Describing Sub Community Structure in a Plant-Pollinator Network with Physical Traits

2014 Eco-Informatics Summer Institute Final Presentation August 21, 2014

Ryan DeMuse Eco-Informatics Summer Institute University of San Diego, San Diego, CA Lauren Beatty Eco-Informatics Summer Institute Macalester College, St. Paul, MN

Motivation

Research Questions

- Which physical traits can best predict module membership?
- Do the physical traits of plants and pollinators in a given module match up in a meaningful way?
- Objective: create a simplified version of the network

Data

- Interactions
 - 2011 to 2013 interactions data from Carpenter Ridge
- Plant and Insect Traits
 - Provided by Prof. Andrew Moldenke at Oregon State University
 - Included traits such as biomass, tongue length (insects), trophic guild (insects), taxon guild (insects), tube type (flowers), microhabitat (flowers), and lifeform (flowers)

Step 1: Detecting Sub Community Structure

Goal

- Maximize connections within modules
- Minimize connections outside of modules

Algorithm

- Starts with random modules
- Swaps rows and columns in search of more modular arrangements

Carpenter Ridge Network Modules

Step 2: Fitting Classification Trees

- What are classification trees?
 - Series of nodes and edges
 - Splits cases on a true/false basis
 - Predicts a class of outcome (module)
- Goal
 - Minimize residuals
 - Avoid complex trees

The Classification Tree Algorithm

- The algorithm tries to minimize impurity
 - measured by the Gini index
 - Chooses a split that minimizes the weighted average of gini(T₁) and gini(T₂)

Some trees made by single covariates...

Placed 74% of species correctly.

Placed 47% of species correctly

Correctly placed 64% of insect species

With multiple covariates, we could improve the trees

Correctly placed 84% of plant species

Matching plant and pollinator traits by module

- Very few noticeable patterns
- Module 6
 - relatively small plants
 - long-tongued beeflies, conopid flies, and megachilid bees of biomass
- Module 2
 - medium sized flowers with bowl-shaped tubes
 - poorly defined set of insects

Conclusions

- Multiple covariates vs. Single covariate
 - Multiple covariates → generally improved results
 - smaller tree size
 - higher percentage
- Are traits a good predictor of module membership?

Acknowledgments

Julia Jones
Tom Dietterich
Eddie Helderop
EISI
NSF

Questions?

