LIVESTOCK ECONOMICS: COMPARING THE RETURNS AND COSTS OF PRODUCING BEEF CATTLE BETWEEN THREE SIZES OF COW-CALF ENTERPRISES IN THE INTERMOUNTAIN REGION OF NORTHEAST OREGON

Courtney Anderson, Leticia Henderson and Clark Seavert

$-\mathrm{OSU}=$

Livestock Economics: Comparing the Returns and Costs of Producing Beef Cattle between Three Sizes of Cow-Calf Enterprises in the Intermountain Region of Northeast Oregon

Courtney Anderson, Leticia Henderson, and Clark Seavert*

Introduction

Producers are familiar with the risks inherent in agriculture. However, it seems like a continuous struggle for livestock producers to manage the market, production, financial, human resource, and legal risks in the past decade. These risks can be in a single issue or as part of several complex issues, including market prices, feed costs, regulatory, labor and water cost and availability, predation, meat substitutes, and supply and demand of beef products to list a few. To mitigate these risks, owners of cow-calf enterprises must commit considerable time and financial resources to succeed in the livestock industry.

The cattle industry is essential to Oregon's economy and rural areas, such as northeastern Oregon. Based on the 2017 USDA NASS Census of Agricultural (Table 1), approximately 30 percent of all farms in Oregon sell cattle and calves, with a market value of almost $\$ 1 \mathrm{~B}$, which is about 20 percent of the total market value of agriculture in the state. On a percentage basis, it is important to note that 16 percent of the state's cattle and calves inventory are in three counties in northeastern Oregon, with more medium-sized operations between 100 to 499 head and fewer operations with less than 49 head, Table 1. The percentage of larger-sized operations in northeastern Oregon is more prominent because of many factors, including the vast amount of state and federal rangelands to graze livestock, available climate, irrigation water for hay production, etc. Although economies of size play a large part in potential profits, large-scale operations also have greater financial risk.

This study is intended for producers, industry leaders, and policymakers to analyze the economic and financial consequences of managing a cow-calf herd. We also discuss how this information used with decision tools can assist producers in making management decisions to increase profitability.

Number of Farm/Ranches, by Herd Size				
Size	Oregon	\% of Total	NE Oregon ${ }^{1}$	\% of Total
1-49	9,701	84.6\%	481	58.6\%
50-99	655	5.7\%	119	14.5\%
100-199	458	4.0\%	102	12.4\%
200-499	431	3.8\%	86	10.5\%
>500	$\underline{218}$	1.9\%	33	4.0\%
Total	11,463	100.0\%	821	100.0\%
Percent of NE Oregon to State			7.2\%	
Inventory of Cattle and Calves, by Herd Size				
Head	Oregon	\% of Total	NE Oregon ${ }^{1}$	\% of Total
1-49	89,684	16.6\%	7,533	8.9\%
50-99	43,497	8.1\%	8,366	9.9\%
100-199	63,627	11.8\%	14,621	17.3\%
200-499	131,846	24.5\%	24,359	28.8\%
>500	$\underline{210,048}$	39.0\%	$\underline{29,697}$	35.1\%
Total	538,702	100.0\%	84,576	100.0\%
Percent of NE Oregon to State			15.7\%	

${ }^{1} \mathrm{NE}$ Oregon includes Baker, Union, and Wallala counties
In a publication of this type, it is impossible to cover all combinations of variables, costs, and benefits combinations in cow-calf production. An common approach is to reflect the typical production practices common in the Intermountain Region of Northeast Oregon. For the following analysis, there are three beef cattle operations: Smaller ranches with 150 cows, medium herds with 300 cows, and larger herds modeled at 400 cows. However, there were consistencies in herd composition and characteristics across all three ranch types. These assumptions are:

1) Herd characteristics. Production flowcharts for each herd size show the conception, birth, weaning, death, and cull rates associated with managing a cowherd in northeastern Oregon, shown in Figures 1a, 1b, and 1c, page 11, 15, and 19 , respectively.

[^0]2) Timing of calving season. Bulls are turned out late April - late May for a February March calving period. The bull to cow ratio is $25: 1$, although this value will vary significantly depending on terrain, pasture size, and bull age.
3) Cow death and culls. Ranches experience a two percent cow death loss and cull 16 percent of the breeding herd each year. Culling practices center on open cows, the age and condition of the cow.
4) Conception, birth, and calf death rates. A 95 percent conception rate and a 98 percent birth rate are assumed. By weaning, three percent of the calves are also lost.
5) Replacement heifers. Ranches raise their own replacement heifers by retaining 40 percent of the heifer calf crop; 80 percent of those heifers retained will enter the breeding herd. Across all ranch sizes, 93 percent of exposed cows and heifers will produce a calf.
6) Bull replacement. Approximately six percent of the bulls are replaced each year due to death and age. Replacement bulls will cost $\$ 4,000$ each.
7) All ranches maintain six horses for labor. Replacement horses have a value of $\$ 2,000$ each.
8) Returns to the owner. Calves are weaned between 7 to 8 months of age. Steer calves will weigh 550 pounds and heifers 525 pounds when marketed. Yearling heifers weigh 850 pounds, cull cows at 1,250 pounds, and cull bulls at 1,800 pounds. Prices received are $\$ 1.65, \$ 1.60, \$ 1.10$, $\$ 0.65$, and $\$ 0.85$ per pound for steer calves, heifers calves, yearling heifers, cull cows, and cull bulls, respectively.
9) Land. The market value of owned land is $\$ 3,500$ per acre.
10) Grazing. Cow-calf pairs graze for approximately two months on private land at the cost of $\$ 25$ per AUM. Then, they feed for an additional five months on federal range at a fee of $\$ 1.35$ per AUM.
11) Purchased feed and supplements.

Purchasing hay costs $\$ 180$ per ton, and preconditioning calves $\$ 6$ per head. Mineral block salt for the herd and salt for calves are purchased at $\$ 1,000$ and $\$ 270$ per ton, respectively.
12) Marketing. Brand inspection and industry check-offs are $\$ 1.00$ and $\$ 1.50$ per head, respectively. An additional four percent for marketing fees apply to all sales.
13) Vet and medicines. An annual per head cost of $\$ 18$ is assumed to manage herd health.
14) Seasonal Labor. During the haying season, calving, and winter feeding, additional hired labor costs $\$ 4,500, \$ 6,000$, and $\$ 6,000$ for each size of operation, respectively.
15) Fuel. Gasoline, off-road, and on-road diesel costs are $\$ 3.75, \$ 2.90$, and $\$ 3.25$ per gallon.
16) Interest. The interest rate on operating funds is six percent, which is a cash expense. Producers borrow one-half of these cash expenses for six months.
17) All medium- and long-term assets are assumed to be owned without debt and treated as a fixed non-cash opportunity cost to the owner. Thus, the compensation rate for these opportunity costs is four percent for machinery, land three percent, and livestock two and a half percent. The resulting dollar values for the opportunity costs for livestock are in Tables $2 \mathrm{a}, 2 \mathrm{~b}$, and 2 c on pages 13, 17, and 21 .
18) Other assumptions. Other assumptions for variable, cash fixed, and non-cash fixed costs are listed in Table 2, page 9.
19) Omitted from this study. Not included in this study is a return to management, owner labor, family living withdrawals, an accounting for all regulatory costs, annual price and yield volatility, price inflation, and local, state, and federal income taxes paid by the owner.

150-head operation assumptions

20) Feed and supplements. The quantity of purchased minerals, salts, and supplements shown in Table 2 are essential to maintain herd health for 150 mature cows and heifers, 28 replacement heifers, and six bulls.
21) Land ownership. The ranch owns 200 acres, consisting of a house, barn, shed, other outbuildings, pasture, etc.
22) Hay production. From mid-November to mid-May, the herd requires 420 tons of purchased hay.
23) Repairs, supplies, and utilities. Materials for fence repairs have an annual cost of $\$ 750$.

Ranch supplies and utilities have yearly assessments of $\$ 7,000$ each, or $\$ 14,000$ annually.
24) Full-time Labor. A single-family provides most of the labor for this size of operation.
25) Machinery and Equipment. The machinery and equipment reflect the typical machinery complement of a 150-head cow-calf operation. A detailed breakdown of machinery values is in Appendix A, Table 3 a, page 13 , and estimated machinery costs in Table 4a, page 14.

300-head operation assumptions

26) Feed and supplements. The quantity of purchased minerals, salts, and supplements shown in Table 2 are essential to maintain herd health for 300 mature cows and heifers, 55 replacement heifers, and 12 bulls.
27) Land ownership. The ranch owns 600 acres, consisting of two houses, a barn, sheds, other outbuildings, pasture, and irrigated land for hay production.
28) Hay production. From mid-November to mid-May, the herd requires 839 tons of hay produced on this ranch.
29) Repairs, supplies, and utilities. Materials for fence repairs have an annual cost of $\$ 1,000$, ranch supplies and utilities are $\$ 10,000$ each, or $\$ 20,000$ annually.
30) Irrigation and water assessment.

Electricity for irrigating hay is $\$ 15,000$ annually, with an additional $\$ 15,000$ for water assessment.
31) Full-time Labor. Two families provide most of the labor for this size of operation.
32) Machinery and Equipment. The machinery and equipment reflect the typical machinery complement of a 300 -head cow-calf
operation. A detailed breakdown of machinery values is in Appendix B, Table 3 b , page 17 , estimated machinery costs in Table 4 b , page 18 , and hay equipment costs in Table 5b, page 18.

400-head operation assumptions

33) Feed and supplements. The quantity of purchased minerals, salts, and supplements shown in Table 2 are essential to maintain herd health for 400 mature cows and heifers, 73 replacement heifers, and 16 bulls.
34) Land ownership. The ranch owns 750 acres, consisting of two houses, a barn, sheds, other outbuildings, pasture, and irrigated land for hay production.
35) Hay production. From mid-November to mid-May, the herd requires 1,118 tons of hay produced on this ranch.
36) Repairs, supplies, and utilities. Materials for fence repairs have an annual cost of $\$ 1,000$, and ranch supplies and utilities are $\$ 12,000$ each, or $\$ 24,000$ annually.
37) Irrigation and water assessment. Electricity for irrigating hay is $\$ 15,000$ annually, with an additional $\$ 15,000$ for water assessment.
38) Full-time Labor. Two families provide most of the labor for this size of operation.
39) Machinery and Equipment. The machinery and equipment reflect the typical machinery complement of a 400-head cow-calf operation. A detailed breakdown of machinery values is in Appendix C, Table 3c, page 21, estimated machinery costs in Table 4 c , page 22 , and hay equipment costs in Table 5 c , page 22.

Results of producing calves in a 150-head cow-calf operation

Economic costs and returns

The gross income, variable, and fixed costs for producing calves in a 150 -head cow-calf operation are in Table 3, page 10. The gross returns are $\$ 117,833$ (or $\$ 786$ per cow when these gross returns are divided by 150). Gross returns are from sale of 68 head of steer calves, 41 heifer calves, five yearling heifers, 20 cull cows, and one cull bull. Total variable cash costs are $\$ 174,999$ ($\$ 1,167$ per cow) for a return over variable costs of $-\$ 57,166$ ($-\$ 381$ per cow).

The major cost components related to total variable cash costs are purchased feed at 43 percent, followed by supplies, utilities, and repairs at 33 percent. The remaining six cost items make up 24 percent of the total variable cash costs.

Total fixed costs are \$80,604 (\$537 per cow) resulting in a net return for this operation of - $\$ 137,770$, or $-\$ 918$ per cow).

For detailed returns and costs, refer to Table 3a, page 12 .

Results of producing calves in a 300-head cow-calf operation

Economic costs and returns

The gross income, variable, and fixed costs for producing calves in a 300 -head cow-calf operation are in Table 3, page 10. The gross returns are $\$ 233,673$ ($\$ 779$ per cow when these gross returns are divided by 300). Gross returns are from sale of 134 head of steer calves, 74 heifer calves, 11 yearling heifers, 45 cull cows, and two cull bulls. Total variable cash costs are $\$ 171,807$ ($\$ 573$ per cow) for a return over
variable costs of \$61,866 (\$206 per cow).
The major cost components related to total variable cash costs are supplies, utilities, and repairs at 40 percent, followed by irrigation expenses and other and miscellaneous expenses at 17 and 16 percent, respectively. The remaining five cost items make up 27 percent of the total variable cash costs.

Total fixed costs are \$169,021 (\$563 per cow) resulting in a net return for this operation of $-\$ 107,155$, or $-\$ 357$ per cow).

For detailed returns and costs, refer to Table 3 b , page 16.

Results of producing calves in a 400-head cow-calf operation

Economic costs and returns

The gross income, variable, and fixed costs for producing calves in a 400 -head cow-calf operation are in Table 3, page 10. The gross returns are $\$ 312,968$ ($\$ 782$ per cow when these gross returns are divided by 400). Gross returns are from sale of 179 head of steer calves, 99 heifer calves, 15 yearling heifers, 60 cull cows, and three cull bulls. Total variable cash costs are $\$ 204,862$ ($\$ 512$ per cow) for a return over variable costs of \$108,105 (\$270 per cow).

The major cost components related to total variable cash costs are supplies, utilities, and repairs at 39 percent, followed by other and miscellaneous, irrigation expenses, and grazing fees at 17,15 , and 13 percent, respectively. The remaining four cost items make up 16 percent of the total variable cash costs.

Total fixed costs are $\$ 192,904$ ($\$ 482$ per cow) resulting in a net return for this operation of $-\$ 84,799$, or $-\$ 212$ per cow).

For detailed returns and costs, refer to Table 3 c , page 20 .

Conclusion

The results should not surprise anyone familiar with the livestock industry; a few observations are:

1. It is essential in smaller-sized operations for one or both spouses to work off the farm to supplement the family's income and receive health insurance and other benefits.
2. Economies of size make a difference to an operation's ability to spread costs over more cow numbers but not necessarily generate long-term profitability.
3. A prudent investor would not consider investing in a cow-calf enterprise without anticipating an increased value in the land or supplemental income sources, such as establishing a solar or wind farm.
There are three key concepts to consider in the livestock industry: profits, profitability, and financial feasibility. The following discussion of these concepts links economic theory and financial analysis to the outcomes of this study, in order to provide insights for producers in their efforts to determine management strategies for long-term business success.

Profit Maximization Theory and Measuring Profitability

There are many choices that can affect operating costs and potential for generating sale revenues when owning a cow-calf enterprise. A few of them include managing:

1. Feed costs.
2. Predators.
3. Conception rates of the cowherd
4. Calving rates
5. Weaning weights
6. Sale weights

What is often misunderstood is that there is an absolute either/or trade-off in order to maximize profits. This misunderstanding results in ranchers concluding that the only way to increase profits is to avoid or cut costs. There are two flaws to this reasoning. First, in some situations, it may be necessary to increase operating costs in order to increase profits. This is possible as long as these increases in input costs result in an increase in sales revenues. The
second flaw in this cost minimizing "pennywise, pound-foolish" mental trap is related to attitudes about risks. Spending more money on more costly inputs may increase perceived and/or actual risks. Hence, many producers are good at minimizing costs but are not able to maximize profits because they are not making investments in technology / genetics / quality or scale (expansion). It is logical for producers to be risk averse, but if done in excess it can impede the adoption of much-needed investments. The enterprise will not be able to compete with other producers who do make the investments and associated changes. Therefore, the risk aversion may actually end up creating more risk than there otherwise would be. This can lead ranchers to focus on avoiding or reducing expenses when they should be seeking profit-maximizing strategies by investing dollars in:

1. Introducing quality genetics into the cowherd.
2. Increasing weight gain conversion rates.
3. Technologies, techniques, and facilities to increase efficiencies, lower per-unit costs, or increased revenues.
Economic theory suggests investing dollars as long as marginal revenues are greater than marginal costs. A few examples would be investing in the following, as long as the producer applies the profit maximization theory:
4. Quality sires.
5. Artificial insemination.
6. Purchasing higher quality bred heifers vs. raising heifers.
7. Feeding supplements and minerals for higher calf weights.
8. Facilities that provide shelter to increase calving and weaning rates and market weights.
As the adage goes, sometimes it takes money to make money!

Another mental trap is thinking only in terms of on-going costs and concluding that all is well as long as there are profits (defined as sales revenues minus operating costs is a positive, so greater than zero). But this reasoning does not take into account the profitability of the cow-calf operation. As with most beef cattle investments,
there both are up-front investments and ongoing costs. The financial metric of net present value captures the total up-front investments and stream of future net cash flows of a potential investment in order to measure profitability. While profit is an absolute measure of a positive gain from an investment, profitability is the profit relative to the size of the investment. For example, compare two investments when both earn $\$ 1,000$ in profits. One of these investments was for $\$ 10,000$, and the other was for $\$ 100,000$. The $\$ 10,000$ investment had better profitability, even though both investments generated equal amounts of profits. Profitability measures the efficiency of the investment to generate profit, as in an internal rate of return. Unlike profit, profitability is a relative measure of the rate of return expected on capital investments, or the size of the return, compared to what could have been earned from an alternative investment (opportunity cost). Therefore, projecting the returns from new technology can generate a profit but not necessarily provide long-term profitability.

Addition through Subtraction

It is common for cattle producers to cull their herds hard during times of drought to save feed costs. However, there are times that producers hang on to old, unproductive cows or raise their replacement heifers having marginal qualities that drain annual net incomes. These strategies can lead to an overall older cow herd, low conception rates, and lower weaning weights.

A two-prong approach could benefit beef producers: addition through subtraction and applying financial management principles to existing resources to purchase replacement heifers and cows when droughts subside or introduce better genetics into a cowherd. The addition through subtraction concept suggests selling old, unproductive cows when the revenues from their calves do not exceed cash variable costs, which could result in lower than usual cow numbers. However, this strategy allows producers to allocate resources to betterperforming cows in the herd, applying the profit maximization theory described above. Many times, this allocation of resources can increase overall net farm income.

The other strategy analyzes the business's financial strength and the returns on the money invested in the cow-calf operation; it establishes benchmarks to key financial ratios and performance measures to determine if one can and should make the funds available to invest in bred heifers and cows to build herds or introduce better genetics into a herd. Over the long run, these two strategies can create opportunities to increase cow numbers faster with more productive cows with heavier market calves, resulting in increased net farm incomes.

Applying Theory to Study Results

The results in this study reveal several potential economic and financial impacts on beef producers. To use this information in an analysis, a cost-benefit analysis of increasing the sales weight of steer and heifer calves by five percent and increasing conceptions rates one percent (from 95 to 96 percent) could impact profits. Although we will rely on the producer to estimate the many options to obtaining higher weights and conception rates, calculating the benefits will provide one piece of the puzzle in this type of analysis.

The second analysis will focus on the high opportunity costs of owning long-term assets to manage a cow-calf enterprise. A sensitivity analysis will illustrate these impacts by modifying return on investment (ROI) rates to 0 percent for machinery, livestock, land ownership, including 0 percent ROI for all three assets simultaneously.

Cost-benefit analysis: One example to illustrate the usefulness of a cost and benefit analysis is increasing the sale weight of steer and heifer calves by five percent. Although selling more pounds of calves and subtracting the additional marketing costs is a straightforward analysis, it shows a range of increasing revenues from $\$ 4,400$ to about $\$ 12,000$ annually, depending on the herd size. The producer can then develop a plan to increase calf weight with their options, such as increasing supplement minerals and salts, higher quality feeds, etc.

However, when increasing conception rates by one percent, the analysis is a little more complex. As calf numbers increase, so do the costs for feed, minerals, salt, and
preconditioning calves. The number of calves to sell is not linear because calving, weaning, and death loss rates will also impact the number of calves sold. However, after these adjustments, the producer can expect an increase in annual revenues of $\$ 860$ to $\$ 3,400$, depending on herd size. So whatever the producer can do to increase conception rates for less than the potential revenues, annual net incomes will increase (Figure 1, page 10).

Sensitivity analysis: When considering all economic costs before modifying the ROIs, the net returns show that neither of the three cowcalf enterprises creates long-term profitability. The net returns for a 150 -head cow-calf enterprise is $-\$ 138,000,-\$ 107,000$ for a 300head, and $-\$ 85,000$ for a 400 -head operation Figure 2, page 10.

A sensitivity analysis demonstrates how opportunity costs impact the ownership of medium- and long-term assets with the following four scenarios:

1. Modifying the opportunity costs for machinery from four to zero percent results in net returns increasing, but still negative net returns for all three: - $\$ 120,000$ for a 150-head cow-calf enterprise, $-\$ 83,000$ for a 300 -head, and $-\$ 60,000$ for a 400 -head operation.
2. Modifying the opportunity costs for livestock ownership from two and a half to zero percent results in the net returns increasing, but remain negative net returns for all operations: $-\$ 132,000$ for a 150 -head cow-calf enterprise, $-\$ 95,000$ for a 300 head, and $-\$ 69,000$ for a 400-head operation.
3. Modifying the opportunity costs for the investment in land from three to zero percent results in the net returns increasing for all three size operations, but again all negative net returns: - $\$ 116,000$ for a $150-$ head cow-calf enterprise, $-\$ 44,000$ for a 300-head, and -\$6,000 for a 400-head operation.
4. Modifying the opportunity costs for all medium- and long-term investments in machinery, livestock, and land to zero percent. This scenario results in significant increases to net returns; however, continued
negative net returns for the two smaller operations but the 400 -head operation showing a positive net return: - $\$ 93,000$ for 150 -head, $-\$ 8,800$ for a 300 -head cow-calf operation and, a positive $\$ 35,000$ for a $400-$ head operation.
This sensitivity analysis clearly shows the impact opportunity costs have on the three livestock enterprises and the importance of economies of size.

Takeaways from this study

Livestock producers understand the risks involved in ranching, recognizing they could make more money in alternative investments of similar risk and receiving a much higher return on their investment. Another takeaway is the importance of spouses working off the ranch. In addition, if the producer accounted for their time, effort, and money to mitigate regulations of all types, the results of this study would even be more dire.

One main criticism of university cost studies is they do not reflect a specific grower's costs for their farm. In addition, they include too many economic costs and assumptions that some producers do not have. The following section will discuss how growers can use the AgBiz Logic decision tool to modify the information from this study as their own.

Using AgBizLogic ${ }^{\mathrm{TM}}$ to Analyze Different Price and Yield Scenarios

Using different price and yield scenarios can provide producers with a greater appreciation of the financial risk involved in livestock production. Numerous factors and unforeseen events can impact conception, calving, and weaning weights, market prices, losses from predators, and challenges to finding qualified labor, which this study ignores.

AgBiz Logic ${ }^{\mathrm{TM}}(A B L)$ is an online decision tool that considers economic and financial factors when analyzing investments. The following schematic shows the data flow and results from the ABL decision tool. Grower farm-level data is collected from the tax form Schedule F (Form1040) to generate enterprise budgets. Enterprise budgets from universities, industry, and USDA-ERS are stored in the ABL
$7 \mid \mathrm{Page}$

Library for grower use when returns and inputs are unknown (brown). Enterprise budgets are sequenced in ABL plans and adjusted for inflation, discount rates, and beginning and ending investment values which provide the basis for a capital investment analysis (orange). Scenarios consist of several plans that can be compared and required for the ABL tools (blue) to calculate the economic and financial outputs (green).

The $\mathrm{AgBizProfit}{ }^{T M}$ module enables users to make competent capital investment decisions by measuring an investment's profitability based on its Net Present Value, Internal Rate of Return, and cash flow breakeven.

The module AgBizFinance ${ }^{T M}$ empowers producers to make whole-farm investment decisions based on 20 financial ratios and performance measures. With this program, users input their current balance sheet information, loans, and capital leases.

AgBizFinance uses this information with plans and scenarios to generate up to 10 -years of proforma cash flow statements, balance sheets, and income statements. As a result, producers can evaluate how livestock management strategies can impact their short- and long-term finances and how best to fund capital investments.

These AgBizLogic decision tools can be accessed at https://www.agbizlogic.com currently at no cost. Also, budgets from this study will be available in the $A B L$ Library.

The authors recommend that before investing in any medium- and long-run assets that producers use AgBiz Logic modules to thoroughly analyze the profitability and financial feasibility of potential investments under varying price and yield scenarios.

Cost Item	150 Head	300 Head	400 Head
Private land - Pasture (\$/AUM)		25.00	
Private land - Pasture, months		2.00	
Federal range (\$/AUM)		1.35	
Federal range, months		5.00	
Purchased hay, tons	421.00	NA	NA
Purchased hay (\$/tons)		180.00	
Hay grown for feed, tons	NA	900.00	1,200.00
Grown hay fed, tons	NA	840.00	1,119.00
Precondition calves (\$/head)		6.00	
Minerals, Block salt (\$/ton)		1,000.00	
Minerals, Block salt, tons	1.00	2.00	3.00
Minerals, calves (\$/ton)		200.00	
Minerals, calves, tons	2.00	4.00	5.50
Seasonal labor, (\$ annually)	4,500.00	6,000.00	6,000.00
Fence repair material (\$ annually)	750.00	1,000.00	1,000.00
Supplies (\$ annually)	7,000.00	10,000.00	12,000.00
Utilities (\$ annually)	7,000.00	10,000.00	12,000.00
Irrigation - electricity (\$ annually)	NA	15,000.00	15,000.00
Water Assessment (\$ annually)	NA	15,000.00	15,000.00
Vet \& medicine (\$/head)		18.00	
Brand inspection (\$/head)		1.00	
Check off (\$/head)		1.50	
Bull purchase (\$/head)		4,000.00	
Horse purchase (\$/head)		2,000.00	
Marketing fees (\%)		4.00	
Accounting \& legal (\$ annually)	2,000.00	4,000.00	4,000.00
Miscellaneous (\$ annually)	5,000.00	10,000.00	12,000.00
Property Taxes (\$ annually)	2,500.00	4,500.00	4,500.00
Property Insurance (\$ annually)	4,000.00	14,000.00	14,000.00
Gasoline price (\$/gallon)		3.75	
Off-road diesel price (\$/gallon)		3.25	
On-road diesel price (\$/gallon)		2.90	
Interest rate - operating capital (\%)		6.00	
Interest rate - livestock ownership (\%)		2.50	
Interest rate - machinery ownership (\%)		4.00	
Interest rate - land ownership (\%)		3.00	
Interest rate - hay grown for feed (\%)	NA	3.00	3.00
Land value (\$/acre)		3,500.00	
Land ownership per ranch, acres	200.00	600.00	750.00
Percent of operating capital borrowed		50.00	
Months to borrow operating capital		6.00	

	150 Head			300 Head			400 Head		
Gross Income		\% of	Per		\% of	Per		\% of	Per
	Total Herd	Category	Head	Total Herd	Category	Head	Total Herd	Category	Head
Steer Calves	\$60,803	52\%	\$405	\$121,605	52\%	\$405	\$162,443	52\%	\$406
Heifer Calves	31,080	26\%	207	62,160	27\%	207	83,160	27\%	208
Yearling Heifers	6,545	6\%	44	10,285	4\%	34	14,025	4\%	35
Cull Cows	17,875	15\%	119	36,563	16\%	122	48,750	16\%	122
Cull Bulls	$\underline{1.530}$	1\%	$\underline{10}$	3,060	1\%	$\underline{10}$	$\underline{4,590}$	1\%	11
Total GROSS Income	\$117,833		\$786	\$233,673		\$779	\$312,968		\$782
Variable Costs									
Grazing and Pasture Fees	\$9,994	6\%	\$67	\$20,072	12\%	\$67	\$26,735	13\%	\$67
Purchased Feed	75,735	43\%	505	0	0\%	0	0	0\%	0
Minerals and Other Supplements	2,024	1\%	13	4,048	2\%	13	5,768	3\%	14
Hired Labor	4,500	3\%	30	6,000	3\%	20	6,000	3\%	15
Supplies, Utilities, Fuel, Repairs, etc	57,814	33\%	385	67,880	40\%	226	80,209	39\%	201
Irrigation - Electricity \& Assessmen	0	0\%	0	30,000	17\%	100	30,000	15\%	75
Vet and Medicines	2,736	2\%	18	5,490	3\%	18	7,308	4\%	18
Marketing Costs and Fees	5,299	3\%	35	10,512	6\%	35	14,076	7\%	35
Other and Miscellaneous Costs	16,897	10\%	113	27,804	16\%	93	34,767	17\%	87
Total VARI ABLE Costs	\$174,999		\$1,167	\$171,807		\$573	\$204,862		\$512
Gross Income minus Variable Costs	$(\$ 57,166)$		(\$381)	\$61,866		\$206	\$108,105		\$270
Total FIXED Costs	\$80,604		\$537	\$169,021		\$563	\$192,904		\$482
Total Net Returns	(\$137,770)		(\$918)	$(\$ 107,155)$		(\$357)	$(\$ 84,799)$		(\$212)

11 | Page

$12 \mid \mathrm{Page}$

Table 2a. 150-Head Operation, Livestock Opportunity Costs.				
Livestock	Opportunity Cost per Head	\# Head	Opportunity Cost by Class of Livestock	Opportunity Cost per Cow
Bulls	$\$ 100.00$	6	$\$ 600.00$	$\$ 4.00$
Cows	33.75	128	$4,320.00$	28.80
Horses	50.00	6	300.00	2.00
Replacement Heifers	32.50	24	$\mathbf{7 8 0 . 0 0}$	$\underline{5.20}$
Total			$\$ 6,000.00$	$\$ 40.00$

Machinery \& Livestock	Size \& Number	Condition	Market Value	Annual Use for Farm	Expected Life (yrs)
Tractor	4 Wheel Dr 160 hp	Newer	\$98,000	200 hours	15
Tractor \& Loader	4 Wheel Dr 80 hp	Used	45,000	200 hours	10
Pickup	1 Ton 4X4	Newer	62,000	15,000 miles	8
Pickup	3/4 Ton 4X4	Used	35,000	15,000 miles	6
ATV	Utility Style	Newer	6,000	2,000 miles	4
Side-by-Side	2-Person	Newer	8,000	2,000 miles	4
Feeder/Mixer Truck		Used	35,000	2,000 miles	10
Gooseneck Flatbed	$25 '$	Used	8,000	1 year	10
Stock Trailer	16'	Used	7,500	1 year	10
Mineral Feeders			300	NA	10
Feed Bunks			44,000	NA	20
Corrals, chute, etc			34,000	NA	20
Hay Shed	350 Ton		10,000	NA	30
Shop/Shed	$40^{\prime} \times 20$		15,000	NA	30
Bulls	6		4,000	NA	4
Cows	128		1,350	NA	9
Replacement Heifers	24		1,300	NA	11
Horses	6		2,000	NA	15

Table 2b. 300-Head Operation, Livestock Opportunity Costs.

Livestock	Opportunity Cost per Head	\# Head	Opportunity Cost by Class of Livestock	Opportunity Cost per Cow
Bulls	$\$ 100.00$	12	$\$ 1,200.00$	$\$ 4.00$
Cows	33.75	255	$8,606.25$	28.69
Horses	50.00	6	300.00	1.00
Replacement Heifers	32.50	50	$\underline{1,625.00}$	$\underline{5.42}$
Total			$\$ 11,731.25$	$\$ 39.10$

Table 3b. 300-Head Operation, Machinery \& Livestock Cost Assumptions.

Machinery \& Livestock	Size \& Number	Condition	Market Value	Annual Use for Farm	Expected Life (yrs)
Tractor	4 Wheel Dr 160 hp	Newer	\$98,000	200 hours	15
Tractor \& Loader	4 Wheel Dr 80 hp	Used	56,000	200 hours	10
Tractor \& Loader	4 Wheel Dr 80 hp	Used	45,000	200 hours	10
Swather	16' Self-propelled	Newer	84,000	39 hours	15
Baler	1,200 LB Square	Newer	72,000	25 hours	15
Pickup	1 Ton 4X4	Newer	75,000	15,000 miles	8
Pickup	3/4 Ton 4X4	Used	35,000	15,000 miles	6
ATV	Utility Style	Used	6,000	2,000 miles	4
Side-by-Side	2-Person	Newer	8,000	2,000 miles	4
Feeder/Mixer Truck		Newer	155,000	2,000 miles	10
Tractor Implements	Rake, disc, etc.	Used	3,600	1 year	15
Gooseneck Flatbed	25^{\prime}	Newer	13,000	1 year	10
Stock Trailer	16^{\prime}	Used	7,500	1 year	10
Mineral Feeders			300	NA	10
Feed Bunks			33,000	NA	20
Corrals, chute, etc			34,000	NA	20
Hay Shed	690 Ton		20,000	NA	30
Shop/Shed	$40^{\prime} \times 20$		15,000	NA	30
Bulls	12		4,000	NA	4
Cows	250		1,350	NA	9
Replacement Heifers	50		1,300	NA	11
Horses	6		2,000	NA	15

Table 4b. 300-Head Operation, Machinery \& Livestock Cost Calculations.

Machine	Size	-- Variabl Lube	-- Costs p Costs -- Repairs \& Maint.	Hour, Mil -- Fixed Deprec- iation	or Year osts -- Interest	Total Cost	Variable	Cost per Cow Fixed	Total
------------------- Costs per Hour -------------------									
Tractor	4 Wheel Dr 160 hp	\$29.90	\$0.88	\$26.41	\$23.35	\$80.55	\$20.52	\$33.18	\$53.70
Tractor \& Loader	4 Wheel Dr 80 hp	14.95	0.34	20.93	14.03	50.25	10.19	23.31	33.50
Tractor \& Loader	4 Wheel Dr 80 hp	14.95	0.27	16.82	11.27	43.31	10.15	18.73	28.88
Swather	16' Self-propelled	0.32	0.15	110.09	20.02	130.58	0.06	16.79	16.85
Baler	1,200 LB Square	NA	0.08	146.09	18.47	164.64	0.01	13.71	13.72
	------------------- Costs per Mile ------------------								
Pickup	1 Ton 4X4	\$0.36	\$0.21	\$0.56	\$0.16	\$1.28	\$28.32	\$35.91	\$64.23
Pickup	3/4 Ton 4X4	0.36	0.19	0.35	0.16	1.06	27.67	25.28	52.95
ATV	Utility Style	3.59	0.12	0.68	0.70	5.09	24.76	9.18	33.93
Side-by-Side	2-Person	2.16	0.12	0.90	0.56	3.74	15.18	9.76	24.93
Feeder/Mixer Truck		0.86	0.41	5.43	1.00	7.70	8.51	42.84	51.35
		------------------ Costs per Year -------------------- $\quad \$ 72.00$							
Tractor Implements							\$0.24	\$0.90	\$1.14
Gooseneck Flatbed		NA	260.00	975.00	325.00	1,560.00	0.87	4.33	5.20
Stock Trailer		NA	150.00	562.50	187.50	900.00	0.50	2.50	3.00
Mineral Feeders		NA	6.00	22.50	7.50	36.00	0.02	0.10	0.12
Feed Bunks		NA	660.00	1,237.50	825.00	2,722.50	2.20	6.88	9.08
Corrals, chute, etc		NA	680.00	1,275.00	850.00	2,805.00	2.27	7.08	9.35
Hay Shed		NA	400.00	500.00	500.00	1,400.00	1.33	3.33	4.67
Shop/Shed		NA	300.00	375.00	375.00	1,050.00	1.00	2.50	3.50

Table 5b. 300-Head Operation, Estimated Per Acre Cost of Haying Operations with Power-Unit.

Operation	Power Unit	Acres per hour	Machine Costs Variable Costs ---					
			Labor cost	Fuel \& Lube	 Maint.	Deprec- iation	Interest	Total cost per acre
Swather	Self-propelled	7.27	\$4.13	\$2.06	\$0.03	\$11.64	\$2.75	\$20.60
Baler	4 Wheel Dr 160 hp	7.27	4.13	4.11	0.14	19.08	4.47	31.92

APPENDIX C
 400-Head Cow Calf Operation

Figure 1c. 400-Head Operation, Production Flowchart.

Table 2c. 400-Head Operation, Livestock Opportunity Costs.

Livestock	Opportunity Cost per Head	\# Head	Opportunity Cost by Class of Livestock	Opportunity Cost per Cow
Bulls	$\$ 100.00$	16	$\$ 1,600.00$	$\$ 4.00$
Cows	33.75	340	$11,475.00$	28.69
Horses	50.00	6	300.00	0.75
Replacement Heifers	32.50	66	$\underline{2,145.00}$	$\underline{5.36}$
Total			$\$ 15,520.00$	$\$ 38.80$

Table 3c. 400-Head Operation, Machinery \& Livestock Cost Assumptions.

Machinery \& Livestock	Size \& Number	Condition	Market Value	Annual Use for Farm	Expected Life (yrs)
Tractor	4 Wheel Dr 160 hp	Newer	\$98,000	200 hours	15
Tractor \& Loader	4 Wheel Dr 80 hp	Used	56,000	200 hours	10
Tractor \& Loader	4 Wheel Dr 80 hp	Used	45,000	200 hours	10
Swather	16' Self-propelled	Newer	84,000	52 hours	15
Baler	1,200 LB Square	Newer	72,000	33 hours	15
Pickup	1 Ton 4X4	Newer	75,000	15,000 miles	8
Pickup	3/4 Ton 4X4	Used	35,000	15,000 miles	6
ATV (2)	Utility Style	Newer	12,000	4,000 miles	4
Side-by-Side	2-Person	Newer	8,000	2,000 miles	4
Feeder/Mixer Truck		Newer	155,000	2,000 miles	10
Tractor Implements	Rake, disc, etc.	Used	3,600	1 year	15
Gooseneck Flatbed	25^{\prime}	Newer	13,000	1 year	10
Stock Trailer	20^{\prime}	Newer	12,500	1 year	10
Stock Trailer	16^{\prime}	Used	7,500	1 year	10
Mineral Feeders			300	NA	10
Feed Bunks			44,000	NA	20
Corrals, chute, etc			34,000	NA	20
Hay Shed	915 Ton		26,500	NA	30
Shop/Shed	$40^{\prime} \times 20$		15,000	NA	30
Bulls	16		4,000	NA	4
Cows	334		1,350	NA	9
Replacement Heifers	66		1,300	NA	11
Horses	6		2,000	NA	15

Table 5c. 400-Head Operation, Estimated Per Acre Cost of Haying Operations with Power-Unit.

Operation	Power Unit	Acres per hour						
			$\begin{array}{r} \text { Labor } \\ \text { cost } \end{array}$	Variabl Fuel \& Lube	Costs --- Maint.	- Fixed Deprec- iation		Total cost per acre
Swather	Self-propelled	7.27	\$4.13	\$2.06	\$0.04	\$8.41	\$2.75	\$17.38
Baler	4 Wheel Dr 160 hp	7.27	4.13	4.11	0.14	14.79	4.47	27.64

[^0]: *Courtney Anderson, former student, Department of Applied Economics, Oregon State University; Leticia Henderson, former Extension faculty and now a Lecturer in the Department of Agricultural and Applied Economics, University of Wyoming; and Clark Seavert, Department of Applied Economics, Oregon State University.

