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ABSTRACT. Reconstructed global atmospheric data sets have the potential to provide
information about major storm events that can be related to ground observations
through visualization of atmospheric dynamics. The evolution of a storm event over
time has traditionally been analyzed using direct analysis of the velocity vector field,
but this method cannot be easily used to study the storms spatial characteristics at a
given time. In order to analyze the structure of storms more efficiently, cross-sections
along chosen pressure levels of a storm’s velocity vector field are used to generate ve-
locity gradients, that is, asymmetric tensor fields that describe spatial characteristics
of a vector field. In order to simplify analysis of a storm’s velocity gradient, we in-
tegrated atmospheric science concepts, mathematical transformations, and computer
visualization techniques (tensor field visualization techniques) to represent important
storm characteristics, such as anisotropic stretching and the relative proportions of
isotropic scaling and rotation. These visualization techniques were used to represent
the structure of velocity fields in wind data at the 1000, 7000, 400 and 100 millibar
heights across the eastern Pacific at 6-hour time intervals for a 2-week period that
produced a record flood event in 1996 in the Willamette Valley, Oregon. Additionally,
a set of transformations was developed and implemented to visualize the storms veloc-
ity gradient relative to non-stationary frames of reference. The visualizations provide
information about the movement and strength of air masses and provide a basis to
assess the agreement between global reconstructed data sets and ground observations
during this unusual event.
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INTRODUCTION

It goes without saying that the study of storm events not only has many impor-
tant applications but is also necessary for the well being of our communities, especially
those that are likely to experience strong meteorological events. For this reason, basic
storm analysis techniques have existed since the development of modern meteorology.
Nonetheless, thanks to the increase in awareness of the reality of global climate change
and its effects on the frequency and power of storms, it is now apparent that more
sophisticated techniques are necessary to fully understand storms, their effects on our
environment, and how global climate change is affecting them.

A new approach in the study of storms that may be fruitful applies recently de-
veloped asymmetric tensor field visualization techniques [1] to study the vector field
produced by a storm at a given time. This technique consists of obtaining longitudinal
and latitudinal velocities of a storm at different points at a given time and along a given
altitude to create a two-dimensional velocity vector field of the storm, which is then
used to create its corresponding velocity gradient (a special asymmetric tensor field as
will be explained shortly). Asymmetric tensor field visualization techniques are then
used to visualize important characteristics of the velocity gradient (and the storm) such
as the degree at which the storm is expanding, rotating, and stretching at each point.
Consequently, this form of analysis can explain the storm’s spatial structure at a given
time and can be used to relate global reconstructed data sets of a storm to ground
observations, which may be helpful in determining whether the structure of storms has
been changing over the years due to global climate change.

The purpose of this paper is to present the results we obtained when we applied
the new visualization techniques to storm analysis. In the following sections we will
explain exactly what type of data was used for the analysis, how the vector and tensor
fields were obtained, how the distortion coefficients of the storm (expansion, rotation,
stretching) are calculated, how the visualization is computed, and what our results were.

Finally, in order to test the new techniques, the Willamette Valley Flood of 1996, a
significant historical meteorological event that occurred in Oregon, was chosen to apply
our analysis. This flood was the result of a series of low-pressure systems whose effects
were felt throughout Oregon from February 1-14, 1996, and was part of a larger series
of floods which spanned the entire Pacific Northwest. These low-pressure air masses
originated in the sub-tropical Pacific region and flowed northward where they eventu-
ally transformed into mid-latitude cyclones. The precipitation was greatest during the
period from February 5-9, peaking at 9 mm/hr on both February 7 and February 9,
which corresponds to the flooding which peaked on February 7 (Perkins and Jones).
The intensity of the precipitation in combination with the existing snowpack resulted
in severely damaging high streamflow and flooding.
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1. STORMS AND TENSOR FIELDS

In order to understand how the visualization works and what it can do for us, it
is important to have an idea of the structure of the data used and how it is used to
create the gradient velocity tensor fields of a storm. Therefore, section 1.1 contains an
explanation of the kind of data that we were dealing with, while section 1.2 explains
the mathematics necessary to understand the visualization.

1.1. Data Structure. The data used for the visualization was from the NCEP-DOE
Reanalysis 2 dataset. This is a freely available dataset from the National Center for
Environmental Prediction. The data is generated from global forecast models in ad-
dition to observed weather readings. The dataset timeline is from 1979 to 2008, with
measurements available every 6 hours. For our purposes, a timeframe beginning at Jan-
uary 26, 1996 to February 9, 1996 was used to show the storm(s) that resulted in the
1996 flood of the Willamette Valley. There are many different types of data available
in the dataset, such as wind speed, geopotential height, air temperature, and relative
humidity. We were concerned with wind speed in both the latitudinal and longitudinal
direction.

The resolution of the data, that is to say the physical distance between each data
point, is 2.5 degrees in latitude and longitude. The area that we wished to visualize
was a rectangle whose bottom left corner was 180.0E, 0.0N and the top right corner
was 242.5E, 47.5N. This gave us a grid with dimensions 20 by 26 where each point on
the grid contained a vertical and horizontal wind component.

The dataset has many different types of data, including wind speed, for varying
pressure levels. The pressure levels correspond to different altitudes in the atmosphere.
In order to visualize the series of storms at different heights, four different pressure
levels were used as shown (Table 1).

TABLE 1. Altitudes corresponding to different pressure levels.

Pressure [hPa] Altitude [m]

1,000 0 (surface)
700 3,000
400 7,200
100 16,200

Each pressure level defines a different 20 by 26 grid with different wind speeds at
each point.

The NCEP-DOE Reanalysis data is available only in NetCDF format, which are
binary files. In order to make the files suitable for reading into a program, we first
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had to convert them to a text format. This was done using the NetCDF Operators
(NCO) tools (available at http://nco.sourceforge.net) to convert the binary data files
to text files. After the text files were created, it was decided the most useful format for
the data to be in was a comma separated values (CSV) format. A parsing routine was
written for this purpose. The CSV files were then used to create vector field plots in the
R programming language and calculate the tensor field in the visualization software.

1.2. The Velocity Gradient of a Storm. Once the velocity vector fields of interest
are obtain (as described in section 1.1), these are used to calculate the corresponding
velocity gradients: tensor fields that contain the spatial derivates of the vector compo-
nents at each point of the vector field (see section 1.2.1). Since calculating the velocity
gradient of each vector field requires taking derivatives along the latitudinal and longi-
tudinal directions of the vector field, special numerical methods were used in order to
reduce the error due to the small resolution of our data sets (see section 1.2.2). The
reason for calculating the tensor fields of the storm is that these can be used to calculate
the coefficients of spatial distortion at each point in space (see section 1.2.3), which are
then used to better understand the behavior of the storm at a given time.

1.2.1. Definition of the Velocity Gradient. In order to define the velocity gradient of a
two-dimensional vector field, we’ll introduce the following mathematical objects:

x
Let r(z,y) = ( > represent the standard position coordinates of R? and let v : R? —
)

R? v(r) = (ng;) be a vector field from R? to R%. Also, let V = (9, d,) denote the
Yy

gradient vector and ® denote the tensor product.

When applied to our storm tracking analysis, x and y represent the longitudinal and
latitudinal angular distances from a given reference point (since only a small portion of
Earth’s surface is considered, we can treat it as a plane subset of R?). Correspondingly,
r is the position vector from the chosen reference point. Finally, v(r) represents the
surface velocity vector field of the storm, which contains the longitudinal and latitudi-
nal velocities at each point.

The velocity gradient of v(r) is defined as

e =verte= (50 Gt )

Then, J(r) is a second order tensor field defined in R? which contains the spatial
derivatives of each component of the vector field v(r). This information is all we need
to understand how a vector field (or a storm) changes in any direction, and as it will
be shown, it can also be used to measure the distortion of the storm at each point.
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1.2.2. Obtaining the Velocity Gradient Numerically. Since the data available for the ve-
locity vector field at the location of interest consists of a 20 by 26 set of points equally
separated by 2.5 degrees, the numerical spatial derivatives that are part of the tensor
field can be obtained using simple two-point differentiation. Nonetheless, due to the
small resolution of the data set, using finite difference approximations is not the best
approach. Instead, a higher order method that uses a 5 by 5 grid centered at each point
to calculate its spatial derivatives was used (finite difference approximations were used
for the points in the edges that do not have a 5 by 5 window around them).

The higher order method used for the differentiations is a variation of the five-point
stencil method: For a function f(z) and constant h > 0, f'(x) is given by

, —f(x+2h)+8f(x+h)—8f(x — h)+ f(xz — 2h)

fx) = 5

In two dimensions, this method can be used to obtain the two spatial derivatives
of each vector field component (just replace f by v; and ve and repeat for y), but
in order to take full advantage of the 5 by 5 window around each point, the same
spatial derivatives were calculating using the five-point stencil method this time along
the diagonals of the 5 by 5 window (which can be used to calculate the derivatives of
interest), and finally a weighted average yielded the desired results.

1.2.3. Calculating the Coefficients of Spatial Distortion. Once the gradient velocity J(r)
of the storm’s vector field is calculated, we can then calculate the coefficients of spatial

Tii(r) Tia(r) )
Tgl(r) TQQ(I‘) ’

1) The coefficient of isotropic scaling v,4(r) (which measures the degree at which fluid
flow due to the vector field is likely to expand or contract at a given point) is given by

_ Tll(I') —|— ng([’)
2

2) The coefficient of rotation ~,(r) (which measures the degree at which fluid flow
due to the vector field is likely to rotate) is given by

_ T21 (I‘) — Tlg(r)
2

3) The coefficient of anisotropic stretching ~,(r) (which measures the degree at which
fluid flow due to the vector field is likely to move along one direction over the others)
is given by

distortion that we wish to visualize. For a given tensor field J(r) = (

Ya(r)

Ya(r)

V(T11(r) — Toa(r))? + (Tha(r) + Toi (r))?
Vs(r) = 9
Figure 1 shows examples of three vector fields whose tensor field is constant and that
only have one non-zero coefficient of spatial distortion (one for each coefficient). It is
important to remember though that the coefficients can vary from point to point and
that more than one nonzero coefficient can be present at one point in the vector field.
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coefficient of distortion. Any vector field can be depicted as a combination

FiGure 1. Examples of vector fields with only one nonzero constant
of these coefficients of distortion.



STORM ANALYSIS USING TENSOR FIELD VISUALIZATION 7

2. THE ASYMMETRIC TENSOR FIELD VISUALIZATION TECHNIQUE

Once the velocity gradient of a storm and its coefficients of spatial distortion at each
point are known, it is only necessary to decide how each coefficient will be represented
in the visualization. This section provides an explanation of what the visualizations
represent (see section 2.1) and how these are obtained (see section 2.2).

2.1. Understanding the Visualization. For each point of the velocity field, the cor-
responding tensor was decomposed into three coefficients of spatial distortion: isotropic
scaling, rotation, and anisotropic stretching. From this decomposition, a block of color
could be associated with each particular point. Specifically, the hue was determined as
a ratio between the isotropic scaling and rotation. For pure isotropic scaling in both
the positive and negative directions, and clockwise and counter-clockwise rotation, a
specific color was assigned (Figure 2). For all combinations of rotation and isotropic
scaling then, a specific hue was assigned based on the ratio of the two components.
To account for the amount of anisotropic stretching, variable transparency was used.
Unlike the other two components, anisotropic stretching was computed separately, by
dividing the amount of stretching at each point by the maximum stretching throughout
the entire field at the given time frame. Therefore, as the ratio increases, the more
transparent the shade becomes.

clockwise positive isotropic
rotation: o=m __ scaling: o=mn/2

anisotropic

B ositive scalin
stretching L &

clockwise ; otropic
rotation L i I stretching

counterclockwise
rotation: =0

egative scaling
negative isotropic

Eigenvalue manifold :
- scaling: o=—m/2

(top-down view)

F1GURE 2. Coloring Scheme: The relative ratio between isotropic scaling
and rotation is depicted by the hue used while the presence of anisotropic
stretching is depicted by the transparency used.

2.2. Creating the Visualization. The tensor field visualization was created using
two separate programming components. First, the R programming language was used
to generate velocity vector plots. Then, C4++ with OpenGL was used to calculate the
tensor field and overlay the coloring scheme on the velocity vector plots.

The R programming language is a popular language choice for statisticians due to
its included statistical and graphical functions. We used R for its plotting routines to
generate velocity vector plots for each 6 hour time frame. This was done for the 4
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different pressure levels of interest, resulting in 56 plots for each pressure level. A plot
is shown below.
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FiGure 3. Example of a vector field of the storm under analysis.

Each arrow shown in the plot is a velocity vector; the length of the vector denotes
its relative magnitude. R was also used to add the location of landmark cities to the
plots in order to more clearly see where storms are passing over. Each of these plots
was generated as bitmap file to be loaded into the visualization software.

The visualization software had two main tasks. First, the tensor field and decompo-
sitions had to be computed from the velocity vector field. Second, the decomposition
coloring scheme had to be overlaid on the velocity vector plots. To compute the tensor
field and decomposition of the tensors, the CSV files are read in and the horizontal
and vertical wind magnitudes are stored in an internal 2 dimensional array. For each
element of the array, a tensor is computed in one of three different ways depending
on its position within the array. For elements on the boundary of the array or within
one position of the boundary, adjacent elements are used to compute the tensor. For
the other elements that lie two or more positions within the boundary, elements up to
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two positions away are used to compute the tensor. The decomposition which relate to
the spatial distortion of a storm is computed from the tensor. The C++ programming
language was used to perform these calculations.

The visualization of the decomposition from the tensor field was done using OpenGL.
The velocity vector plots (in bitmap format) were read into the visualization software
and displayed as a background image. On top of the velocity vector plot, the coloring
scheme was drawn on each element of the grid using a colored, transparent rectangle.
The color and transparency of the rectangle was related to the decomposition of the
tensor, which again is tied to the spatial distortion of a storm (see Figure 4).

To allow the user to control which 6 hour interval and pressure level they are viewing,
a simple user interface was created. This was done using GLUI, a library using OpenGL
to create user interfaces. A legend is also displayed in the visualization to quickly show
the user what atmospheric event each color denotes.
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FiGURE 4. Example of the visualization for one of the tensor fields.
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3. CONCLUSIONS

The purpose of this section is to present an analysis of the usefulness of the visual-
ization techniques when applied to storm analysis (see section 3.1) and to talk about
the future work that can be done to fully develop the visualizations (see section 3.2).

3.1. Interpretation of a Storm’s Visualization. We were able to use this visu-
alization to further understand atmospheric dynamics by identifying the relationship
between various components of spatial distortion. Different types of weather systems
can be recognized by their method of movement. For example, a low pressure sys-
tem is often associated with cyclogenesis, especially in the mid-latitude regions. In the
northern hemisphere, a cyclone is characterized by counter-clockwise rotation in combi-
nation with winds converging at the Earth’s surface, which spiral upward to diverge at
a higher elevation. Inversely, an anti-cyclone in the northern hemisphere is character-
ized by clockwise rotation in combination with converging winds at a higher elevation
which sink and eventually diverge at the surface level (see Figure 5). Our visualization
becomes useful when there is a need to identify storm systems or atmospheric dynamics
in general.

Also, by looking at the level of transparency, it is possible to tell whether or not a
specific air mass is mostly stationary, or if it is moving. In another example, an air
mass that is largely characterized by zonal flow will have high anisotropic stretching,
and therefore will be highly transparent. One observation from the visualization has
shown that areas with larger coefficients of anisotropic stretching tend to have lower
wind magnitudes. It is important, however, to remember that a bolder color does not
necessarily correspond with a higher degree of rotation and/or isotropic scaling, only
that there exists a small amount of anisotropic stretching resulting from that point’s
resultant tensor.

Cyclone (NH)
Cyclone (SH)
Anti-cyclone (NH)

lj Anti-cyclone (SH)

FI1GURE 5. Expected colors for different storm phenomena.



STORM ANALYSIS USING TENSOR FIELD VISUALIZATION 11

One of the goals of this project was to follow the path of the storm from its origin,
and to see whether our visualization corresponded with recorded weather data at the
H.J. Andrews Experimental Research Forest. During the peak of the storm, the precip-
itation data was compared to the corresponding frames of the visualization. Because
of the 6 hour time step, we were able to make comparisons to hourly data. For the
most part, we were able to detect a low pressure system moving in waves across the
H.J. Andrews during the peak of the event. This pattern of the storm system moving
in repeated waves was evident as it moved across the Pacific Ocean, and continued as
it reached the coast. While the data does not match up perfectly to the visualization,
it is likely that the discrepancy is a result of the reconstructed data-set, and more sig-
nificantly, that the data was taken at such a coarse scale.

3.2. Future Work. In the future, several improvements can be made to the visualiza-
tion, and it can be taken in many directions:

Initially, the area of interest that was decided upon reached only to the northeast
corner of Oregon, expecting that that would allow for ample buffer room when analyz-
ing the path of the storm. However, as we progressed with our project, our method
of derivation of the tensor field used the five adjacent points in each direction, and as
a result the points near the border of our region of interest (of which H.J. Andrews
was included) had to undergo a modified version of the differentiation. Therefore, one
change that could be added in the future would be to apply the analysis to a larger
area of interest, with an appropriately sized buffer along the perimeter.

Additionally, further work on this visualization that would yield greater interpreta-
tion would be to include the winds in the z-direction (pointing out radially from the
center of the earth). In our visualization, only two dimensions were considered, and
including the third dimension would allow us to see movement in the vertical direction
as well. This would be especially useful when looking at areas identified by cyclonic
and anti-cyclonic motion, as this would allow for study of how the air is rising or falling.

Another direction which could be taken with the visualization created would be to
include the eigenvalues and eigenvectors that can be calculated from each tensor as
defined in [1]. Due to time restraints, we chose not to visualize the eigenvalue and
eigenvector manifolds, but this could yield interesting conclusions about the magnitude
of the spatial distortion if completed.
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4. ADDITIONAL WORK

In this section we present additional work done during the summer.

4.1. Vector and Tensor Field Transformations. The question that we wish to an-
swer with this additional work is: How do the vector and tensor fields of a storm (and
consequently its visualization) change when the storm is observed in a non-stationary
frame of reference? In other words, how would an observer moving along any given path
perceive the properties of a storm? For example, instead of looking at the vector and
tensor field visualizations of a storm as these are measure with respect to the earth, it
would be interesting to look at these the way an observer moving along with the center
of the storm would see them. Our goal was then to develop a set of transformations that
can be used to rewrite any position, velocity, and tensor measured in our stationary
frame of reference into the ones that would be observed in a difference reference frame.
Since the mathematical details of how these transformations were obtained are some-
what heavy, only the results and the consequences will be presented here (see Appendix
A for the mathematical details).

We start by restating the position, velocity, and tensor fields already introduced in
Section 2.2, but this time with a small change in our notation:

Let S, represent a stationary frame of reference in a two-dimensional space. Any
position observed in S, can be written in terms of {e;,es}, where e; = ((1)) and
ey = ((1)) form the standard unit basis of R?. Furthermore, let r = r1e1 +1req = (:;) be
any position in S, and let t € R represent a time parameter. This allows us to define

(v, 1) [ Ovi(r,t)/0er Ovi(r,t)/Deq
v(r,t) = (w(r,t)) and J(r.t) = ( Qv (r,t) /ey  Ovs(r,t)/Oes )

as a vector field and its corresponding tensor field in R? as observed in S,,.

Note that these are the same as those defined in section 2.2, just replace e; and eq
with z and y and add a time parameter to the vector and tensor fields.

Next, we’ll mathematically define the moving frame in which we wish to visualize
the storms vector and tensor fields:

Let S;(t) = S; represent a moving frame also in R?, with an origin positioned at
a(t) € R? with respect to S, and moving at a velocity a’(t) € R? with respect to S,.
Any position observed in S; is written in terms of {T(¢),N(¢)}, where T(t) and N(t)
form an orthonormal basis of R? and are given by

_al(y) n _ (0 —1
0=y No=(1 )T
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Note that a represents the position of our moving observer as a function of time (with
respect to the stationary frame), a’ represents the observer’s velocity, and T and N are
the new axes that the observes uses to measure lengths, one pointing in the direction
of motion and the other perpendicular to it.

The final mathematical object that we must define is the following rotational matrix:

e -T(t) ey -T(t
L(t) = ( el-N((tg ez-N<(t§ )

(this is the change-of-basis matrix from {e;, ez} to {T(¢),N(¢)}. Also, since it is or-
thonormal, its inverse L(t)~! is just its transpose).

The goal was then to develop a set of transformations that can be used to rewrite
any position, vector, or tensor in .S, as it is observed in S;. Here are the results:
A position r in S, as it is observed in S; is given by

r, = L(t)(r —a(t))
To go back from a position in S; to the one in S,
r=L(t)"'(r) +a(t)
A velocity v(r) in S, as observed in S; is given by
vilr) = L(s)(v(r, 1)) — a'(1))
And in order to express a velocity v(r;) in S; as it is observed in S,,
v(r,t) = L) (vi(r,) + /(1)
Finally, a tensor J(r,t) in S, as observed in S; is given by
Jy(r)) = L(t)J(r,t)L(t) "
and of course to go back we use
J(r,t) = L(t) " Jy(r,) L(t)

From these equations we can learn quite a bit:

First, as expected, the way the positions, velocity fields, and tensor fields are ex-
pressed in S, are completely changed when we move to S; (due to the change basis).
The velocity field also goes through further change, since the relative velocities due to
the observer’s motion have to be taken into account. Again, these are obvious results,
what wasn’t obvious was how the tensor field would change.

Note that since L(t) and L(t)~' do not depend in the magnitude of a’(t) (only the
direction of motion of S; is used), J;(r;) depends in the new coordinate system used
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but not in the motion of S;. In other words, the tensor field remains invariant to the
transformations (in contrast to the velocity vector field); the transformations only serve
to rewrite each tensor in terms of the new coordinate system but do not alter the ten-
sor field. This answers our original question: the way the tensor field is perceived in
non-stationary reference frames shouldn’t change. This implies that any information
obtained about the tensor field of a storm in any reference frame can be directly applied
to study the storm in any other reference frame.

The final and most important consequence of these results is that since the transfor-
mation leaves the tensor field invariant, the tensor field decompositions remain basically
the same. Section A.3 shows that indeed the distortion coefficients 74, ¥,-, and s do not
change after the transformation (the only value that changes is the angle of anisotropic
rotation €, which depends on the orientation of S;) and therefore the tensor field visu-
alizations do not change (other than being repositioned along with the positions and
the transformed velocity field). Therefore, no new visualizations have to be performed
when we wish to study a storm in other reference frames, since these remain the same.
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4.2. Canopy Change. Over the past several decades of recorded daily temperature
data at H.J. Andrews Experimental Forest, there has been an observed increase in
average annual temperature. To determine whether this increase is a result of global
climate change or a direct impact of change in the physical environment, analysis was
done using hemispherical photographs. Primarily, the intent was to determine whether
there had been a decrease in canopy cover which would allow more direct sunlight,
therefore increasing the temperature.

Hemispherical photographs were taken at each of the selected reference stands to
capture a 360° view, showing the entire canopy. To determine whether any change in
the canopy cover had occurred, photographs from 2001 and 2009 were compared using
two different methods. In the first method, the Gap Light Analyzer program was used
to calculate percent canopy openness and percent sky area. Using this approach, each
photograph was analyzed separately, and then the results were compared, with an in-
crease in canopy openness corresponding to a decrease in canopy cover (see Table 2).

TABLE 2. The percent canopy openness in both 2001 and 2009 for each
reference stand, and the inverse change in canopy cover.

Reference % Canopy % Canopy Change in
Stand ~ Openness 2001 Openness 2009 Canopy Cover
2 6.88 5.52 increase
4 7.01 9.82 decrease
5) 6.27 9.14 decrease
10 5.24 12.14 decrease
12 4.78 6.16 decrease
20 9.86 4.49 increase
26 9.20 6.91 increase
38 13.88 11.56 increase
86 38.25 28.88 increase
89 8.78 11.61 decrease

In the second approach, a colored 2009 photograph was overlayed onto a black and
white 2001 photograph at each reference stand (Figure 6). The following interpretation
of the coloration was used:

e black: canopy cover in 2001 but not 2009

e dark color: canopy cover in both 2001 and 2009
e light color: canopy cover in 2009 but not 2001
e white: canopy cover in neither 2001 nor 2009.

For each composition a pixel-count was performed to distinguish between a positive
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or negative change in canopy over time. Unfortunately, this method had extremely
high sensitivity and therefore yielded unreliable results. Nevertheless, these composi-
tions allow for simple qualitative recognition of canopy change with visual examination.

FIGURE 6. Change in canopy cover at Reference Stand 86 showing sub-
stantial growth from 2001 to 20009.

From the usable results, it is shown that while half of the reference stands experienced
an increase in canopy cover, half experienced a decrease. Since there were no extreme
changes which would dramatically increase the amount of direct sunlight and radiation,
it is reasonable to conclude that this trend in the H.J. Andrews temperature data may
reflect an ongoing change in the global climate. Because, however, these results are not
fully conclusive, further analysis is suggested which looks at individual reference stands.

2001 Hemispherical Photographs were taken by Jonathan W. Smith, Oregon State
University.

2009 Hemispherical Photographs were taken by Sherri L. Johnson, U.S. Forest Ser-
vice.
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APPENDIX A. MATH OF THE TRANSFORMATIONS

The purpose of this section is to justify the assertions made in Section 4. Section A.1
contains the justification for the position and vector field transformations, while section
A.2 presents the justification for the tensor field transformation. Finally, section A.3
proves that the coefficients of spatial distortion are invariant under the transformations.

A.1. Positions, velocity, and tensor transformations. Let the frames of reference
S, and Sy, the time parameter ¢, the unit vectors e, es, T, and N, and the position,
velocity and tensor fields r, v, and J be defined as in Section 4.1.

A.1.1. Positions. In order to rewrite a position vector r in S, as it is observed in S;,
we first change the position of r with respect to .S, to the one it would have in a frame
centered at a(t) but oriented as S, (this is done by simply subtracting a(¢) from r).
The next step is to rewrite the transformed r in terms of the new basis by multiplying
it to its corresponding rotational matrix (since both frames are orthonormal).

By defining S;(r) = r; as the position vector r as it is observed in S;, the transfor-
mation between positions from S, to S; is

e;-T(t) eq-T(t
where L(t) = o - N((t; ey N<(t;
{T (), N(t)}.

Since L(t) is an orthonormal matrix, its inverse is given by its transpose, namely,
-1 e - T(t) €1 - N(t)
LO™ =1 6. T(t) es- N
r; in S; as it is observed in S,

Sy(r)) =1 = L(t)"}(r,) + a(t)

) is the change-of-basis matrix from {ej, ez} to

). Furthermore, in order to rewrite a position vector

A.1.2. Velocity Vector Field. The velocity vector v(r,t) in S, is similarly rewritten in
S; by first calculating its relative velocity to S; at each point, by subtracting a’(t)
from v(r,t), and then reorienting the frame again using the rotational matrix L(t). By
defining Sy(v(r,t)) = vi(r;) as the velocity vector v(r,t) as observed in Sy,

vi(re) = L(s)(v(r,t)) — (1))

Similarly, In order to express a velocity vy(r;) in S; as it is observed in S,

So(vi(re)) = v(r,t) = L(t) " (vi(xe)) + (1)
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A.1.3. Velocity Gradient Tensor Field. The tensor field J(r,t) can now be rewritten as
it is observed in S; by calculating it from the new vector field Sy(v(r,t)):

St(J( t)) = Ji(re) = Vi ® vi(ry)

aT(t)T< )+ aN N( ) and '®’ is the tensor product. Nevertheless, calcu-
lating Jy(r;) can be &mphﬁed by using the following transformation:

Ji(r)) = L(t)J(r, t)L(t) "

Section A.2 presents a proof that this transformation is valid for any tensor field

J(r,t).

where V,; =

A.2. Proof of Tensor Transformation Formula. The tensor Jy(r;) in S; is given

by
oo (o) - TE) (i) - T()
) = Vi @ vilry) <3T(t)(Vt(rt)'N(t)) 8N<t><vt<rt>-N<t>>>

The claim is that Jy(r;) = L(t)J(r t)L(t)~*, which we will prove by showing the
equivalence of L(t)J(r,t)L(t)~! to Jy(r;).

The product L(¢)J(r,t)L(t)~' = LJL™! is given by

(Cormoy oo 20 ) (Guivtioes onied/ten ) (o2 e N0 )

which can be written more compactly as
_ ( T 1s ) ( 011 Oeaty ) ( T N )
S\ MM De1V2 Oeavo Ty N
matrix multiplication shows that the resulting matrix M has as components:
M; j = Lj1][L;10e1v1 + Li20e103] + Lj2[Li 10001 + Lj 20e209]
where 7,5 € {1,2}. The components can be rewritten as
M;; = Li1[Lj10av1 + Lj20eov1] 4+ Li2[Lj10e1v2 + Lj20e205)

Recalling that the directional derivative in a direction u € R? of a function
f(xay) : R2 — R is given by auf(xay) = (el : u)aelf<x7y) + (e2 : u)a€2f<:[;7y)7 M

18 rewritten as
M, ; = Li,laujvl + Li,QaujUQ = auj(Li,lvl + L; 205)

where u; = T and u; = N.

But (L; v1 + L; 2v9) = (L-v); as it can be seen by performing the matrix multiplica-
tion. Furthermore, d,,(L-a(t)); = 0 because L - a(t) is the same at all points in space,
meaning that

Mij = 0u; (L - V)i = Ou;[(L - v)i + (L - a(t))s] = Ou, (L - (v +a(t)));
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Since v¢(r;) = L-(v+a(t)), the components can now be rewritten as M; ; = 0, v;(r;); =
Oy, (V¢(r;) - uj) and the matrix M = LJL™" becomes

1 (Oro(vi(r) - T(0) Ong(velre) - T() \ _
LJL = ( vy (vi(ry) - N(t)) Ongy(vi(ry) - N > = Jy(ry)

proving our claim.

A.3. Distortion coefficients invariance. The components of a tensor J; observed in
S; are given by
(J1)ij = Lj1[Li10e1v1 4 L;20e1v2) + Lja[L; 106201 + Li 206205

Given the fact that Ny = =Ty, No = Ty, and T + T3 = 1, the expressions for the
distortion coefficients can be greatly simplified (this would have not been the case if a
non-orthonormal basis for S; were to be chosen).

The coefficient of isotropic expansion (74); observed in S, is
()t = [(Je)11 + (J)2,2]/2
= [Ty (ThJig +ToJzy) +To(ThJ12 + Todo)] /2
+ [N1(N1J11 + Nada 1) + No(NyJi o + Nodao)]/2
= [(T¢ + N}{)Ji1 + (T'Ty + NiNo)(Jog + Jio) + (T + N3)Jao]/2
= [(T? + (=T2)*) Jia + (T Ty + (=T2)(T1)) (o + Jr2) + (T3 + (T1)*) 2] /2
= [Ji1 + J22]/2
=Yd
Similarly, the coefficient of isotropic rotation (7, ); observed in S; is
(v)e = [(J)21 + (Ji)1,2) /2
= [T1(N1J11 + Nadoq) + To(N1J1 2 + Nodao)] /2
— [Ni(ThJ1q + Todoy) + No(ThJy o + T da2)] /2
= [(TyNy — ToNy)Ja 1 + (TeNy — Ty No)J1 0] /2
= [(TW(Th) — Ta(=T12)) Joq + (Ta(=T2) — T1(11)) J1,2]/2
= [Joq1 — J12)/2
=7,

A little more algebra shows that, for the coefficient of anisotropic expansion (7); ob-
served in Sy,

(J)11— (Jr)22 = (J11 — JQ,Z)(TE - T22) + 2015 (Jop + J12),

(J)12+ (Jr)a1 = (J2u + J1,2)(T12 - T22) + 2T T5(Jon — J11)
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and finally

(Joa = (J)22)* + ()12 + (J)21)?
= (T7 = T3)*((J11 — 22)? + (Jog + J22)%) + 4T7T5 ((J20 + J12)* + (S22 — J11)?)
(T4 + 2121y + Ty)((Jig — J22)” + (Jo1 + Jo2)?)
= (T2 + T)*((Ji1 — J22)* + (Joq + J22)?)

=(Ji1— J2,2) + (Ji2+ J2,1)2
implying that (vs): = 7s

Since the three distortion coefficients are the same after the transformation, the
difference between J;(r;) and J(r,t) must lie in the angle of anisotropic scaling 6. In

S,, it is given by 6 = Angle{ (ﬁ;ﬁf)}, while in S; it becomes

(Je)11 — (J1)2 2> } { ((J1 1— J2 2)(T12 — ng) + 2T T5(Jon + Jy 2)) }
0, = Angle ’ ’ = Angle ’ ’ ’ ’
' & { ((Jt)LZ + (Jt)2,1 s (J2,1 + J1,2)(T12 - T22) + 2T1T2(J2,2 - J1,1)
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