Species Distribution Modeling

Julie Lapidus Eli Moss Scripps College '11 Brown University '11

Objective

To characterize the performance of both multiple response and single response machine learning algorithms for multiple datasets

Single Response vs. Multiple Response Algorithms

- 1. Single-response models
 - input: covariates
 - output: prediction for a single species
- 2. Multiple-response models
 - input: covariates
 - output: simultaneous predictions for all species

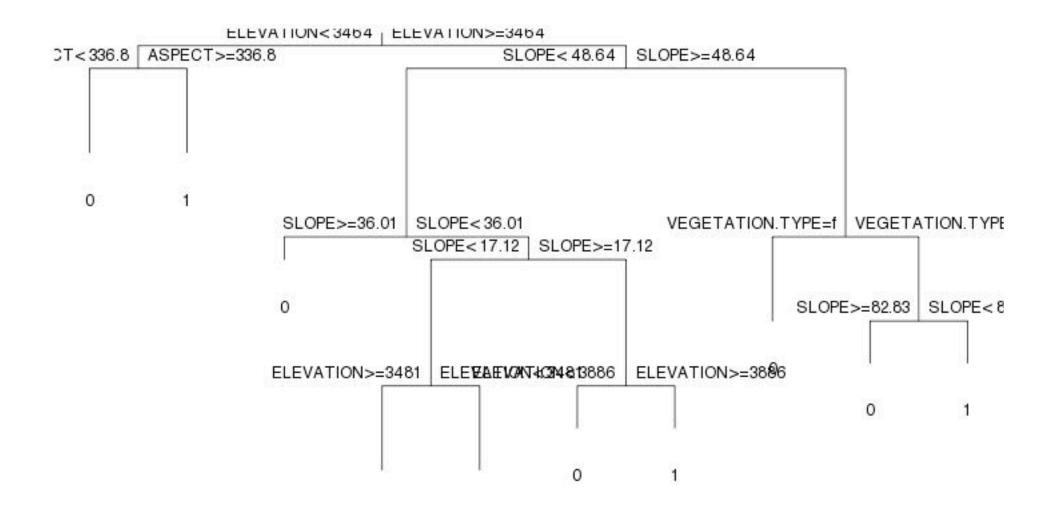
Single vs. Multiple Response

- Single: Data learning only needs to predict one response at a time.
 - Predictions informed solely by patterns in covariates
- Multiple: Fit of data attempts to account for all responses simultaneously.
 - Prediction of rare moths might be helpfully influenced by patterns in others (only if they covary)

Single Response

- Elastic net logistic regression: fit the data by weighting each covariate within a linear equation.
 - Control overfitting by penalizing weights
- Decision trees: make successive splits on covariates to arrive at an output
 - Control overfitting by reducing size of tree

Single Response



Multiple Response

- Multivariate Decision trees: splits must predict all species, are chosen according to best overall correlation
 - Control overfitting by reducing size of tree
- Single-Hidden-Layer Neural Network: Non-linear statistical data modeling tool inspired by human neural networks
 - Control overfitting by selecting best number of training iterations

Moth Data

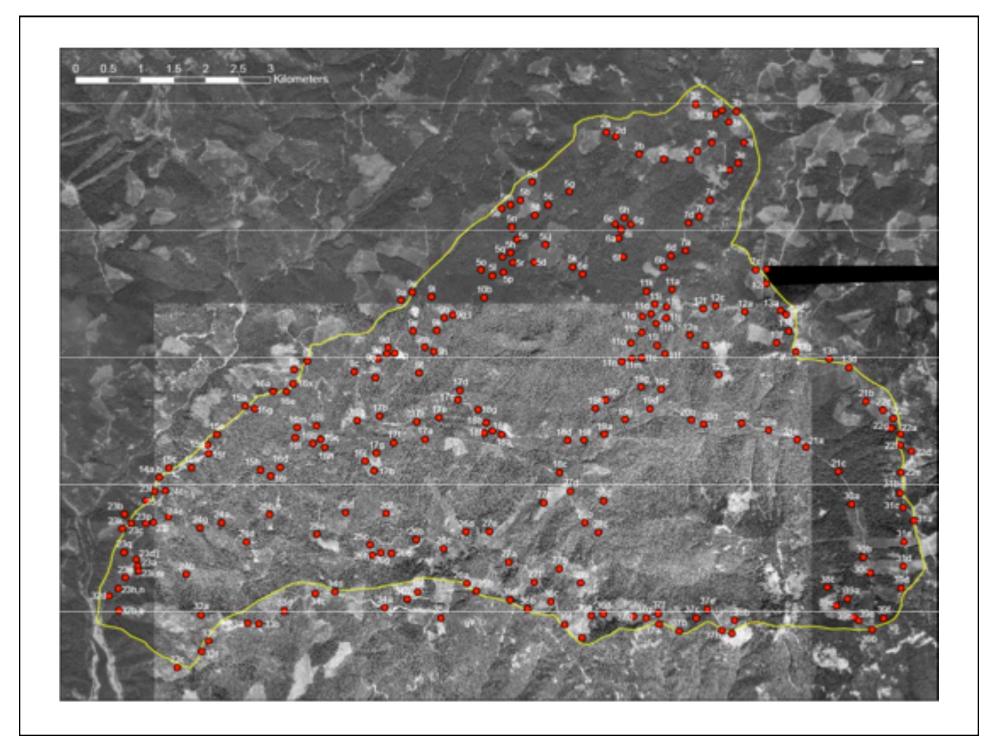
- Jeff Miller, collected '86-'08
- H.J. Andrews Experimental Forest
- 606 species
- 4 covariates
- 256 traps

Environmental Covariates

- Slope: percent grade 1 105
- Aspect: degrees 2 358
- Elevation: meters 1437 5007
- Vegetation Type: closed forest, meadow, cut 72-77, open forest, shrub/very open forest
 - represented as numbers when modeled

Issues with Moth Dataset

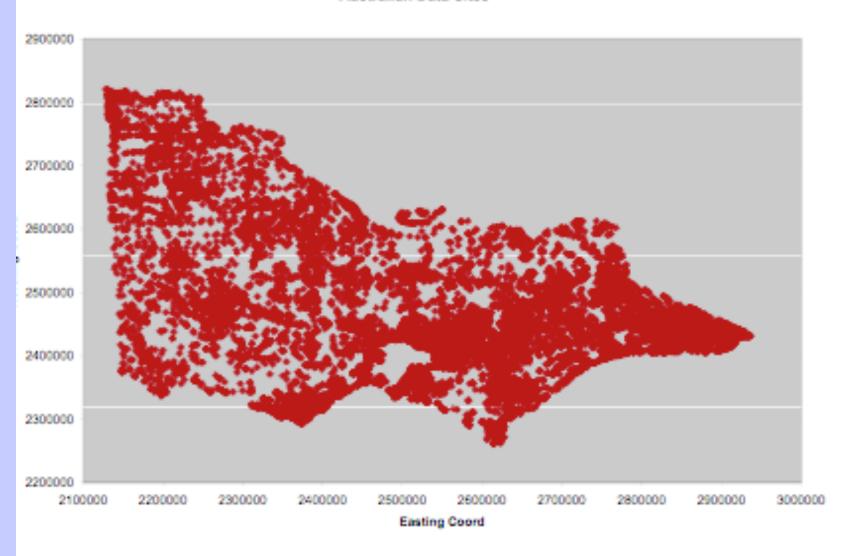
- Not uniformly sampled (roads)
- > 1/2 of the included species occurred fewer than 18 times over the course of the entire 23-year trapping period
- 1/6 of the species account for over half of the recorded moth occurrences
- Euclidian transformation of slope and aspect necessary
- Different moth species more prevalent each year



Australian Plants Dataset

- Victoria, Australia
- 5000 plant species
- Arthur Rylah Institute (Melbourne, Australia)
- Subset of 100 most abundant plant species
- 15,328 sites
- 81 covariates

Australian Data Sites



Data Format

SiteID	Covariate N (e.g. temperature)	Species I	Species n
Α	×	0	I
В	y		I
С	Z	I	0

Subsetting the Data

HJA Moths				
Parameterize		Test		
Train	Validate			

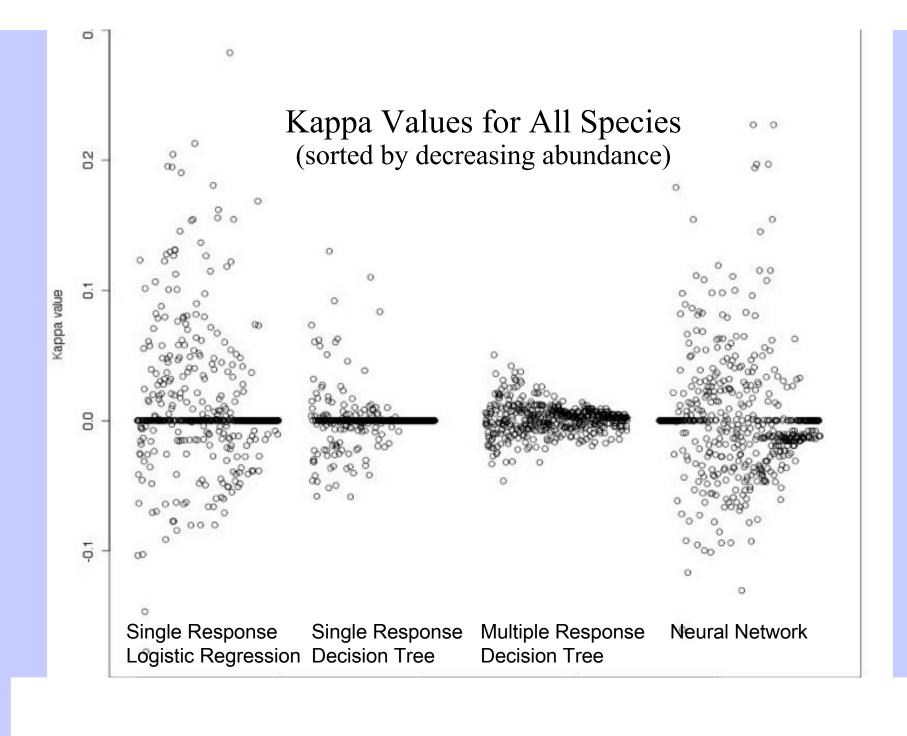
Cohen's Kappa

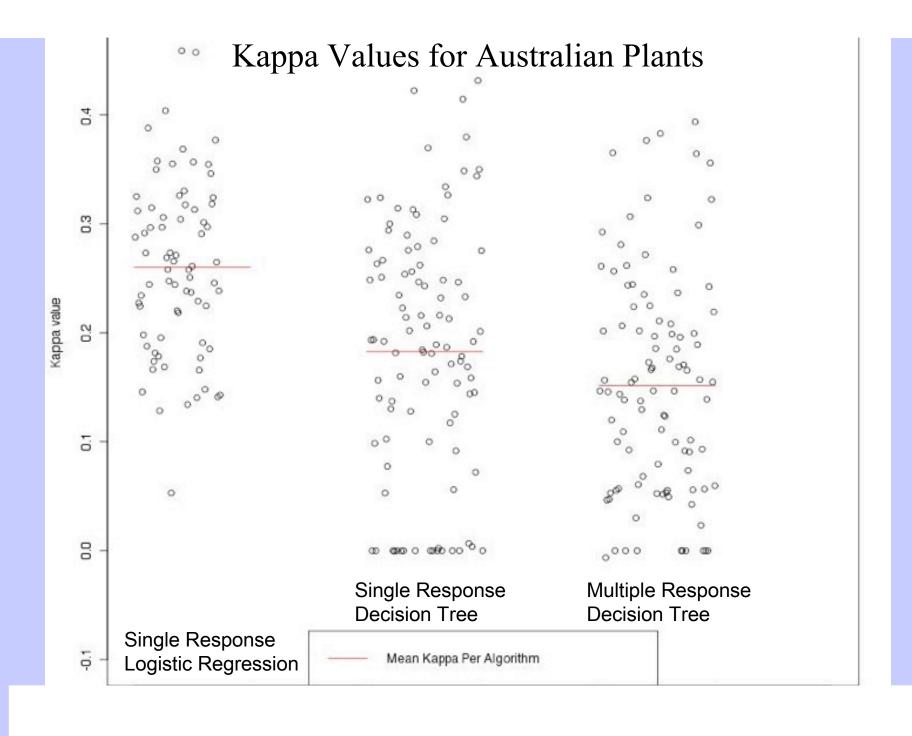
Statistical performance measurement used

$$\kappa = \frac{\Pr(a) - \Pr(e)}{1 - \Pr(e)}.$$

- Pr(a) is relative observed agreement among raters
- Pr(e) is hypothetical probability oof chance agreement

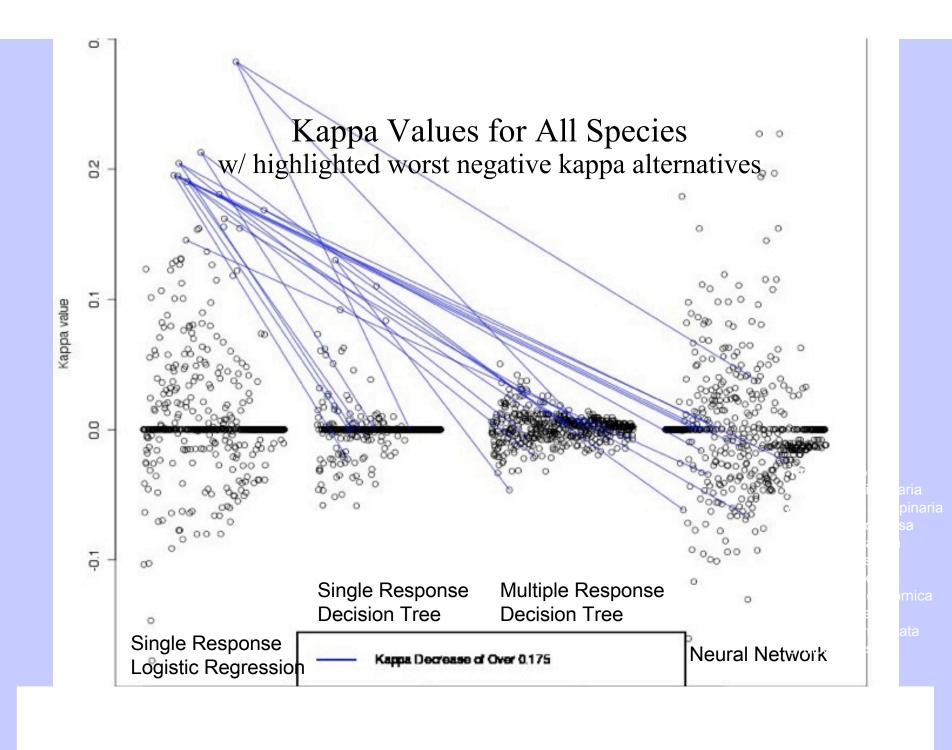
Value	Interpretation	
1	Complete agreement	
0	No agreement beyond chance	
<0	Worse than random guessing	

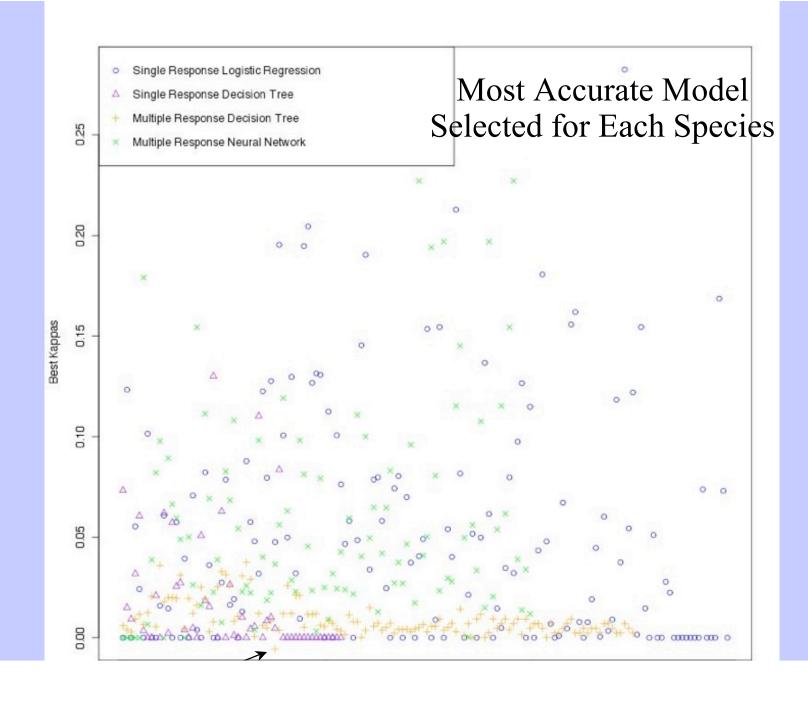


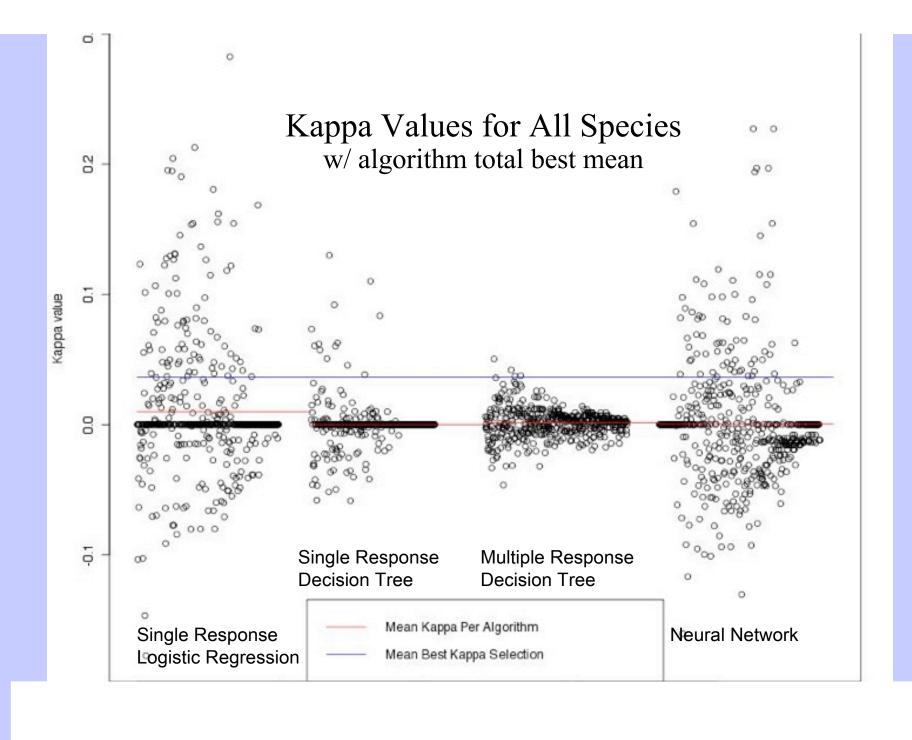


Improving Predictions

- Difficult prediction problem
 - few samples for many of the moths
 - Few covariates
 - Coarse vegetation type covariate
 - non-continuous aspect covariate
- Creative use of our tools can yield better predictions...
 - algorithms perform best on different ranges of abundance/covariate values







Summary of Results

- Tested four algorithms for two datasets
- We have established a comparative baseline for predictive performance with the Australian plant dataset
- The moth dataset poses a considerable problem to modeling
 - noisy occurrence patterns
 - thinly sampled occurrence for 5/6 species
- Integration of models may improve prediction accuracy
 - algorithm selection based on abundance, covariate proportions for each species

Further Research

- Data Preprocessing
 - group moths by habitat preferences
 - perform euclidean transformation on slope/aspect
 - continuous vegetation type
- Prediction of moth species occurrence across HJA with environment grid
- More advanced algorithms
 - our basic methods will serve as a baseline for comparison

Acknowledgements

- We would like to thank:
 - Dr. Dietterich, CS Professor
 - Dr. Wong, CS Professor
 - Steven Highland, Geosciences PhD candidate
 - Julia Jones, Geosciences Professor
 - Arwen Lettkeman, CS PhD candidate
 - Paul Wilkins, CS PhD candidate
 - Rebecca Hutchinson, CS Post-doc