Juvenile Coho Salmonid Energy Expenditure in a Turbulent Flow Field

EISI REU Summer 2014 Final Presentation

Skyler Doak B.S. Environmental Science August 21, 2014

Hydraulic Variables

• TKE

TKE (m ² /s ²)	TKE = 0.5 $(\sigma_x^2 + \sigma_y^2 + \sigma_z^2)$ σ is the standard deviation of the velocity in a given direction		
Strain (s ⁻¹)	$=\sqrt{\left(\frac{u_{i+1}-u_i}{x_{i+1}-x_i}+\frac{u_i-u_{i-1}}{x_i-x_{i-1}}\right)^2+\left(\frac{v_{i+1}-v_i}{y_{i+1}-y_i}+\frac{v_i-v_{i-1}}{y_i-y_{i-1}}\right)^2+\left(\frac{w_{i+1}-w_i}{z_{i+1}-z_i}+\frac{w_i-w_{i-1}}{z_i-z_{i-1}}\right)^2}$		

• Strain

Energy Expenditure Equations

Metabolism	= Standard + Activity	InSTREAM
Total		
(Joules/Day)		
Standard	$=(30*W^{0.784})*e^{(.0693*T)}$	InSTREAM
Metabolism		
(Joules/Day)		
Active	= (feedTime/24)*[$e^{(.03*V)}$ -1]*Standard	InSTREAM
Metabolism		
(Joules/Day)		
Feed Time	= dayLength $+ 2$	InSTREAM
(hours)		
Weight	$= .0134* L^{2.96}$	InSTREAM
(grams)		Van Winkle
		et al. (1996)

L = Fish Length (cm) W = Fish weight (g) V = Swimming Speed (m/s)

The Standard Methodology

- Use a current meter to measure the velocity of the water at 2/3 the depth of the thalweg
- Single point
- measurement
- Assumes the fish
 swims at the speed of
 the flow

Photo from Environmental Science LEC

The Effect of TKE on Energy Expenditure For Fish of Different Sizes

Fish Size Range (cm)	Equation Type	Slope	Intercept	R ²
6.2 - 7.0	Exponential	26.00	136.72	.41
7.0 - 8.0	Exponential	41.27	196.95	.61
8.0 - 9.0	Exponential	31.93	287.45	.74
9.0 - 10.0	Exponential	27.38	353.40	.68

Fish DI - 8.74 cm

The Influence of Strain On Energy Expenditure

Correlation of Hydraulic Variables: Effect of Velocity on TKE

Stream Velocity "Standard Method" (m/s)

Results

- Fish of different sizes do not discriminate habitat based on TKE values
- Larger fish expend more energy for a given TKE value
- Fish may exhibit a threshold TKE
- Using the standard method for swimming speed the relationship is predictable
- Standard method over-estimates the TRUE fish swimming speed

Acknowledgments

- Desirée Tullos, PhD, PE, D.WRE Associate Professor, Water Resources Engineering Desiree.tullos@oregonstate.edu
- Cara Walter

 Faculty Research Assistant
 Department of Biological and Ecological Engineering
 walterc@onid.oregonstate.edu
- Jorge M Ramirez
 Profesor Asociado,
 Departamento de Matemáticas,
 Universidad Nacional de Colombia
- Jason Dunham, Supervisory Aquatic Ecologist

 U.S. Geological Survey
 Forest and Rangeland Ecosystem Science Center
 jdunham@usgs.gov
- Julia Jones
 EISI REU Mentor
- Alan Stanton