon State University, Ontario, OR, 2017

## Introduction

A number of insect pests reduce yield and quality of potatoes throughout the Pacific Northwest (PNW), although their distribution and intensity of infestations vary by location and year. Unfortunately, the number of insect pests has been increasing in recent years. In the early 1990s, the major insect pests of potatoes in the PNW were limited to wireworms, Colorado potato beetles, aphids, and two-spotted spider mites. Other species that have emerged as pests more recently (since the mid-1990s) include thrips, cutworms, loopers and armyworms, potato tuberworm (2004), beet leafhopper (2005), potato psyllid (2011), and stink bug (2013), and potentially *Lygus* bug. This increase in pest species coupled with rapid changes in registered insecticides have severely complicated management of potato insects in the PNW.

Most importantly, the potato psyllid has emerged as a serious threat to PNW potato production because of its ability to be a vector of the bacterium that causes zebra chip disease. The pest and disease have fundamentally changed insect management strategies and have effectively ended traditional integrated pest management programs. Although the urgency regarding potato psyllid and zebra chip have receded slightly, they remain the cornerstone for pest management in potatoes because processors have virtually zero tolerance for zebra chip defects. Detection of potato psyllids at any level can trigger a season-long insecticide treatment program, especially for long-season potato cultivars. Consequently, many growers at risk of potato psyllid are designing their insect management programs around this one pest and fitting management of other insect pests around psyllid management strategies.

Given this situation, there is a critical need to develop and refine psyllid management within the context of overall insect pest management programs to ensure that potato production in the PNW remains viable and economically sustainable. Most insecticides with psyllid efficacy also have activity, and are currently used, against other pests, including aphids, thrips, and Colorado potato beetles. Therefore, it is critical to determine what insecticides would be most suitable for psyllid management and which would be suitable for other pests. This information will enable growers to make better informed choices regarding their insecticide selections and will help develop appropriate insecticide resistance management programs for potatoes in the PNW.

Our regional research team conducted a series of experiments to evaluate insecticides for psyllid management and their effect on other pest and beneficial insects and to assess different plot designs and sampling strategies to help improve the efficiency of psyllid research trials.

Open field insecticide trials with small versus large plots and different sampling schemes were conducted at Eltopia and Pasco, Washington and Ontario, Oregon. Sleeve cage trials to evaluate

insecticides were conducted in Kimberly, Idaho and Hermiston, Oregon. Results of the Ontario trial are reported below.

#### **Materials and Methods**

A trial for determining the efficacy of the insecticides Agri-Mek<sup>®</sup> (abamectin), Brigade<sup>®</sup> (bifenthrin), Exirel<sup>®</sup> (cyazapyr), and Movento<sup>®</sup> (spirotetramat) was conducted at the OSU Malheur Experiment Station. The trial was arranged on a randomized complete block design with four replications of each treatment and plot size. Small plots were 4 rows or 12 ft by 25 ft. Large plots were 8 rows or 24 ft by 25 ft. 'Ranger Russet' potatoes were planted on April 24, 2017. Treatments were made on a 14-day interval: August 4, and 18, and September 1, 2017. Treatments were applied with a CO<sub>2</sub> powered backpack sprayer applying insecticides at 20 gal water/acre and 30 psi.

Table 1. Insecticides used in potato field trial at the Oregon State University, Malheur Experiment Station, Ontario, OR, 2017.

| Treatment products | Active ingredient | Rate (fl oz/acre) | Timing |
|--------------------|-------------------|-------------------|--------|
| Check              | -                 | -                 | -      |
| Movento            | Spirotetramat     | 5                 | ABC    |
| Agri-Mek SC        | Abamectin         | 3.5               | ABC    |
| Brigade            | Bifenthrin        | 4                 | ABC    |
| Exirel             | Cyazypyr          | 13.5              | ABC    |

Evaluations were made using two different sampling methods, as follows:

- Leaf samples were randomly selected from the middle canopy of plants in the interior rows of each plot, and placed in a 1-gal Ziploc bag. Samples were brought back to the lab for evaluation under magnification. Intense samples consisted of 20 leaves per plot and standard samples consisted of 10 leaves per plot.
- An inverted leaf blower with an organza fabric bag was used on the outside rows, and the contents of each sample were place into 1-gal Ziploc bags, and evaluated with the use of dissecting microscopes. Intense samples were collected over a 3-min interval and standard samples were collected over a 90-sec interval.

Sample collection began 3 days after the first insecticide application and every 7 days thereafter.

### Results

Overall insect populations were relatively low. Few potato psyllids were detected in this trial. Results were comparable between small and large plot samples (see figures below). The more intensive sampling regimens detected more insects and mites and tended to have less variation than the standard sampling regimens. There were no significant differences in numbers of adult potato psyllids among the treatments (Fig. 1). However, there were significant differences in potato psyllid eggs among treatments (Fig. 2). Agri-Mek did not have an effect on potato psyllid eggs as there was no difference between the Agri-Mek treatment and the untreated check. Egg numbers were significantly lower in the Brigade, Exirel and Movento treatments compared with the untreated check. The same pattern was observed with the potato psyllid nymphs (Fig. 3).

In large-plot samples, two-spotted spider mite populations were significantly lower in the Agri-Mek, Brigade, and Movento treatments than in either the Exirel treatment or the untreated check. In the small plots, Agri-Mek and Movento performed the best. Exirel and Brigade had significantly lower populations than the untreated check, but higher than either Agri-Mek or Movento.

Thrips populations also differed among treatments. In both the small and large plots, there were significantly more thrips in the Brigade treatment than in any of the other treatments, including the untreated check. Agri-Mek, Exirel, and Movento performed equally well; all treatments had significantly fewer thrips than the untreated check.

Although we observed some statistical differences among treatments for psyllid eggs and psyllid nymphs, their biological importance is uncertain. The differences were consistent between the large and small plots but the averages ranged from only 0 to 2.3 per sample. Many leaves had no psyllid eggs or nymphs. The trial results support other trial results showing that pyrethroids (e.g., Brigade) flare thrips populations.

## Conclusions

Psyllid pressure was again surprisingly low in 2017. In open field trials, we observed minor, but statistically different treatment effects on psyllid eggs and nymphs, with Brigade, Exirel, and Movento tending to have lower numbers than the untreated check. However, Brigade, a synthetic pyrethroid, led to significantly higher numbers of thrips.

Brigade also significantly reduced populations of beneficial insects.

Sleeve cage trials conducted at other locations with *Liberibacter*-infected psyllids did not demonstrate that insecticides significantly reduced the transmission of *Liberibacter*. However, there was a trend for lower levels of zebra chip disease symptoms with Agri-Mek and Brigade. Additional replication of these tests would be needed to confirm these results.

#### Acknowledgments

We appreciate the technical assistance of Ian Trenkel, Allison Simmons, Hannah Rose, Megan Travis, Andrea Leavitt, and Kelsey Alexander. The project was supported by the Northwest Potato Research Consortium, Oregon State University, and the Malheur County Education Service District.

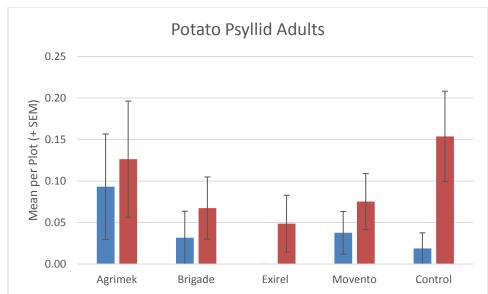



Figure 1. Mean number of adult potato psyllids by insecticide treatment in small plots (left) and large plots (right) in an efficacy trial at Ontario, OR, 2017. There were no statistical differences among the treatments.

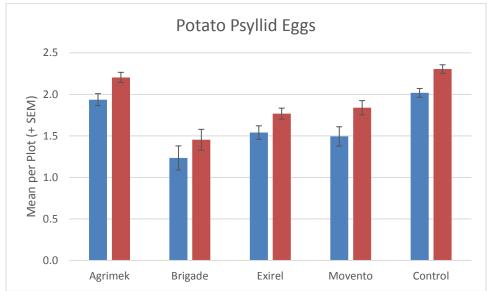



Figure 2. Mean number of potato psyllid eggs by insecticide treatment in small plots (left) and large plots (right) in an efficacy trial at Ontario, OR, 2017, Brigade, Exirel, and Movento had significantly fewer eggs than the untreated check or the Agri-Mek treatment.

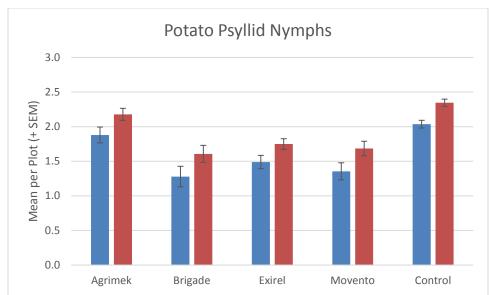



Figure 3. Mean number of potato psyllid nymphs by insecticide treatment in small plots (left) and large plots (right) in an efficacy trial at Ontario, OR, 2017. Brigade, Exirel, and Movento had significantly fewer nymphs than the untreated check or the Agri-Mek treatment.

## EVALUATING POTENTIAL HORMETIC EFFECTS OF FOUR HERBICIDES ON SUGAR BEET

Don Morishita, University of Idaho, Kimberly Research and Extension Center, Kimberly, ID Joel Felix and Joey Ishida, Malheur Experiment Station, Oregon State University, Ontario, OR, 2017

### Introduction

Hormesis is a term used by toxicologists to refer to a response of a subject to a sublethal dose of some kind of introduced agent that results in a positive reaction. It is a phenomenon that has been observed in humans, other animals, and plants. With plants, hormesis is the response to an environmental agent characterized by a low dose stimulation or beneficial effect and a high dose inhibitory or toxic effect. The use of this phenomenon might be beneficial to sugar beet production if the hormetic effect boosts sugar beet yield or better yet, boosts sucrose content without increasing sugar beet root biomass yield. Several herbicides and other chemicals have been found to cause hormesis in other crops.

Glyphosate at a nonlethal dose is actually registered for use on sugarcane to increase sugar content of plants prior to harvest. Another herbicide, sulfometuron (Oust<sup>®</sup>), which is a Group 2 herbicide, has been shown to increase sugar content in sugarcane when applied at rates ranging from 0.14 to 0.28 oz ai/acre. Because sugar beet is known to be extremely sensitive to sulfometuron, some other Group 2 herbicide could be explored with sugar beet. Several Group 4 growth regulator herbicides including 2,4-D, MCPA, and 2,4-DP have been used for growth stimulation of various crops, and have even improved the color of certain red potato varieties. There are many Group 2 and Group 4 herbicides that are commonly used for weed control in crops grown in Idaho and Oregon. The potential to increase sucrose content without increasing sugar beet root biomass could be of great benefit to the sugar beet industry.

The objective of this study was to evaluate multiple herbicides applied at sublethal rates towards the end of the growing season to determine if any of these products possess the potential for hormesis effects on sugar beet. The hormetic response will be determined by measuring sugar beet yield, sucrose content, and quality in response to the herbicides applied at various rates.

### **Materials and Methods**

Sugar beet field studies were initiated during summer 2017 at the Malheur Experiment Station, Ontario, Oregon and the University of Idaho, Kimberly Research and Extension Center, Kimberly, Idaho, in fields previously planted to wheat. Production practices typical for each area were followed as closely as possible. The primary difference between growing practices at Malheur and Kimberly was surface furrow irrigation at Malheur and sprinkler irrigation at Kimberly. Hybrid 27RR20 sugar beet seed was planted on April 21 at Malheur, while Holly hybrid SX1534RR sugar beet seed was planted on April 17 at Kimberly. The trials had factorial designs (4 herbicides at 4 rates each) arranged in randomized complete blocks with 6 replications. An untreated check was included. Weeds were controlled by applying glyphosate at 1.13 lb ae/acre plus ammonium sulfate at 2.5% v/v at the 2-leaf stage (May 3 at Malheur and May 16 at Kimberly) and at the 6-leaf stage (May 19 at Malheur and May 27 at Kimberly). The application at the 6-leaf stage included Outlook at 0.98 lb ai/acre. All other production practices including fertilization, irrigation, and preventative sprays for insects and diseases followed standard local practices.

Herbicide treatments to induce hormetic effects were applied on August 29 at Malheur and August 20 at Kimberly using a CO<sub>2</sub>-pressurized backpack sprayer (Tables 1 and 2). Roots were harvested on September 19 at Malheur and October 9 at Kimberly. Percent sugar content and other sugar yield variables were determined at the Amalgamated Sugar Factory in Paul, Idaho. Data were subjected to analysis of variance using SAS and means compared using protected LSD at P = 0.05% level of confidence.

#### **Results and Discussion**

At the Malheur Experiment Station visible plant injury ranging from 5 to 20% was observed at 7 days after herbicide application on plants treated with Starane<sup>®</sup> Ultra at 0.8 fl oz/acre. Visual injury also was observed at the Kimberly site ranging from 10 to 27% at 7 days after treatment. Starane Ultra (fluroxypyr) and Defendor<sup>®</sup> (florasulam) applied at 0.8 and 0.4 fl oz/acre (10% of the 1X rate) had the most injury at Kimberly.

Sugar beet yield (52.2 to 58.1 ton/acre) and root conductivity (0.79 to 0.89 mmhos) were similar across treatments at Malheur (Table 1). Nitrate content and the estimated recoverable sugar varied widely across treatments. Application of Matrix<sup>®</sup> (rimsulfuron) at 0.001 to 0.01 oz/acre increased sucrose content by about 5% at Malheur, whereas MCPA at 0.00114, or Starane Ultra at 0.0008 to 0.008 fl oz/acre increased sucrose content by about 2% compared to the untreated check (Table 1).

No statistically significant differences were observed for any of the variables at Kimberly (Table 2). At Kimberly, application of Matrix at 0.001 oz/acre (0.1% of 1X) and MCPA at 0.114 fl oz/acre (1% of 1X) had improved sucrose content, though not statistically different from the check (Table 2).

The differences in results at the two sites may be related to the time lag between application and root harvest. Sugar beet was harvested 21 days after herbicide application at Malheur compared to 50 days at Kimberly. Studies in other crops have shown a decline in hormesis effects after 30 days of treatment. Follow-up studies in 2018 will be harvested not later than 30 days after treatment.

# Disclaimer: products used in this study are for experimental purpose only and NOT registered for use in sugar beet production.

|             | Treatment <sup>z</sup> |            | Conductivity | Nitr | ate              | Suci | ose | Clean root yield | ERS    | Х                |
|-------------|------------------------|------------|--------------|------|------------------|------|-----|------------------|--------|------------------|
|             | Rate                   |            | mmhos        | pp   | m                | %    | þ   | t/acre           | lb/ac  | re               |
| Check       |                        |            | 0.82         | 371  | a-d <sup>y</sup> | 14.3 | bcd | 53.4             | 12,476 | abc <sup>w</sup> |
| Rimsulfuror | 0.1                    | oz/acre    | 0.79         | 323  | b-f              | 14.3 | bcd | 56.5             | 13,568 | a                |
| Rimsulfuror | 0.01                   | oz/acre    | 0.84         | 281  | ef               | 14.7 | ab  | 53.9             | 13,208 | a                |
| Rimsulfuror | 0.001                  | oz/acre    | 0.87         | 299  | def              | 15.0 | a   | 54.5             | 13,524 | а                |
| Rimsulfuror | 0.0001                 | oz/acre    | 0.87         | 395  | abc              | 13.8 | cd  | 56.2             | 12,853 | ab               |
| Florasulam  | 0.4                    | fl oz/acre | 0.88         | 249  | f                | 13.0 | e   | 53.3             | 11,375 | с                |
| Florasulam  | 0.04                   | fl oz/acre | 0.85         | 298  | def              | 13.7 | d   | 56.1             | 12,679 | ab               |
| Florasulam  | 0.004                  | fl oz/acre | 0.95         | 411  | ab               | 14.2 | bcd | 57.2             | 13,232 | a                |
| Florasulam  | 0.0004                 | fl oz/acre | 0.81         | 310  | c-f              | 14.4 | abc | 52.8             | 12,746 | ab               |
| МСРА        | 1.14                   | fl oz/acre | 0.78         | 337  | b-e              | 14.1 | bcd | 54.0             | 12,794 | ab               |
| МСРА        | 0.114                  | fl oz/acre | 0.83         | 344  | b-e              | 14.3 | bcd | 54.6             | 13,013 | ab               |
| МСРА        | 0.0114                 | fl oz/acre | 0.83         | 341  | b-e              | 14.1 | bcd | 54.9             | 12,945 | ab               |
| МСРА        | 0.00114                | fl oz/acre | 0.82         | 290  | def              | 14.6 | ab  | 55.3             | 13,566 | а                |
| Fluroxypyr  | 0.8                    | fl oz/acre | 0.93         | 459  | a                | 12.6 | e   | 58.1             | 11,921 | bc               |
| Fluroxypyr  | 0.08                   | fl oz/acre | 0.89         | 305  | def              | 14.3 | bcd | 53.7             | 12,642 | ab               |
| Fluroxypyr  | 0.008                  | fl oz/acre | 0.87         | 350  | b-e              | 14.4 | abc | 56.2             | 13,348 | a                |
| Fluroxypyr  | 0.0008                 | fl oz/acre | 0.79         | 355  | b-e              | 14.6 | ab  | 52.2             | 12,775 | ab               |
| LSD (0.05)  | Herbicide              |            | NS           | NS   |                  | 0.3  |     | NS               | 791    |                  |
|             | Dose                   |            | NS           | NS   |                  | 0.3  |     | NS               | 791    |                  |
|             | Herbicide x            | dose       | NS           | 98.5 |                  | 0.7  |     | NS               | NS     |                  |

Table 1. Sugar beet yield, quality, and recoverable sucrose in response to various herbicides tested for possible hormesis effects at the Malheur Experiment Station, Ontario, OR, 2017.

<sup>z</sup> Rimsulfuron = Matrix SG; florasulam = Defendor; MCPA = Sword; fluroxypyr = Starane Ultra.

<sup>y</sup> Treatment means followed by the same letter within the column are not significantly different according to Fisher's protected least significant difference (LSD)  $P \le 0.05$ .

 $\times$  ERS = Estimated recoverable sucrose.

<sup>w</sup> Means within a column followed by the same letter are not significantly different according to Fisher's protected least significant difference (LSD)  $P \le 0.05$ .

| Treatment <sup>z</sup> |              | Conductivity | Nitrate | Sucrose | Clean root yield | ERS <sup>x</sup> |         |
|------------------------|--------------|--------------|---------|---------|------------------|------------------|---------|
|                        | Rate         |              | mmhos   | ppm     | %                | t/acre           | lb/acre |
| Check                  |              |              | 0.69    | 233     | 14.10            | 47.9             | 12,248  |
| Rimsulfuror            | 0.1          | oz/acre      | 0.62    | 174     | 14.00            | 50.5             | 12,806  |
| Rimsulfuror            | 0.01         | oz/acre      | 0.72    | 251     | 14.12            | 54.2             | 13,985  |
| Rimsulfuror            | <b>0.001</b> | oz/acre      | 0.68    | 267     | 14.64            | 48.4             | 12,689  |
| Rimsulfuror            | 0.0001       | oz/acre      | 0.66    | 279     | 13.56            | 51.2             | 12,508  |
| Florasulam             | 0.4          | fl oz/acre   | 0.74    | 229     | 13.09            | 43.7             | 10,087  |
| Florasulam             | 0.04         | fl oz/acre   | 0.67    | 286     | 13.42            | 54.1             | 13,047  |
| Florasulam             | 0.004        | fl oz/acre   | 0.67    | 254     | 13.88            | 49.7             | 12,405  |
| Florasulam             | 0.0004       | fl oz/acre   | 0.72    | 189     | 12.91            | 47.8             | 10,770  |
| МСРА                   | 1.14         | fl oz/acre   | 0.66    | 262     | 13.49            | 51.8             | 12,588  |
| МСРА                   | 0.114        | fl oz/acre   | 0.71    | 227     | 14.43            | 51.0             | 13,092  |
| МСРА                   | 0.0114       | fl oz/acre   | 0.66    | 268     | 13.61            | 52.7             | 13,188  |
| МСРА                   | 0.00114      | fl oz/acre   | 0.65    | 278     | 13.31            | 48.2             | 11,632  |
| Fluroxypyr             | 0.8          | fl oz/acre   | 0.78    | 256     | 12.53            | 46.7             | 10,249  |
| Fluroxypyr             | 0.08         | fl oz/acre   | 0.69    | 254     | 13.73            | 51.4             | 12,582  |
| Fluroxypyr             | 0.008        | fl oz/acre   | 0.67    | 226     | 14.15            | 48.9             | 12,430  |
| Fluroxypyr             | 0.0008       | fl oz/acre   | 0.66    | 192     | 14.19            | 49.3             | 13,053  |
| LSD (0.05)             | Herbicide    |              | NS      | NS      | NS               | NS               | NS      |
|                        | Dose         |              | NS      | NS      | NS               | NS               | NS      |
|                        | Herbicide x  | dose         | NS      | NS      | NS               | NS               | NS      |

Table 2. Sugar beet yield, quality, and recoverable sucrose in response to various herbicides tested for possible hormesis effects at the Kimberly Research and Extension Center, Kimberly, ID, 2017.

<sup>z</sup> Rimsulfuron = Matrix SG; florasulam = Defendor; MCPA = Sword; fluroxypyr = Starane Ultra.

<sup>x</sup> ERS = Estimated recoverable sucrose.

## SUGAR BEET RESPONSE TO DUAL MAGNUM<sup>®</sup> APPLICATION TIMING FOR YELLOW NUTSEDGE CONTROL

Joel Felix and Joey Ishida, Malheur Experiment Station, Oregon State University, Ontario, OR, 2017

## Introduction

Irrigation and prevailing warm growing conditions provide ideal conditions for yellow nutsedge and other weeds to flourish in the Treasure Valley of eastern Oregon and southwestern Idaho. Weed control is an essential component of sugar beet production. Yellow nutsedge continues to be one of the most problematic weeds in some Treasure Valley fields; it presents a crop production challenge if not effectively managed in all crops grown in a rotation.

Yellow nutsedge populations can expand and contract in individual fields based on a variety of environmental and management factors. Given its perennial nature, yellow nutsedge remains a problem once it produces mature tubers in a field. Production of tubers makes control of yellow nutsedge difficult because tubers can persist in the soil for 3-5 years. Therefore, timely application of effective herbicides for each successive crop in a rotation is critical in the management of yellow nutsedge.

Because of early crop sensitivity, the current Dual Magnum<sup>®</sup> label only allows for its postemergence application after the sugar beet plants are at the first true leaf stage. At this stage, yellow nutsedge may have already emerged, and Dual Magnum does not control weeds already emerged, including yellow nutsedge. Therefore, the use of Dual Magnum and Outlook<sup>®</sup> as postemergence herbicides tank-mixed with glyphosate has largely failed to reduce yellow nutsedge in sugar beet fields.

Onion growers secured an indemnified label for Dual Magnum application to control yellow nutsedge the summer-fall preceding onion. The objective of this study was to evaluate a similar approach in which Dual Magnum would be applied and incorporated in the soil during mid-August to early September of the year preceding sugar beet.

#### **Materials and Methods**

A field study was initiated during fall 2016 in a growers' field near Ontario, Oregon previously planted to wheat. The predominant soil was a Greenleaf silt loam with a pH of 7.2 and 1.79% organic matter. The wheat stubble was flailed and the field was irrigated, disked, ripped, and rototilled in August 2016. The study had a randomized complete block design with four replications. Individual plots were 14 ft wide (8 rows) by 35 ft long. Plow-down herbicide treatments were applied on September 1, 2016 and the field was immediately moldboard plowed and disked to incorporate the herbicides in the soil. Post-plowing treatments were applied on September 12, 2016 based on soil analysis. On October 18, 2016, the field was fumigated with Telone<sup>®</sup>C-17

at 18 gal/acre (1,3 dichloropropene 81.2% plus chloropicrin 16.5%) and simultaneously bedded on a 22-inch bed centers.

Seed of sugar beet hybrid 27RR20 was planted on April 21, 2017. The insecticide terbufos was applied on April 25 at 1.11 lb ai/acre (Counter<sup>®</sup> 15G at 7.4 lb/acre). Dual Magnum at the preemergence timing was applied on April 28. All plots (except the untreated check) were sprayed with glyphosate at 32 fl oz/acre plus Outlook at 21 fl oz/acre on May 19, 2017. Fertilizer was applied according the soil test results. Preventative sprays for diseases and insects were applied aerially by a commercial contractor. Otherwise all production practices including irrigation followed local production practices. Weed control and sugar beet injury were evaluated subjectively on May 4 based on 0 to 100% scale; where 0% = no weed control or crop injury and 100% = complete weed control or complete crop kill.

Plant tops were flailed and sugar beets were hand-harvested on September 20, 2017 from the two center rows of each plot. Sugar beet root weight from each plot was corrected for tare to estimate yield. Analysis for percent sucrose content and other sugar beet quality variables were conducted on September 25 at the Amalgamated Sugar Factory in Paul, Idaho. Data were subjected to analysis of variance using SAS and means compared using protected LSD at P = 0.05% level of confidence.

#### **Results and Discussion**

Sugar beet emergence was observed on May 2, 2017. Evaluation on May 4 indicated yellow nutsedge control ranging from 13 to 97% (Table 1). Plots treated with Dual Magnum at 1 or 1.33 pt/acre followed by moldboard plowing and disking had the lowest control. Application of Dual Magnum at 0.5 or 1 pt/acre after moldboard plowing and disking provided the best yellow nutsedge control at 95 and 97%, respectively. Evaluation during mid-season following glyphosate application when sugar beet plants were at the 2-leaf stage indicated 50 to 90% yellow nutsedge control across herbicide treatments (data not shown).

Dual Magnum treatments did not cause visible sugar beet foliar injury and did not reduce root yield or harvested root yield (Table 1). Similarly, there were no effects on percent sucrose content, nitrate (ppm), root conductivity, or the estimated recoverable sugar (ERS). Sucrose content ranged from 13.7 to 14.7% across treatments. Root conductivity ranged from 0.83 to 1 mmhos across treatments while nitrate content was 383 to 539%. Root yield ranged from 53.5 to 58.2 tons/acre across treatments. The estimated recoverable sugar ranged from 12,299 to 14,160 lb/acre.

It is not clear if the lack of sugar beet injury was influenced by the uncharacteristically high snow during winter 2016 and early spring precipitation. The increased moisture may have helped to move the herbicides below the top soil layer and mitigated the injury to emerging sugar beet seedlings. A follow-up study to confirm these results will be conducted in 2018 following the same procedures. If these results are confirmed, the data will be used to petition the EPA for a Dual Magnum label for application the fall preceding sugar beet.

#### Disclaimer: products used in this study are for experimental purpose only and NOT labeled for application the fall preceding sugar beet production.

Table 1. Yellow nutsedge control and sugar beet yield in response to Dual Magnum applied at different timeings at the Malheur Experiment Station, Oregon State University, Ontario, OR, 2016-2017.

| Treatment <sup>z</sup>                   | Rate/acre              | Timing <sup>y</sup>  | Y. nutsedge<br>control | Sucrose      | Clean<br>yiel |                   | ERS          | w    |
|------------------------------------------|------------------------|----------------------|------------------------|--------------|---------------|-------------------|--------------|------|
|                                          |                        |                      | %                      | (%)          | (ton/a        | cre) <sup>v</sup> | (lb/acr      | re)⊻ |
| Fumigation                               |                        |                      | 2.5 e                  | 14.53        | 26.8          | b                 | 6539         | b    |
| Dual Magnum                              | 1 pt                   | Fall/plow            | 12.5 de                | 14.44        | 57.5          | а                 | 13805        | а    |
| Dual Magnum                              | 1.33 pt                | Fall/plow            | 30.0 b                 | 14.34        | 59.2          | а                 | 14160        | а    |
| Dual Magnum +<br>EPTAM                   | 1 pt<br>7 pt           | Fall/plow            | 27.5 bc                | 14.72        | 55.5          | а                 | 13507        | а    |
| Dual Magnum +<br>EPTAM                   | 1.33 pt<br>7 pt        | Fall/plow            | 21.3 bcd               | 14.20        | 56.6          | а                 | 13269        | а    |
| Dual Magnum +<br>EPTAM fb<br>Dual Magnum | 0.5 pt +7 pt<br>0.5 pt | Fall/surface<br>POST | 94.5 a                 | 14.46        | 55.6          | а                 | 13097        | а    |
| Dual Magnum +<br>EPTAM                   | 1 pt<br>7 pt           | Fall/surface         | 97.3 a                 | 14.64        | 58.2          | а                 | 13930        | а    |
| Dual Magnum fb<br>Dual Magnum            | 0.5 pt<br>0.5 pt       | Fall/plow<br>POST    | 21.3 b                 | 13.65        | 57.5          | а                 | 12955        | а    |
| Dual Magnum                              | 0.75 pt                | PRE                  | 31.3 b                 | 14.27        | 53.5          | а                 | 12299        | а    |
| Roundup +<br>Outlook                     | 22 fl oz<br>21 fl oz   | POST                 | 15.0 cde               | 14.35        | 56.4          | а                 | 13276        | а    |
| LSD (0.05)<br><i>P</i> > F               |                        |                      | 14.1<br>0.0001         | NS<br>0.6743 | 11.<br>0.00   |                   | 302<br>0.001 |      |

<sup>z</sup> fb = followed by

<sup>y</sup> Fall/plow = Treatments applied fall of 2016 preceding sugar beet; Fall/surface = treatments applied after soil tillage and disked in the soil twice during fall of 2016; PRE = herbicide applied immediately after sugar beet planting. POST = herbicide applied in season to sugar beet at the 2-leaf stage.

<sup>x</sup> Root yield was tared.

<sup>w</sup> ERS = Estimated recoverable sucrose.

<sup>v</sup> Means within a column followed by the same letter are not significantly different according to Fisher's protected least significant difference (LSD)  $P \le 0.05$ .

## SOYBEAN PERFORMANCE IN ONTARIO IN 2017

Clinton C. Shock, Erik B. G. Feibert, Alicia Rivera, Kyle D. Wieland, and Lamont D. Saunders, Malheur Experiment Station, Oregon State University, Ontario, OR

## Introduction

Soybean is a potentially valuable new crop for the Pacific Northwest (PNW). Soybean can provide raw materials for biodiesel, high-quality protein for animal nutrition, and oil for human consumption, all of which are in short supply in the PNW. In addition, edible or vegetable soybean production can provide a raw material for specialized food products. Soybean is valuable as a rotation crop because of the soil-improving qualities of its residues and its nitrogen  $(N_2)$ -fixing capability. Because high-value irrigated crops are typically grown in the Snake River Valley, soybeans may be economically feasible only at high yields. The most common rotation crop in the Treasure Valley is irrigated winter wheat, so soybeans need to be competitive in value with winter wheat.

This report summarizes work done in 2017 as part of our continuing breeding and selection program to adapt soybeans to eastern Oregon and includes the added yield enhancements achieved by changing the planting configuration. Our soybean reports from the last decade are available at our station web site <a href="http://www.cropinfo.net">http://www.cropinfo.net</a>. There is a search function on the home page that will conveniently find all of our recent reports dealing with soybeans by using the key word "soybean".

## **Materials and Methods**

The 2017 trial was conducted on Owyhee silt loam soil previously planted to wheat. In the fall of 2016, the field was disked twice, moldboard plowed, groundhogged twice, and bedded to 30-inch rows. On May 18, Outlook<sup>®</sup> herbicide was applied at 18 oz (0.84 lb ai)/acre and incorporated during planting.

Fifty-five lines selected in 2009 and 2010 were evaluated. The 55 selections were planted in plots 4 rows wide by 25 ft long. The experimental design was a randomized complete block design with four replicates. The seed was planted on May 19 at 200,000 seeds/acre in 3 rows on each 30-inch bed using a plot drill with disc openers. The rows were spaced 7 inches apart. *Bradyrhizobium japonicum* inoculant (ABI Inoculant, Advanced Biological Marketing, Inc., Van Wert, OH) was applied to the seed before planting. The field was furrow irrigated once per week.

Plant height in each plot was measured on July 25. Each plot was evaluated for lodging and seed shatter on October 4. Lodging was rated as the degree to which the plants were leaning over (0 = vertical, 10 = prostrate). The middle two beds in each four-bed plot were harvested from October 11-12 using a Wintersteiger Nurserymaster small-plot combine. Beans were cleaned, weighed, and a subsample was oven dried to determine moisture content. Moisture at the time of

analysis was determined by oven drying at  $100^{\circ}$ C for 24 hours. Dry bean yields were corrected to 13% moisture.

## **Results and Discussion**

Yields in 2017 averaged 61 bu/acre and ranged from 44 bu/acre for selection number 128 to 70 bu/acre for selection number 103 (Table 1). None of the lines had seed counts sufficient for the manufacturing of tofu (<2,270 seeds/lb). All of the soybean materials evaluated had light-colored seed coats and pale hilums.

### Summary

High soybean yields can be achieved in the Treasure Valley by employing varieties selected for the environment, high planting rates, modest fertilization, use of *Bradyrhizobium japonicum* inoculation, proper May planting dates, appropriate irrigation, and timely control of lygus bugs and spider mites.

## Acknowledgements

This project was funded by Oregon State University, Malheur County Education Service District, and was supported by Formula Grant nos. 2017-31100-06041 and 2017-31200-06041 from the USDA National Institute of Food and Agriculture.

| No. | Cross   | Interm.<br>sel. | Selection | Yield   | Height | Lodging | Seed weight |
|-----|---------|-----------------|-----------|---------|--------|---------|-------------|
|     |         |                 |           | bu/acre | cm     | 0-10    | seeds/lb    |
| 103 | M92-220 | 311             | 35-6-10   | 69.6    | 104.1  | 2.8     | 2,875       |
| 40  | M92-330 | M16             | 19-6-10   | 67.1    | 104.8  | 5.8     | 2,312       |
| 41  | M92-330 | M16             | 19-7-10   | 66.9    | 108.0  | 4.3     | 2,461       |
| 95  | M92-220 | 305             | 31-8-10   | 66.1    | 102.2  | 3.0     | 2,712       |
| 42  | M92-330 | M16             | 19-8-10   | 65.8    | 104.8  | 6.3     | 2,317       |
| 122 | M92-314 | 608             | 41-3-10   | 65.6    | 108.6  | 5.8     | 2,329       |
| 43  | M92-330 | M16             | 19-9-10   | 65.1    | 105.4  | 6.8     | 2,624       |
| 117 | M92-314 | 601             | 40-3-10   | 65.0    | 108.6  | 5.3     | 2,460       |
| 18  | M92-330 | M1              | 11-3-10   | 64.8    | 104.8  | 6.3     | 2,398       |
| 29  | M92-330 | M9              | 15-3-10   | 64.6    | 104.8  | 6.3     | 2,389       |
| 23  | M92-330 | M4              | 14-3-10   | 64.5    | 99.7   | 4.3     | 2,343       |
| 69  | M92-085 | 107             | 24-1-09   | 63.8    | 102.9  | 2.5     | 2,896       |
| 30  | M92-330 | M12             | 16-8-10   | 63.4    | 108.0  | 6.8     | 2,378       |
| 32  | M92-330 | M13             | 17-4-10   | 63.3    | 106.7  | 5.0     | 2,436       |
| 58  | M92-085 | 101             | 20-7-10   | 63.2    | 100.3  | 4.3     | 2,334       |
| 25  | M92-330 | M4              | 14-5-10   | 63.1    | 99.1   | 5.3     | 2,326       |
| 26  | M92-330 | M4              | 14-8-10   | 63.0    | 105.4  | 5.3     | 2,401       |
| 86  | M92-220 | 303             | 30-1-10   | 62.9    | 106.0  | 5.3     | 2,880       |
| 66  | M92-085 | 106             | 23-6-10   | 62.6    | 106.7  | 5.0     | 2,428       |
| 109 | M92-220 | 312             | 36-7-10   | 62.6    | 104.8  | 2.3     | 2,826       |
| 96  | M92-220 | 307             | 32-3-10   | 62.5    | 106.0  | 2.5     | 2,744       |
| 39  | M92-330 | M15             | 18-8-10   | 61.9    | 106.7  | 4.5     | 2,340       |
| 44  | M92-330 | M16             | 19-10-10  | 61.9    | 107.3  | 3.3     | 2,412       |
| 94  | M92-220 | 305             | 31-5-10   | 61.8    | 101.0  | 3.3     | 2,892       |
| 56  | M92-085 | 101             | 20-4-10   | 61.7    | 107.3  | 3.8     | 2,392       |
| 36  | M92-330 | M15             | 18-2-10   | 61.6    | 101.6  | 5.3     | 2,462       |
| 111 | M92-220 | 312             | 36-10-10  | 61.6    | 107.3  | 4.3     | 2,356       |

Table 1. Performance of soybean cultivars in 2017. Malheur Experiment Station, Oregon State University, Ontario, OR. Continued on the next page.

| No.     | Cross   | Interm.<br>sel. | Selection | Yield   | Height | Lodging | Seed weight |
|---------|---------|-----------------|-----------|---------|--------|---------|-------------|
|         |         |                 |           | bu/acre | cm     | 0-10    | seeds/lb    |
| 89      | M92-220 | 303             | 30-5-10   | 61.3    | 104.8  | 3.5     | 2,717       |
| 113     | M92-220 | 313             | 37-9-10   | 61.3    | 109.2  | 4.5     | 2,528       |
| 16      | M92-330 | M1              | 11-21-09  | 61.2    | 104.8  | 4.0     | 2,815       |
| 35      | M92-330 | M13             | 17-10-10  | 61.1    | 106.7  | 3.8     | 2,377       |
| 33      | M92-330 | M13             | 17-5-10   | 61.0    | 107.3  | 3.8     | 2,451       |
| 24      | M92-330 | M4              | 14-4-10   | 60.8    | 104.1  | 4.5     | 2,389       |
| 77      | M92-085 | 107             | 24-3-10   | 60.3    | 106.0  | 5.0     | 2,291       |
| 51      | M92-085 | 101             | 20-11-09  | 60.0    | 102.2  | 3.8     | 2,809       |
| 31      | M92-330 | M12             | 16-10-10  | 59.8    | 106.7  | 6.0     | 2,430       |
| 108     | M92-220 | 312             | 36-6-10   | 59.4    | 106.7  | 4.3     | 2,911       |
| 21      | M92-330 | M2              | 12-7-10   | 59.2    | 108.0  | 4.5     | 2,429       |
| 53      | M92-085 | 101             | 20-11-09  | 59.1    | 99.1   | 3.3     | 2,901       |
| 88      | M92-220 | 303             | 30-3-10   | 59.1    | 106.0  | 3.5     | 2,727       |
| 93      | M92-220 | 305             | 31-3-10   | 59.1    | 102.9  | 3.5     | 2,773       |
| 50      | M92-085 | 101             | 20-7-09   | 58.8    | 106.0  | 5.0     | 2,876       |
| 19      | M92-330 | M2              | 12-1-10   | 58.7    | 101.0  | 6.8     | 2,452       |
| 72      | M92-085 | 107             | 24-2-09   | 58.7    | 99.7   | 3.5     | 2,943       |
| 55      | M92-085 | 101             | 20-1-10   | 58.6    | 106.0  | 4.8     | 2,307       |
| 63      | M92-085 | 103             | 21-12-10  | 58.5    | 102.9  | 6.0     | 2,528       |
| 91      | M92-220 | 305             | 31-1-10   | 58.5    | 104.1  | 6.0     | 2,775       |
| 6       | Korada  |                 | 8-2-10    | 57.1    | 104.8  | 7.0     | 2,630       |
| 101     | M92-220 | 309             | 34-1-10   | 57.0    | 102.9  | 2.5     | 2,766       |
| 38      | M92-330 | M15             | 18-7-10   | 56.5    | 102.9  | 6.0     | 2,403       |
| 71      | M92-085 | 107             | 24-2-09   | 55.6    | 108.0  | 5.3     | 2,923       |
| 57      | M92-085 | 101             | 20-6-10   | 54.2    | 103.5  | 4.8     | 2,462       |
| 102     | M92-220 | 309             | 34-11-10  | 53.0    | 106.0  | 4.8     | 2,838       |
| 125     | OR-6    | 905             | 42-8-10   | 48.2    | 97.2   | 9.0     | 2,783       |
| 128     | OR-6    | 909             | 43-10-10  | 43.9    | 98.4   | 9.8     | 2,885       |
| Average |         |                 |           | 60.8    | 104.6  | 4.8     | 2579        |
| LSD     |         |                 |           | 8.4     | NS     | 2.2     | 169.2       |

Table 1. Continued from previous page. Performance of soybean cultivars in 2017. Malheur Experiment Station, Oregon State University, Ontario, OR.

#### APPENDIX A. HERBICIDES AND ADJUVANTS

| Trade name                                                                                                                                                                             | Common or code name                                                                                                                                                                                                                 | Manufacturer                                                                                                                                                                                                    |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                                        | atrazine                                                                                                                                                                                                                            | Syngenta                                                                                                                                                                                                        |
|                                                                                                                                                                                        | carfentrazone-ethyl                                                                                                                                                                                                                 | FMC Corp.                                                                                                                                                                                                       |
| Alion                                                                                                                                                                                  | Indaziflam                                                                                                                                                                                                                          | Bayer CropScience                                                                                                                                                                                               |
| Betamix                                                                                                                                                                                | desmedipham                                                                                                                                                                                                                         | Bayer CropScience                                                                                                                                                                                               |
| Boundary                                                                                                                                                                               | s-metolachlor + metribuzin                                                                                                                                                                                                          | Syngenta                                                                                                                                                                                                        |
| Bronate Advanced                                                                                                                                                                       | bromoxynil                                                                                                                                                                                                                          | Bayer CropScience                                                                                                                                                                                               |
| Bronc Max                                                                                                                                                                              | ammonium sulfate                                                                                                                                                                                                                    | Wilbur-Ellis Co.                                                                                                                                                                                                |
| Buccaneer                                                                                                                                                                              | isopropylamine salt of glyphosate                                                                                                                                                                                                   | Tenkoz, Inc.                                                                                                                                                                                                    |
|                                                                                                                                                                                        | bromoxynil                                                                                                                                                                                                                          | Bayer CropScience                                                                                                                                                                                               |
| Chateau                                                                                                                                                                                | flumioxazin                                                                                                                                                                                                                         | Valent Corporation                                                                                                                                                                                              |
| Clarity                                                                                                                                                                                | 3,6-dichloro-o-anisic acid                                                                                                                                                                                                          | BASF Ag Products                                                                                                                                                                                                |
| Defendor                                                                                                                                                                               | florasulam                                                                                                                                                                                                                          | Dow AgroSciences                                                                                                                                                                                                |
| Destiny                                                                                                                                                                                | methylated soybean oil                                                                                                                                                                                                              | Winfield Solutions                                                                                                                                                                                              |
| Distinct                                                                                                                                                                               | sodium salt of diflufenzopyr                                                                                                                                                                                                        | BASF Ag Products                                                                                                                                                                                                |
| Dual Magnum, Dual II Magnum                                                                                                                                                            | s-metolachlor                                                                                                                                                                                                                       | Syngenta                                                                                                                                                                                                        |
| Dyne-Amic                                                                                                                                                                              | Methyl esters of C16-C18 fatty acids,                                                                                                                                                                                               | Helena Chemical                                                                                                                                                                                                 |
|                                                                                                                                                                                        | polyalkyleneoxide modified                                                                                                                                                                                                          |                                                                                                                                                                                                                 |
|                                                                                                                                                                                        | polydimethylsiloxane, alkylphenol                                                                                                                                                                                                   |                                                                                                                                                                                                                 |
|                                                                                                                                                                                        | ethoxylate                                                                                                                                                                                                                          |                                                                                                                                                                                                                 |
| Eptam                                                                                                                                                                                  | EPTC                                                                                                                                                                                                                                | Gowan Company                                                                                                                                                                                                   |
|                                                                                                                                                                                        | ethofumesate                                                                                                                                                                                                                        | United Phosphorus                                                                                                                                                                                               |
| Fierce                                                                                                                                                                                 | flumioxazin + pyroxasulfone                                                                                                                                                                                                         | Valent Corporation                                                                                                                                                                                              |
|                                                                                                                                                                                        | oxyfluorfen                                                                                                                                                                                                                         | Dow AgroSciences                                                                                                                                                                                                |
| Gramoxone                                                                                                                                                                              | parquet dichloride                                                                                                                                                                                                                  | Syngenta                                                                                                                                                                                                        |
| Halex GT                                                                                                                                                                               | s-metolachlor + glyphosate                                                                                                                                                                                                          | Syngenta                                                                                                                                                                                                        |
|                                                                                                                                                                                        | + mesotrione                                                                                                                                                                                                                        |                                                                                                                                                                                                                 |
| Herbimax                                                                                                                                                                               | petroleum hydrocarbons                                                                                                                                                                                                              | Loveland Products                                                                                                                                                                                               |
| Huskie                                                                                                                                                                                 | pyrasulfotole                                                                                                                                                                                                                       | <b>Bayer CropScience</b>                                                                                                                                                                                        |
| Integrity                                                                                                                                                                              | saflufenacil                                                                                                                                                                                                                        | BASF Ag Products                                                                                                                                                                                                |
| Laudis                                                                                                                                                                                 | tembotrione                                                                                                                                                                                                                         | Bayer CropScience                                                                                                                                                                                               |
| Linex, Lorox                                                                                                                                                                           | linuron                                                                                                                                                                                                                             | <b>Tessenderlo Kerley</b>                                                                                                                                                                                       |
|                                                                                                                                                                                        | rimsulfuron                                                                                                                                                                                                                         | DuPont                                                                                                                                                                                                          |
| Nortron                                                                                                                                                                                | ethofumesate                                                                                                                                                                                                                        | <b>Bayer CropScience</b>                                                                                                                                                                                        |
| Oust                                                                                                                                                                                   | sulfometuron methyl                                                                                                                                                                                                                 | <b>Bayer CropScience</b>                                                                                                                                                                                        |
| Outlook                                                                                                                                                                                | dimethenamid-p                                                                                                                                                                                                                      | BASF Ag Products                                                                                                                                                                                                |
| Paramount                                                                                                                                                                              | quinclorac                                                                                                                                                                                                                          | BASF Ag Products                                                                                                                                                                                                |
| Pierce                                                                                                                                                                                 | methylated seed oil                                                                                                                                                                                                                 | Simplot                                                                                                                                                                                                         |
|                                                                                                                                                                                        | sethoxydim                                                                                                                                                                                                                          | BASF Ag Products                                                                                                                                                                                                |
| Preference                                                                                                                                                                             | alkylphenol ethoxylate                                                                                                                                                                                                              | Winfield Solutions                                                                                                                                                                                              |
| Prowl, Prowl H <sub>2</sub> O                                                                                                                                                          | pendimethalin                                                                                                                                                                                                                       | BASF Ag Products                                                                                                                                                                                                |
| PureSpray Green                                                                                                                                                                        | mineral oil                                                                                                                                                                                                                         | Petro-Canada                                                                                                                                                                                                    |
| R-11                                                                                                                                                                                   | alkylphenol ethoxylate                                                                                                                                                                                                              | Wilbur-Ellis Co.                                                                                                                                                                                                |
|                                                                                                                                                                                        | imazamox                                                                                                                                                                                                                            | BASF Ag Products                                                                                                                                                                                                |
| •                                                                                                                                                                                      | fomesafen                                                                                                                                                                                                                           | Syngenta                                                                                                                                                                                                        |
| Roundup PowerMax,                                                                                                                                                                      | glyphosate                                                                                                                                                                                                                          | Monsanto                                                                                                                                                                                                        |
| •                                                                                                                                                                                      | halosulfuron                                                                                                                                                                                                                        | Gowan Company                                                                                                                                                                                                   |
| Select, Select Max                                                                                                                                                                     | clethodim                                                                                                                                                                                                                           | Valent                                                                                                                                                                                                          |
| Oust<br>Outlook<br>Paramount<br>Pierce<br>Poast, Poast HC<br>Preference<br>Prowl, Prowl H <sub>2</sub> O<br>PureSpray Green<br>R-11<br>Raptor<br>Reflex<br>Roundup PowerMax,<br>Sandea | sulfometuron methyl<br>dimethenamid-p<br>quinclorac<br>methylated seed oil<br>sethoxydim<br>alkylphenol ethoxylate<br>pendimethalin<br>mineral oil<br>alkylphenol ethoxylate<br>imazamox<br>fomesafen<br>glyphosate<br>halosulfuron | Bayer CropScie<br>BASF Ag Produ<br>BASF Ag Produ<br>Simplot<br>BASF Ag Produ<br>Winfield Solution<br>BASF Ag Produ<br>Petro-Canada<br>Wilbur-Ellis Co.<br>BASF Ag Produ<br>Syngenta<br>Monsanto<br>Gowan Compar |

#### APPENDIX A. HERBICIDES AND ADJUVANTS (CONTINUED)

| Trade name    | Common or code name         | Manufacturer       |
|---------------|-----------------------------|--------------------|
| Sencor        | metribuzin                  | Bayer CropScience  |
| Sequence      | glyphosate + s-metolachlor  | Syngenta           |
| Sharpen       | saflufenacil                | BASF Ag Products   |
| Starane Ultra | fluroxypyr                  | Dow AgroSciences   |
| Status        | diflufenzopyr               | BASF Ag Products   |
| Stinger       | clopyralid                  | Dow AgroSciences   |
| Touchdown     | glyphosate                  | Syngenta           |
| Treflan       | trifluralin                 | Dow AgroSciences   |
| UpBeet        | triflusulfuron              | DuPont             |
| Warrant       | acetochlor                  | Monsanto           |
| WETCIT        | alcohol ethoxylat           | Oro Agri           |
| Valor         | flumioxazin                 | Valent Corporation |
| Velpar        | hexazinone + diuron         | DuPont             |
| Volunteer     | clethodim                   | Tenkoz             |
| Yukon         | halosulfuron-methyl+dicamba | Gowan Company      |
| Zidua         | pyroxasulfone               | BASF Ag Products   |

#### APPENDIX B. INSECTICIDES, FUNGICIDES, AND NEMATICIDES

| Trade name                 | Common or code name               | Manufacturer      |
|----------------------------|-----------------------------------|-------------------|
| Acephate                   | acephate                          | various           |
| Admire                     | imidacloprid                      | Bayer CropScience |
| Agri-Mek                   | abamectin                         | Syngenta          |
| Aproach Prima              | picoxystrobin + cyproconazole     | DuPont            |
| Aza-Direct                 | azadirachtin                      | Gowan Company     |
| Badge                      | copper oxychloride +              | Gowan Company     |
| 0                          | copper hydroxide                  |                   |
| Beleaf                     | flonicamid                        | FMC Corp.         |
| Blackhawk                  | spinosad                          | Dow AgroSciences  |
| Bravo, Bravo Ultrex,       | chlorothalanil                    | Syngenta          |
| Bravo Weather Stik         |                                   | - ) - 9           |
| Brigade                    | bifenthrin                        | FMC Corp          |
| Captan                     | N-trichloromethylthio-4-          | various           |
| ouplan                     | cyclohexene-1, 2-dicarboximide    | Valiouo           |
| Captiva                    | capsacin oleoresin, garlic oil,   | Gowan Company     |
| Captiva                    | soybean oil                       | Gowan Company     |
| Conturo 2EC                | bifenthrin                        | EMC Corp          |
| Capture 2EC<br>Carzol      |                                   | FMC Corp          |
|                            | formetanate hydrochloride         | Gowan Company     |
| Counter 20 CR, Counter 15G | terbufos                          | BASF Ag Products  |
| Dithane                    | mancozeb                          | Dow AgroSciences  |
| Dividend XL                | difenoconazole + mefenoxam        | Syngenta          |
| Enable                     | fenbuconazole                     | Dow AgroSciences  |
| Entrust                    | spinosad                          | Dow AgroSciences  |
| Exirel                     | cyantraniliprole                  | DuPont            |
| Fontelis                   | penthiopyrad                      | DuPont            |
| Gaucho                     | imidacloprid                      | Gowan Company     |
| Gavel                      | mancozeb + zoxamide               | Gowan Company     |
| Gem                        | trifloxystrobin                   | Bayer CropScience |
| Gladiator                  | zeta-cypermethrin + avermectin B1 | FMC Corp          |
| Headline                   | pyraclostrobin                    | BASF Ag Products  |
| Inspire                    | difenoconazole                    | Syngenta          |
| Knack                      | pyriproxyfen                      | Valent            |
| Kocide                     | copper hydroxide                  | DuPont            |
| K-Pam                      | potassium N-methyldithiocarbamate | Amvac Chemical    |
| Lannate                    | methomyl                          | DuPont            |
| Lifegard WG                | Bacillus mycoides isolate J*      | Certis            |
| Lorsban, Lorsban 15G       | chlorpyrifos                      | Dow AgroSciences  |
| Luna Tranquility           | pyrimethanil                      | Bayer CropScience |
| ManKocide                  | mancozeb                          | DuPont            |
| M-Pede                     | potassium salts of fatty acids    | Gowen Company     |
| Minecto Pro                | abamectin + cyantraniliprole      | Syngenta          |
| Movento                    | spirotetramat                     | Bayer CropScience |
| Mustang                    | zeta-cypermethrin                 | FMC Corp          |
| Nexter                     | pyridaben                         | Gowan Company     |
| Orthene                    | acephate                          | Amvac Chemical    |
| Pic-Clor 60                | dichloropropene + chloropicrin    | Trical, Inc.      |
| Proline                    | prothioconazole                   | Bayer CropScience |
| Propulse                   | flupyram + prothioconazole        | Bayer CropScience |
|                            |                                   |                   |

# APPENDIX B. INSECTICIDES, FUNGICIDES, AND NEMATICIDES (continued)

| Trade name             | Common or code name                 | Manufacturer       |
|------------------------|-------------------------------------|--------------------|
| Quadris Opti           | azoxystrobin                        | Syngenta           |
| Radiant                | spinetoram                          | Dow AgriSciences   |
| Requiem                | Chenopodium ambrosioides            | Bayer CropScience  |
| Ridomil MZ58           | metalaxyl                           | Syngenta           |
| Rimon                  | novaluron                           | Arysta LifeScience |
| Rovral                 | iprodione                           | various            |
| Scala                  | pyrimethanil                        | Bayer CropScience  |
| Scorpion               | dinotefuran                         | Gowan Company      |
| Serenade               | QST 713 strain of Bacillus subtilis | Bayer CropScience  |
| Sivanto                | flupyradifurone                     | Bayer CropScience  |
| Success                | spinosad                            | Dow AgroSciences   |
| Tanos                  | famoxadone + cymoxanil              | Du Pont            |
| Tebuzol                | tebuconazole                        | United Phosphorus  |
| Telone C-17, Telone II | dichloropropene + chloropicrin      | Dow AgroSciences   |
| Thiram                 | thiram                              | Bayer CropScience  |
| Topsin M               | thiophanate-methyl                  | United Phosphorus  |
| Tops-MZ                | thiophanate-methyl                  | Bayer CropScience  |
| Torac                  | tolfenpyrad                         | Nichino America    |
| Transform              | sulfoxaflor                         | Dow AgroSciences   |
| Trilogy                | extract of neem oil                 | Certis USA         |
| Ultiflora              | milbemectin                         | Gowan Company      |
| Vapam                  | metham sodium                       | Amvac              |
| Venom                  | dinotefuran                         | Valent             |
| Verimark               | cyantraniliprole                    | DuPont             |
| Vydate, Vydate L       | oxamyl                              | DuPont             |
| Warrior                | lambda-cyhalothrin                  | Syngenta           |
| Zing                   | zoxamide + chlorothalonil           | Gowan Company      |

# APPENDIX C. COMMON AND SCIENTIFIC NAMES OF CROPS, FORAGES, AND FORBS

| Common name                             | Scientific name          |
|-----------------------------------------|--------------------------|
| alfalfa                                 | Medicago sativa          |
| bare-stem desert parsley                | Lomatium nudicaule       |
| basalt milkvetch                        | Astragalus filipes       |
| bluebunch wheatgrass                    | Pseudoroegneria spicata  |
| blue penstemon                          | Penstemon cyaneus        |
| Canby's licorice-root                   | Ligusticum canbyi        |
| corn, sweet corn                        | Zea mays                 |
| coyote tobacco                          | Nicotiana attenuata      |
| Douglas' dustymaiden                    | Chaenactis douglasii     |
| dry edible beans                        | Phaseolus spp.           |
| fernleaf biscuitroot, desert parsley    | Lomatium dissectum       |
| golden beeplant                         | Cleome platycarpa        |
| Gray's lomatium                         | Lomatium grayi           |
| Hayden's cymopterus                     | Cymopterus bipinnatus    |
| noary tansyaster                        | Machaeranthera canescens |
| notrock penstemon, scabland penstemon   | Penstemon deustus        |
| manyflower thelypody                    | Thelypodium milleflorum  |
| miscanthus                              | Miscanthus giganteus     |
| mountain monardella                     | Monardella odoratissima  |
| nakedstem sunray                        | Enceliopsis nudicaulis   |
| nineleaf desertparsley                  | Lomatium triternatum     |
| onion                                   | Allium cepa              |
| Pacific yew                             | Taxus brevifolia         |
| parsnip-flowered buckwheat              | Eriogonum heracleoides   |
| pepper, bell                            | Capsicum annuum          |
| Porter's licorice-root                  | Ligusticum porteri       |
| potato                                  | Solanum tuberosum        |
| quinoa                                  | Chenopodium quinoa       |
| Rocky Mountain beeplant                 | Cleome serrulata         |
| sagebrush penstemon                     | Penstemon speciosus      |
| scarlet gilia                           | Ipomopsis aggregata      |
| Searls' prairie clover                  | Dalea searlsiae          |
| sharpleaf penstemon, sandhill penstemon | Penstemon acuminatus     |
| showy goldeneye                         | Heliomeris multiflora    |
| silverleaf phacelia                     | Phacelia hastata         |
| soybeans                                | Glycine max              |
| spearmint, peppermint                   | Mentha spp.              |
| sugar beet                              | Beta vulgaris            |
| Suksdorf's desertparsley                | Lomatium suksdorfii      |
| sulfur buckwheat                        | Eriogonum umbellatum     |
| sweet potato                            | Ipomoea batatas          |
| teff                                    | Eragrostis tef           |
| hickleaf beardtongue                    | Penstemon pachyphyllus   |
| hreadleaf phacelia                      | Phacelia linearis        |

#### APPENDIX C. COMMON AND SCIENTIFIC NAMES OF CROPS, FORAGES, AND FORBS (CONTINUED)

| Common name            | Scientific name      |  |
|------------------------|----------------------|--|
| tomato                 | Solanum lycopersicum |  |
| triticale              | Triticum x Secale    |  |
| western prairie clover | Dalea ornata         |  |
| western yarrow         | Achillea millifolium |  |
| wheat                  | Triticum aestivum    |  |
| yellow beeplant        | Cleome lutea         |  |

#### APPENDIX D. COMMON AND SCIENTIFIC NAMES OF WEEDS

| Common name            | Scientific name           |
|------------------------|---------------------------|
| annual sowthistle      | Sonchus oleraceus         |
| barnyardgrass          | Echinochloa crus-galli    |
| Bittersweet nightshade | Solanum dulcamara         |
| black medic            | Medicago lupulina         |
| blue mustard           | Chorispora tenella        |
| bur buttercup          | Ceratocephala testiculata |
| common lambsquarters   | Chenopodium album         |
| common mallow          | Malva neglecta            |
| common purslane        | Portulaca oleracea        |
| dodder                 | Cuscuta spp.              |
| downy brome            | Bromus tectorum           |
| field bindweed         | Convolvulus arvensis      |
| flixweed               | Descurainia sophia        |
| green foxtail          | Setaria viridis           |
| hairy nightshade       | Solanum sarrachoides      |
| kochia                 | Kochia scoparia           |
| ladysthumb             | Polygonum persicaria      |
| large crabgrass        | Digitaria sanguinalis     |
| matrimony vine         | Lycium barbarum           |
| Powell amaranth        | Amaranthus powellii       |
| prickly lettuce        | Lactuca serriola          |
| prostrate knotweed     | Polygonum aviculare       |
| purple mustard         | Chorispora tenella        |
| redroot pigweed        | Amaranthus retroflexus    |
| Russian knapweed       | Acroptilon repens         |
| shepherd's purse       | Capsella bursa-pastoris   |
| tumble pigweed         | Amaranthus albus          |
| wild oat               | Avena fatua               |
| whitetop, hoarycress   | Cardaria draba            |
| yellow nutsedge        | Cyperus esculentus        |

# APPENDIX E. COMMON AND SCIENTIFIC NAMES OF DISEASES, PHYSIOLOGICAL DISORDERS, INSECTS, NEMATODES

| Common name                 | Scientific name                      |
|-----------------------------|--------------------------------------|
| Diseases                    |                                      |
| alternaria fungus           | Alternaria spp.                      |
| anthracnose                 | Colletotrichum trifolii              |
| Aphanomyces root rot        | Aphanomyces euteiches                |
| bacterial wilt              | Clavibacter michiganensis            |
| fusarium wilt               | Fusarium oxysporum                   |
| iris yellow spot virus      | Iris yellow spot virus               |
| onion black mold            | Aspergillus niger                    |
| onion leaf blight           | Botrytis squamosa                    |
| onion neck rot, (gray mold) | Botrytis allii                       |
| onion plate rot             | Fusarium oxysporum                   |
| fusarium neck rot           | Fusarium proliferatum                |
| phytophthora root rot       | Phytophthora medicaginis             |
| pink root                   | Phoma terrestris                     |
| potato late blight          | Phytophthora infestans               |
| powdery mildew              | Leveillula taurica                   |
| rust                        | Puccinia sherardiana                 |
| squash mosaic virus         | Squash mosaic virus                  |
| verticillium wilt           | Verticillium spp.                    |
| zebra chip (Lso)            | Candidatus Liberibacter solanacearum |
| Physiological disorders     |                                      |
| iron deficiency             |                                      |
| onion incomplete scale      |                                      |
| onion translucent scale     |                                      |
| potato jelly ends           |                                      |
| potato sugar ends           |                                      |
| Insects                     |                                      |
| alfalfa weevil              | Hypera postica                       |
| armyworms                   | Noctuidae spp.                       |
| beet leafhopper             | Circulifer tenellus                  |
| big-eyed bugs               | Geocoris spp.                        |
| cereal leaf beetle          | Oulema melanopus                     |
| Colorado potato beetle      | Leptinotarsa decemlineata            |
| cutworm                     | Noctuidae spp.                       |
| flea beetle                 | Chrysomelidae spp.                   |
| green peach aphid           | Myzus persicae                       |
| lacewing                    | Chrysopidae spp.                     |
| ladybird beetle             | Coccinellidae spp.                   |
| loopers                     | Noctuidae spp.                       |
| lygus bug                   | Lygus elisus and L. hesperus         |
| minute pirate bug           | Anthocoridae spp.                    |
| onion maggot                | Delia antiqua                        |
|                             |                                      |

#### APPENDIX E. COMMON AND SCIENTIFIC NAMES OF DISEASES, PHYSIOLOGICAL DISORDERS, INSECTS, NEMATODES (CONTINUED)

| Common name                | Scientific name                 |
|----------------------------|---------------------------------|
| onion thrips               | Thrips tabaci                   |
| pea aphid                  | Acyrthosiphon pisum             |
| potato aphid               | Macrosiphum euphorbiae          |
| potato psyllid             | Bactericerca cockerelli         |
| potato tuberworm           | Phthorimaea operculella         |
| seed corn maggot           | Delia platura                   |
| spidermite                 | <i>Tetranychus</i> spp.         |
| spotted alfalfa aphid      | Therioaphis maculate            |
| squash bugs                | Anasa tristis                   |
| stink bug                  | Pentatomidae spp.               |
| sugar beet root maggot     | Tetanops myopaeformis           |
| two-spotted spider mite    | Tetranychus urticae             |
| western flower thrips      | Franklinella occidentalis       |
| willow sharpshooter        | Graphocephala confluens (Uhler) |
| wireworm                   | Elateridae spp.                 |
| wooly aphid                | Eriosomatinae spp.              |
| Nematodes                  |                                 |
| alfalfa stem nematode      | Ditylenchus dipsaci             |
| orthern root-knot nematode | Meloidogyne hapla               |
|                            |                                 |