Juvenile Coho Salmonid Energy Expenditure in a Turbulent Flow Field

EISI REU Summer 2014 Final Presentation

Skyler Doak
B.S. Environmental Science

August 21, 2014

Hydraulic Variables

- TKE

TKE $\left(\mathrm{m}^{2} / \mathrm{s}^{2}\right)$	TKE $=0.5\left(\sigma_{\mathrm{x}}{ }^{2}+\sigma_{\mathrm{y}}{ }^{2}+\sigma_{\mathrm{z}}{ }^{2}\right)$ σ is the standard deviation of the velocity in a given direction
Strain $\left(\mathrm{s}^{-1}\right)$	$=\sqrt{\left(\frac{u_{i+1}-u_{i}}{x_{i+1}-x_{i}}+\frac{u_{i}-u_{i-1}}{x_{i}-x_{i-1}}\right)^{2}+\left(\frac{v_{i+1}-v_{i}}{y_{i+1}-y_{i}}+\frac{v_{i}-v_{i-1}}{y_{i}-y_{i-1}}\right)^{2}+\left(\frac{w_{i+1}-w_{i}}{z_{i+1}-z_{i}}+\frac{w_{i}-w_{i-1}}{z_{i}-z_{i-1}}\right)}$

- Strain

Energy Expenditure Equations

Metabolism Total (Joules/Day)	$=$ Standard + Activity	InSTREAM
Standard Metabolism (Joules/Day)	$=\left(30 * \mathrm{~W}^{0.784}\right) * \mathrm{e}^{(.0693 *}{ }^{(0)}$	InSTREAM
Active Metabolism (Joules/Day)	$=(\text { feedTime } / 24)^{*}\left[e^{\left(.03^{*} \mathrm{~V}\right)}-1\right] *$ Standard	InSTREAM
Feed Time (hours)	$=$ dayLength +2	InSTREAM
Weight (grams)	$=.0134^{*} \mathrm{~L}^{2.96}$	InSTREAM Van Winkle et al. (1996)

$L=$ Fish Length (cm) $\quad W=$ Fish weight (g) $\quad V=$ Swimming Speed (m / s)

The Standard Methodology

- Use a current meter to measure the velocity of the water at $2 / 3$ the depth of the thalweg
- Single point measurement
- Assumes the fish swims at the speed of the flow

The Effect of TKE on Energy Expenditure For Fish of Different Sizes

Fish Size Range (cm)	Equation Type	Slope	Intercept	R^{2}
$6.2-7.0$	Exponential	26.00	136.72	.41
$7.0-8.0$	Exponential	41.27	196.95	.61
$8.0-9.0$	Exponential	31.93	287.45	.74
$9.0-10.0$	Exponential	27.38	353.40	.68

Fish DI - 8.74 cm

Fish DN - 8.71 cm

The Influence of Strain On Energy Expenditure

Fish Length Range $7.0-8.0 \mathrm{~cm}$

Correlation of Hydraulic Variables: Effect of Velocity on TKE

Vector Method of Modeling Swimming Speed Compared to the Standard Method of Measuring Swimming Speed

Assumes that fish swim in a line from point to point
Takes into account fish motion

Results

- Fish of different sizes do not discriminate habitat based on TKE values
- Larger fish expend more energy for a given TKE value
- Fish may exhibit a threshold TKE
- Using the standard method for swimming speed the relationship is predictable
- Standard method over-estimates the TRUE fish swimming speed

Acknowledgments

- Desirée Tullos, PhD, PE, D.WRE

Associate Professor, Water Resources Engineering
Desiree.tullos@oregonstate.edu

- Cara Walter

Faculty Research Assistant
Department of Biological and Ecological Engineering
walterc@onid.oregonstate.edu

- Jorge M Ramirez

Profesor Asociado,
Departamento de Matemáticas,
Universidad Nacional de Colombia

- Jason Dunham, Supervisory Aquatic Ecologist
U.S. Geological Survey

Forest and Rangeland Ecosystem Science Center
jdunham@usgs.gov

- Julia Jones

EISI REU Mentor

- Alan Stanton

