
 
 
 
 
 
 
 
 
 
 

Predicting Plant-Pollinator Interactions in Montane Meadows Using a 
Multinomial Model  

 
Ivan Pyzow 

University of Chicago 
 

Kaitlin Horan 
Middlebury College 

 
With support from the Eco-Informatics Summer Institute REU, Oregon State University 

August 21, 2014 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

Abstract 
 
We seek to understand the relationship between flower frequency and observed plant-pollinator 
interactions in the Western Cascade Range. We create our own probabilistic model to represent the 
process of flower selection by pollinators using a multinomial distribution. Using Pearson’s chi-
squared test for goodness-of-fit, we demonstrate that the pollinators in the study do not exhibit flower 
selection strategies that are based solely on relative flower abundance (i.e. strictly frequency-
dependent flower selection strategies).  We generate our own optimized flower preference list for 
each pollinator, and show that though they are still unreliable in predicting pollinator interactions in 
most cases, they have more predictive strength than uniform flower preference list that represents a 
strictly frequency-dependent flower selection strategy. 
 
Definitions 
 
plot: a 3m by 3m section of a meadow marked for data collection. Each meadow is represented by 
ten plots.  
meadow: a particular type of ecosystem whose vegetation consists mostly of grass and wildflowers. 
Different meadows from the data set vary in size and specific sorts of terrain (soil moisture, soil type, 
grassy or rocky etc.). 
(meadow) complex: a set of several meadows grouped together by location. Five different 
complexes appear in our data.  
watch: a subset of the data, in which each meadow in each complex is surveyed. Between five and 
seven watches are performed incrementally throughout a growing season for each year.  
meadow-watch-year: a collection of all the data from one meadow, on one watch, in one year 
watch-year: a collection of all the data from one watch in one year 
flower selection strategy: the exhibited behavior of a pollinator with regard to flower interactions 
strictly frequency-dependent: based only on the relative abundances of flowers, used to describe 
flower selection strategies  
pollinator’s preference (for a flower): a value from 0 to 1 that quantifies the level of interactions 
with a flower, independent of the flower’s relative abundance.  In other words, we use preference to 
refer to all factors that influence flower selection besides frequency-dependence, which might be the 
nectar resource of the flower or an innate bias by the pollinator.  
pollinator’s preference list: a list of a pollinator’s preferences for different flowers, scaled so that 
the preference list sums to 1. The list is comprised of all potential flowers for a single pollinator.  
flower’s desirability (to a pollinator): refers to the same value as a pollinator’s preference, with the 
semantic difference being that pollinators have preferences, while flowers have desirability.   
 

Introduction 
 
The study of pollination networks has become increasingly important in response to growing 
evidence of pollinator declines. Understanding these networks is critical to fostering management of 
pollinators and the ecosystem services they provide to agriculture. Some evidence indicates that 
pollinators have distinct preferences for particular plant species; for example, native bees in Yolo 



County, California, prefer native plants to exotic plants (Morandin & Kremen 2013). It has also been 
suggested that pollinator preferences influence the evolution of floral traits (Gong & Huang 2011). 
Furthermore, understanding pollinator networks is important in predicting systems’ responses to 
climate change. It is suggested that such mutualistic systems might be especially damaged by 
“phenological desynchronization” (Benadi, Hovestadt, Poethke & Blüthgen 2014). In this case, 
understanding pollinator preferences could once again be important in attempting to manage such 
environmental transformations.  
 
Floral rewards (pollen and/or nectar) are the driving force behind pollinator visitation of flowers. It 
seems logical that pollinators might select flowers with the greatest rewards, or those with floral 
traits indicative of greater rewards (Sutherland & Vickery 1993). Pollinator preferences have also 
been identified previously with respect to radish populations. Radishes with white flowers were 
shown to be less desirable by several major pollinator taxa (Lee & Snow 1998). This, as well as first-
hand experiences observing meadow interactions, contribute to the hypothesis that pollinators in 
montane meadows also express preferences for specific flowers.  
 
Our study addresses the following two questions:  
1) To what extent do the pollinators exhibit flower selection strategies that are strictly 
frequency-dependent? 
2) For each pollinator, how accurately does our optimized preference list predict the observed 
interactions?  
 
We anticipate that pollinators have flower selection strategies that are not strictly frequency-
dependent and predict that our general preference list for each pollinator will accurately predict 
observed interactions.  
 
To answer Question 1), we apply Pearson’s chi-squared test for goodness-of-fit between the observed 
interactions and the interactions predicted by a strictly frequency-dependent flower selection 
strategy.  To answer Question 2), we first generate a flower preference list for each pollinator using 
our multinomial likelihood model that that simulates pollinator interactions in the meadows.  We 
then use this preference list to predict interactions, and then compare them to observed interactions 
by similarly applying Pearson’s chi-squared test for goodness-of-fit.     
 
Study Site 
 
The data used in this paper were recorded in montane meadows in the western Cascades Range in 
Oregon. Data were collected between the years 2011 and 2013, during which time five meadow 
complexes were surveyed. Though we use data from all five meadow complexes, not every complex 
was surveyed each year. In 2011 and 2012, five complexes were surveyed: Carpenter, Frissell, Cone, 
Bunchgrass and Lookout. In 2013, complexes surveyed included Carpenter, Frissell and Lookout. 
 
Ten 3m by 3m plots were constructed for each meadow and systematically placed to best represent 
the entire meadow. Data were collected in points referred to as watches, which occurred 
incrementally during the growing season. There were seven watches recorded in 2011, five in 2012, 
and seven in 2013. 
 
The data contain 63,668 interactions between 96 plant species and 436 pollinator species. Flower 
abundance data includes flower counts of 130 different species of plants.  



 
Omitted data include entries that failed to identify either a pollinator or plant species. There were also 
several concerns with data that appeared to have column entries swapped; these were also excluded 
from our analysis. 
 
Pollinators documented include bumblebees, honeybees, solitary bees, butterflies, moths, 
hummingbirds, bee flies, beetles, wasps, syrphids, hornets, etc. The ten most commonly recorded 
insects throughout all three years of data are presented in the table below. The insect with an asterisk 
are those considered in this analysis.  
 
Figure 1: Number of sightings (i.e. number of times an insect is recorded in the data set, not total number of 
interactions. This avoids the problem of weighting numbers of social bees, or insects which often visit multiple 
flowers in a vicinity at the same time, over those that do not) of the ten most frequently observed pollinator species 
from 2011 to 2011 in montane meadows in the western Cascades. Asterisks indicate insects which are closely 
considered in the following analysis.  
 

Pollinator 
 
Description 

Number of Sightings (Note this is different from the total number of 
interactions as the same pollinator might have had multiple interactions) 

Apis mellifera* Social bee 4101 

Bombus mixtus* Social bee 2835 

Epicauta 
puncticollis 

Beetle 1534 

Bombus bifarius Social bee 945 

Muscoid genus 3 Fly 731 

Bombylius major* Beefly 677 

Eristalis hirtus* Syrphid 572 

Coccinella 
septempunctata 

Ladybird 459 

Bombus vosnesenskii Social bee 370 

Chrysotoxum 
fasciatum 

Syrphid  358 

 
 
Methods 
 
Field Methods 
As noted above, meadows were visited between five and seven times for each year of data collection, 
between the months of May and August. One plot watch was performed for each plot in each 
meadow per visit. 
 



A plot watch begins with a flower survey, during which an observer identified all flowers in a given 
plot and estimated their abundance (unknown flowers were sampled and brought back for 
identification). The observer also recorded information about the weather, temperature and time of 
day. This was followed by a sampling period of 15 minutes. During these 15 minutes, the observer 
recorded each pollinator-plant interaction he or she observed. An interaction was considered any 
contact between the reproductive parts of the flower and a given pollinator. Relatively common 
species of insects such as Apis mellifera, Bombus mixtus, Bombus bifarius and Bombus vosnesenskii 
were identified by the observer in the field. Other pollinators were captured with a net and identified 
at a later date by Andy Moldenke (Faculty Botany and Plant Pathology, Oregon State University). 
 
While recording flower visitation is a valuable tool in attempting to identify relationships between 
plants and pollinators, we note that this method might not be entirely representative of the true 
process of pollination. It is possible that some “pollinators” are merely visiting flowers, but not 
pollinating them (King, C , Ballantyne, GA & Willmer, PG 2013). The limitations of the observer 
also prevent any data collected from being a totally accurate depiction of a plot. Thus, though we 
work with an imperfect data set, we hope to glean some insight into the true dynamic network of 
plant-pollinator interactions.  
 
Statistical Methods 
 
In order to model the behavior of a pollinator in the meadow, we created a multinomial function, L, 
that gives the likelihood of a particular combination of flower visitations by a given pollinator. 
 
Equation 1: Likelihood function.  

 
 



This function L takes three parameters: 1) the pollinator’s preference list for flower species 2) the 
abundance of the flower species, and 3) the number of interactions by the pollinator on each flower 
species. When we maximize L, however, we will fix the second two parameters according to our 
observed data for interactions and flower abundances. This allows us to solve for the preference list 
(the first parameter).  
 
The model is based on the assumption that each observed interaction between a pollinator and a 
flower is an independent event with a probability that is directly proportional to 1) the relative 
abundance of the flower and 2) the pollinator’s preference for the flower (i.e., the flower’s 
desirability value).  This probability is expressed by the expression \lambda_{ij}.   For example, in a 
meadow with equal abundances of Gilia capitata and Eriophylum lanatum, if we observed twice as 
many interactions on Gilia as on Eriophylum for the pollinator Apis mellifera, we would assign Gilia 
a desirability value of .67 and Eriophylum a desirability value of .33 (for the pollinator Apis 
mellifera). (The problem becomes more complex below, when we consider 138 flowers instead of 
two.)      
 
In reality, it is possible that each interaction is not an independent event.  For instance, we know that 
some species of pollinators tend to visit only one species in a day according to their selected “search 
image”, which would imply that each interaction is not independent.  However, in a large sample of 
insects of the same species, we could imagine that that aggregation of all the interactions dictated by 
individual search images would produce data that resembles data generated by interactions with 
independent probabilities.  
 
The coefficient Cj in L is the multinomial coefficient that takes into consideration the fact that we do 
not consider the order of interactions for a given meadow-watch-year.    
 
When generating the likelihood for a given pollinator’s preference list using our function L, we 
consider every meadow-watch-year from the three years of data for which the pollinator had more 
than five sightings, and weight each remaining meadow-watch-year equally.   
 
For our analysis, we selected four of the most common pollinators (belonging to different genera): 
Apis mellifera, Bombus mixtus, Bombylius major, and Eristalis hirtus. Different genera were selected 
because of the different social habits attributed to the separate genera. Apis mellifera is a social bee 
that lives in a colony. It has been asserted that Apis mellifera learns to associate flower traits with a 
nectar reward in order to increase foraging productivity (Honeybee Genome Sequencing Consortium 
2006). The genus Bombus, similarly, is distinguished for the social behavior of its species (Dukas & 
Real 1991). Although Bombylius (bee flies) are not social, studies have suggested that bee flies 
exhibit “short-term learning paths”; once they have visited a certain flower, they are likely to visit 
another flower of the same species (Boesi, Polidori & Andrietti 2008). Finally, the syrphid Eristalis 
hirtus, like Bombylius major, is a solitary insect.  
 
Predicting Interactions 
 
We predict interactions for each watch-year by maximizing L after inputting the given preferences 
list and the flower abundances.  
Next, we generate our own preference lists for each pollinator based on the data.  In order to 
calculate the most likely set of preferences for a given pollinator, we fix the flower abundance data 



and interaction data, and maximize the likelihood function L for the preference list.  We achieved this 
by minimizing the negative log likelihood function (Figure 20) using the R function “optim.” 
 
The Five Tests 
 
We ran the following five tests to determine the predictive strength of the two preference lists in 
consideration: the uniform preference list and the optimized preference list.  For the first four tests, 
we used Pearson’s chi-squared test for goodness-of-fit to compare the expected (predicted) 
interactions to the observed interactions.  For the fifth test, we used a likelihood ratio test to compare 
the respective likelihoods of the two preference lists directly.  
 
Test 1:  Pearson’s chi-squared test for goodness-of-fit for each watch-year for each insect, comparing 
interactions predicted by a uniform preference list (null model) to observed interactions. 
 
Test 2:  Pearson’s chi-squared test for goodness-of-fit for all watch-years for each insect, comparing 
interactions predicted by a uniform preference list (null model) to observed interactions. 
 
Test 3:  Pearson’s chi-squared test for goodness-of-fit for each watch-year for each insect, comparing 
interactions predicted by our optimized preference list (null model) to observed interactions. 
 
Test 4:  Pearson’s chi-squared test for goodness-of-fit for all watch-years for each insect, comparing 
interactions predicted by our optimized preference list (null model) to observed interactions. 
 
Test 5: The likelihood ratio test to determine, for each pollinator, whether a strictly frequency-
dependent flower selection strategy (from Question 1) is more accurate than a preference-dependent 
strategy (from Question 2) in describing the interaction behavior exhibited by the pollinators in this 
study.  Our null hypothesis is that of Question 1), and the maximum likelihood for our alternative 
hypothesis is the result of the likelihood function using the preferences generated in Question 2).   
  
Results 
 
Regarding Question 1), we observe that under the null hypothesis that each pollinator exhibits a 
strictly frequency-dependent flower selection strategy, Pearson’s chi-squared test for goodness-of-fit 
returns extremely low p-values for each watch-year.   
 
Regarding Question 2), under the null hypothesis that each pollinator exhibits a flower selection 
strategy that is predicted by our generalized preference list for that pollinator, Pearson’s chi-squared 
test for goodness-of-fit returns extremely low p-values for most watch-years for Apis mellifera, 
Bombylius major, and Bombus mixtus.  For Eristalis hirtus, the test returned p-values above 0.05 for 
6 of the 10 watch-years that we examined.  We ran the test for the goodness-of-fit for all ten watch-
years together due to the promising nature of the p-values of the tests on individual watch-years for 
Eristalis hirtus.  However, this aggregate test for Eristalis hirtus returned an extremely low p-value. 
 
Comparing both hypotheses using the likelihood ratio test for each pollinator, we see that we obtain 
low p-values.   
 



 

Presented below in figure 2 we visualize the flower preference list generated by our model for Apis 
mellifera. The model suggests that Agoseris aurantiaca is much more desirable than any other 
flower.  
 
Figure 2: Flower preference list graph for Apis mellifera. Flowers presented are the top ten most preferable, as 
outputted from our maximization of the likelihood function.  

 
The flower abundance graph, figure 3, for Apis mellifera shows huge variability in flower 
populations from year to year. Perideridia gairdneri and Luina stricta were never observed in 
significant numbers until 2013. Rudbeckia occidentalis and Solidago candensis demonstrate a 
similar, though less extreme, trend.  



 

Figure 3: We present the abundances of the top ten most preferable flowers for Apis mellifera. Shading denotes 
years 2011, 2012 and 2013 respectively (as shading goes from lightest to darkest). Flowers are listed left to right, 
and top to bottom from most desirable to less desirable. Here we would expect to see three peaks in the graph, 
representing the height of the season in 2011, 2012 and 2013. Graphs which do not depict this trend suggest that the 
flower was not in bloom some years, or that its abundance was significantly lower for some reason.  

 
Flower Abundances over Time for Most Preferred Flowers of Apis Mellifera  

 

 
 
In figures 4 and 5, we show the the flower preference list generated by our model for Eristalis hirtus. 
The desirabilites here are more evenly distributed than the desirabilites seen for Apis mellifera. 
Furthermore, the abundances presented show more consistent patterns from year to year.  
 
Figure 4: Flower preference list graph for Eristalis hirtus. Flowers presented are the top ten most preferable, as 
outputted from our maximization of the likelihood function.  



 
 



 

Figure 5: Below are the abundances of the top ten most preferable flowers for Eristalis hirtus. Shading denotes 
years 2011, 2012 and 2013 respectively (as shading goes from lightest to darkest). Flowers are listed left to right, 
and top to bottom from most desirable to less desirable.  
 

Flower Abundances over Time for Most Preferred Flowers of Eristalis hirtus 
 
 

 
 



 

Figure 5.5: Below are the observed interactions (orange) and the interactions predicted by the optimized 
preferences list (blue) for Eristalis hirtus in Watch 8.  While the chi-square test for goodness-of-fit rejects this 
optimized preferences list as a good predictor of interactions, we can see that the predictions are relatively close to 
the observed values.  

 

Discussion 
 
Interpretation of Results 
The low p-values for our tests on all four pollinators for Question 1) suggest that we reject the null 
hypothesis that pollinators in the study exhibit strictly frequency-dependent flower selection 
strategies. In other words, flower species frequency is not the only factor that determines a 
pollinator’s selection strategy, though it could be one factor among many.  It could be the case that 
pollinators are influenced by an innate, fixed preference list that is independent of external factors, or 
instead a fluid preference list that is determined by unknown factors.   
 
The low p-values for our tests for Apis mellifera, Bombylius major, and Bombus mixtus for Question 
2) (Figure 5.6 in the Appendix) suggest that we reject the null hypothesis that the interactions for 
these pollinators can be predicted accurately from their generalized preference list generated by our 
model.   
 
The higher p-values for Eristalis hirtus (Figure 5.6 in the Appendix) suggest that the preference list 
for this pollinator generated by our model has predictive strength.  It is interesting to note that the 
watch-years with good fits occur primarily in 2012 and 2013.  It could be that the data in 2012 and 
2013 was more consistent. Or, it could be the case that our preference list is a good predictor of a 
typical year for Eristalis hirtus, and 2011 represented an unusual year in the flower selection 
strategies of this species, either due to climate considerations or due to an unknown phenomenon in 
the local population of Eristalis hirtus. Furthermore, we note that almost all of the top ten most 



preferred flowers for Eristalis hirtus are bowl-shaped, perhaps implying a general preference of this 
type of syrphid.  
 

Areas for Improvement  
 
This study could be improved in several ways. Though data used span three years, having a larger 
data set would make results of the analysis more accurate. It would hopefully then be possible to 
analyze preferences for pollinators whose current number of recorded interactions are relatively low.  
 
Consistency for flower counting techniques between years is also an important element of the study 
to preserve. There are some discrepancies in methods of counting both flowers and number of 
interactions between years. Resolving these would result in more accurate data and a superior 
analysis.  
 
  
Conclusion 
 
We conclude from the data that pollinators do not express flower preferences which are based solely 
on flower frequency, i.e. that this data refutes the theory of strictly frequency-dependent foraging.  
 
This result is especially interesting because of its implications for further research. If certain flowers 
are more desirable than others, what causes the desirability of a flower to be greater? Do certain 
flower traits influence desirability more than others? Furthermore, do different guilds of pollinators 
express similar preferences for flowers? Our analysis includes information about a honeybee, 
bumblebee, beefly and syrphid. If we were able to obtain preference lists for Bombus mixtus, 
Bombylius major, and Apis mellifera that had predictive strength, would we see a contrast in the 
preferred flowers? 
 
We also conclude that our preference list for Eristalis hirtus generated by our model is a potential 
predictive tool for its flower selection strategy, though we cannot show rigorously that the list is a 
good fit.   
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Figures and Tables 
 
Figure 5.6: Results of chi-squared tests under the null hypothesis that our generalized preference list 
for each pollinator correctly predicts observed interactions  
 

 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
Figure 6: Flower preference list graph for Bombus mixtus. Flowers presented are the top ten most preferable, as 
outputted from our maximization of the likelihood function.  
 



 
 
Figure 7: Flower preference list graph for Bombylius major. Flowers presented are the top ten most preferable, as 
outputted from our maximization of the likelihood function. 
 
 

 

 

 

 

 

 

 

 



Appendix  

 

Here is the R Code used for this study.   

#################### 

pollinator_preferences_R_code.txt 

by Kaitlin Horan and Ivan Pyzow 

8/18/14 

 

 

#################### 

## INITIALIZATION ## 

#################### 

 

setwd("/Users/Boss/Desktop/EISI_TESTING") 

 

intData <- read.csv("interactions_v4.csv", stringsAsFactors = FALSE) 

flowersData <- read.csv("flowers_v6.csv", stringsAsFactors = FALSE) 

 

 

#################### 

## DATABASE STUFF ## 

#################### 

 

intData2 <- intData[order(intData$year, intData$DATE, intData$COMPLEX, intData$MEADOW), 
] 

 

#gets rid of flagged rows 

intData3 <- intData2[intData2$COMPLEX != "" & is.na(intData2$FLAGGED), ] 

flowersData <- flowersData[is.na(flowersData$FLAGGED),] 



 

#adds a meadow-watch-year column 

intData3$meadowWatchYear <- paste(intData3$WATCH, intData3$MEADOW, intData3$year) 

flowersData$meadowWatchYear <- paste(flowersData$WATCH, flowersData$MEADOW, 
flowersData$YEAR) 

 

#adds a watch-year column 

intData3$watchYear <- paste(intData3$year,intData3$WATCH) 

flowersData$watchYear <- paste(flowersData$YEAR, flowersData$WATCH) 

 

dwInt <- c() 

z <- 1 

for(i in 1:nrow(intData3)){ 

  if(!(intData3[i, 'meadowWatchYear'] %in% dwInt)){ 

    dwInt[z] <- intData3[i, 'meadowWatchYear'] 

    z <- z + 1 

    } 

} 

 

dwPlant <- c() 

q <- 1 

for(k in 1:nrow(flowersData)){ 

  if(!(flowersData[k, 'meadowWatchYear'] %in% dwPlant)){ 

    dwPlant[q] <- flowersData[k, 'meadowWatchYear'] 

    q <- q + 1 

  } 

} 

 

#Final list of meadow-watch-years that are present in both flower survey and interactions file 



dwFINAL <- intersect(dwPlant, dwInt) 

 

#generate list of flowers using flowersData 

flowerList <- c() 

y <- 1 

for(p in 1:nrow(flowersData)){ 

  if(!(flowersData[p, 'SPP_NAME'] %in% flowerList)){ 

    flowerList[y] <- flowersData[p, 'SPP_NAME'] 

    y <- y + 1 

  } 

} 

 

newFlowers <- sort(flowerList) 

flowerList2 <- newFlowers[-c(1)] 

#flowerList2 <- flowerList1[-c(1)] 

#for me, I don't need to remove two from the beginning, so I changed it. 

 

 

############################################### 

## MAKING INTERACTION AND ABUNDANCE MATRICES ## 

############################################### 

 

selectMeadowWatchYearList <- function(pollID, INTDATA, FLOWDATA){ 

  intDataSelected <- INTDATA[INTDATA$VISSP_CODE == pollID, ] 

  mdw <<- intersect(unique(intDataSelected$meadowWatchYear), 
unique(FLOWDATA$meadowWatchYear)) 

  return(mdw) 

} 

   



 

selectWatchYearList <- function(pollID, INTDATA, FLOWDATA){ 

  intDataSelected <- INTDATA[INTDATA$VISSP_CODE == pollID, ] 

  wy <<- intersect(unique(intDataSelected$watchYear), unique(FLOWDATA$watchYear)) 

  return(sort(wy)) 

} 

 

 

makeAdjustedIntMatrix <- function(pollID, INTDATA, FLOWDATA, cutoff=0, cutoff2=5){ 

  intDataSelected <- INTDATA[INTDATA$VISSP_CODE == pollID, ] 

  mdw <- selectMeadowWatchYearList(pollID, INTDATA, FLOWDATA) 

   

  #this part eliminates the meadowWatchYears for which their are not enough rows of interactions 

  for (m in mdw) { 

    rowCount <- nrow(intDataSelected[intDataSelected$meadowWatchYear==m,]); 

    if (rowCount < cutoff2) {mdw <- mdw[which(mdw!=m)]} 

  } 

     

  intMatrix <- matrix(data = 0, nrow = length(mdw), ncol = length(flowerList2)) 

  for(i in 1:nrow(intDataSelected)){ 

      intIndex <- match(intDataSelected[i, 'meadowWatchYear'], mdw) 

      flowIndex <- match(intDataSelected[i, 'PLTSP_NAME'], flowerList2) 

      intMatrix[intIndex, flowIndex] <- intMatrix[intIndex, flowIndex] + intDataSelected[i, 'NO_INT'] 

    } 

  highRows <- rowSums(intMatrix) >= cutoff 

  finalIntMatrix <- intMatrix[highRows, ] 

   

 

  flowMatrix <- matrix(data = 0, nrow = length(mdw), ncol = length(flowerList2)) 



  for(j in 1:nrow(FLOWDATA)){ 

    

    flowIndex <- match(FLOWDATA[j, 'SPP_NAME'], flowerList2) 

    meadowWatchIndex <- match(FLOWDATA[j, 'meadowWatchYear'], mdw) 

    flowMatrix[meadowWatchIndex, flowIndex] <- flowMatrix[meadowWatchIndex, flowIndex] + 
as.numeric(FLOWDATA[j, 'TOT_FLW']) 

    } 

  finalFlowMatrix <- flowMatrix[highRows, ] 

     

  final <- list() 

  final[[1]] <- finalIntMatrix 

  final[[2]] <- finalFlowMatrix 

  final[[3]] <- mdw 

   

  return(final) 

} 

 

makeWatchYearMatrix <- function(pollID, INTDATA, FLOWDATA, cutoff2=5){ 

  intDataSelected <- INTDATA[INTDATA$VISSP_CODE == pollID, ] 

  mdw <- selectMeadowWatchYearList(pollID, INTDATA, FLOWDATA) 

  wy  <- selectWatchYearList(pollID, INTDATA, FLOWDATA) 

   

  #this part eliminates the meadowWatchYears for which their are not enough rows of interactions 

  for (m in mdw) { 

    rowCount <- nrow(intDataSelected[intDataSelected$meadowWatchYear==m,]); 

    if (rowCount < cutoff2) {mdw <- mdw[which(mdw!=m)]} 

  } 

     

  intDataSelected2 <- intDataSelected[which (intDataSelected$meadowWatchYear %in% mdw), ] 



   

   

  intMatrix <- matrix(data = 0, nrow = length(wy), ncol = length(flowerList2)) 

  for(i in 1:nrow(intDataSelected2)){ 

      intIndex <- match(intDataSelected2[i, 'watchYear'], wy) 

      flowIndex <- match(intDataSelected2[i, 'PLTSP_NAME'], flowerList2) 

      intMatrix[intIndex, flowIndex] <- intMatrix[intIndex, flowIndex] + intDataSelected2[i, 
'NO_INT'] 

    } 

 

  finalIntMatrix <- intMatrix[which(rowSums(intMatrix)!=0),] 

   

  flowDataSelected <- FLOWDATA[which (FLOWDATA$meadowWatchYear %in% mdw), ] 

    

  flowMatrix <- matrix(data = 0, nrow = length(wy), ncol = length(flowerList2)) 

  for(j in 1:nrow(flowDataSelected)){ 

    

    flowIndex <- match(flowDataSelected[j, 'SPP_NAME'], flowerList2) 

    watchyearIndex <- match(flowDataSelected[j, 'watchYear'], wy) 

    flowMatrix[watchyearIndex, flowIndex] <- flowMatrix[watchyearIndex, flowIndex] + 
as.numeric(flowDataSelected[j, 'TOT_FLW']) 

    } 

   

  finalFlowMatrix <- flowMatrix[which(rowSums(intMatrix)!=0),] 

   

  finalwy <- wy[which(rowSums(intMatrix)!=0)] 

   

  final <- list() 

  final[[1]] <- finalIntMatrix 

  final[[2]] <- finalFlowMatrix 



  final[[3]] <- finalwy 

   

  return(final) 

} 

 

 

############## 

## MODELING ## 

############## 

 

#modified logarithm function to prevent NaN 

newlog <- function (x) ifelse(x==0,0,log(x)) 

 

#our negative log likelihood function 

lik7 <- function (desList, xInt, xAbu)  

{ 

  result <- 0; 

  for (j in (1:dim(xInt)[1]) )  

  { result = result + sum (xInt[j,] * ( desList + newlog(xAbu[j,]) - newlog ( sum(exp(desList) * 
xAbu[j,]) ) ) )    

  } 

  return(-result)  

} 

 

 

createPredictedInts2 <- function (desList, xInt, xAbu) { 

 step1 <- t(t(xAbu)*desList) 

 step2 <- step1/rowSums(step1) 

 step3 <- rowSums(xInt)*step2 



 return(step3)  

 }  

 

 

############################### 

## THE CHI-SQUARED FUNCTIONS ## 

############################### 

 

chibaby <- function (optimized, matrix, i) { 

  desAndAbu <- (exp(optimized$par)) * matrix[[2]][i,]; 

  observed <- matrix[[1]][i,][which(matrix[[2]][i,] != 0)]; 

  probs <- normalize(desAndAbu[which(matrix[[2]][i,] != 0)]); 

  return(chisq.test(observed, p = probs)) 

} 

 

chiBig <- function (optimized, matrix) { 

  numWY <- length(matrix[[3]]) 

  result <- matrix(,numWY,2) 

  result[,1] <- matrix[[3]] 

  for (i in 1:numWY) { 

    run <- chibaby(optimized, matrix, i) 

    result[i,2] <- run$p.value  

  } 

  result[,2] <- round(as.numeric(result[,2]), digits =3) 

  return(result) 

} 

 

 

chiAdult2 <- function (optimized, matrix) { 



  numWY <- length(matrix[[3]]); 

  allexpected <- c() 

  allobserved <- c() 

  pred <- createPredictedInts2(normalize(exp(optimized$par)), matrix[[1]], matrix[[2]]) 

  pred2 <- pred 

  for (i in 1:numWY) { 

  observed <- matrix[[1]][i,][which(pred2[i,] != 0)]; 

  expected <- (pred[i,])[which(pred2[i,] != 0)]; 

  allexpected <-  c(allexpected,expected) 

  allobserved <-  c(allobserved, observed) 

  } 

  #diff <- abs(allexpected-allobserved) 

  #print(max(diff,10)) 

  #allexpected2 <- allexpected[which(diff != max(diff))] 

  #allobserved2 <- allobserved[which(diff != max(diff))] 

  #print(allobserved2) 

  if (length(allexpected) == length(allobserved)) { 

  return(chiOwn(allobserved, allexpected,length(allobserved)-1)) 

  } else return("no entiendo") 

} 

 

chiOwn <- function(obs0,exp0,df) { 

  exp <- exp0[which(exp0 != 0)] 

  obs <- obs0[which(exp0 != 0)] 

  x2stat <- sum(((obs - exp)^2)/exp) 

  result <- pchisq(x2stat,df,lower.tail=FALSE) 

  print(round(exp,digits=2)) 

  print(obs) 

  print (sum(round(exp,digits=2))) 



  print (sum(obs)) 

  print (round(exp,digits=2)-obs) 

  print (df) 

  return(result) 

  } 

 

 

########################## 

## LOOKING AT SPECIFICS ## 

########################## 

 

#generate data for most frequent pollinators 

listPoll <- sort(table(intData3$VISSP_NAME), decreasing = TRUE) 

# get top ten most frequent pollinators 

listPoll[1:20] 

 

ints_mell2 <- makeAdjustedIntMatrix("APISMELL", intData3, flowersData) 

ints_mixt2 <- makeAdjustedIntMatrix("BOMBMIXT", intData3, flowersData) 

ints_hirt2 <- makeAdjustedIntMatrix("ERISHIRT", intData3, flowersData) 

ints_majo2 <- makeAdjustedIntMatrix("BOMBMAJO", intData3, flowersData) 

 

ints_mell3 <- makeWatchYearMatrix("APISMELL", intData3, flowersData) 

ints_mixt3 <- makeWatchYearMatrix("BOMBMIXT", intData3, flowersData) 

ints_hirt3 <- makeWatchYearMatrix("ERISHIRT", intData3, flowersData) 

ints_majo3 <- makeWatchYearMatrix("BOMBMAJO", intData3, flowersData) 

 

apismell2 <- optim(c(rep(0, ncol(ints_mell2[[1]]))), lik7, method="BFGS", xInt = ints_mell2[[1]], 
xAbu = ints_mell2[[2]], control=list(trace=10)) 

bombmixt2 <- optim(c(rep(0, ncol(ints_mixt2[[1]]))), lik7, method="BFGS", xInt = ints_mixt2[[1]], 
xAbu = ints_mixt2[[2]], control=list(trace=10)) 



erishirt2 <- optim(c(rep(0, ncol(ints_hirt2[[1]]))), lik7, method="BFGS", xInt = ints_hirt2[[1]], xAbu 
= ints_hirt2[[2]], control=list(trace=10)) 

bombmajo2 <- optim(c(rep(0, ncol(ints_majo2[[1]]))), lik7, method="BFGS", xInt = 
ints_majo2[[1]], xAbu = ints_majo2[[2]], control=list(trace=10)) 

 

 

dlikrattest <- 2 * ( lik7(uniform$par, ints_hirt2[[1]], ints_hirt2[[2]]) - lik7(erishirt2$par,   
ints_hirt2[[1]], ints_hirt2[[2]]) ) 

 

pchisq (dlikrattest, df=136, lower.tail=FALSE)  

 

plot(ints_hirt3[[1]]) 

 

############## 

## NEW SHIT ## 

############## 

 

makeColNames <- function (vec) { 

  result <- c() 

  for (n in 1:length(vec)) { 

    result[3*n-2] <- vec[n] 

    result[3*n-1] <- vec[n] 

  } 

} 

     

makeCSV <- function (matrix1, matrix2, filename) { 

  matrix1 <- (round(matrix1,digits=0)) 

  result <- matrix(,3*nrow(matrix1),ncol(matrix1) )  

  for (i in 1:nrow(matrix1)) { 

    result[3*i-2,] <- 1:ncol(matrix1)  



    result[3*i-1,] <- (matrix1[i,])   

    result[3*i,] <- (matrix2[i,]) 

  } 

  result <- round(result, digits=0) 

  write.csv(result, filename) 

} 

 

pred <- createPredictedInts2(normalize(exp(erishirt2$par)),ints_hirt3[[1]], ints_hirt3[[2]] ) 

makeCSV( pred,ints_hirt3[[1]], "erisHirtwatches.csv")     

 

 

############################# 

## SAMPLE VALUES AND TESTS ## 

############################# 

 

aaa <- createPredictedInts2(normalize(exp(erishirt2$par)), ints_hirt3[[1]], ints_hirt3[[2]] ) 

chiOwn(ints_hirt3[[1]][1,],aaa,33) 

 

uniform <- NULL 

uniform$par = c(rep(0,138)) 

 

 

##################### 

## EXTRA FUNCTIONS ## 

##################### 

 

normalize <- function (x) {x*(1/sum(x))} 

 

extractMax <- c() 



q <- normalize(exp(test$par)) 

for(i in 1:10){ 

  extractMax[i] <- which.max(q) 

  q[which.max(q)] <- 0 

} 

 

extractMax2 <- function (optimized) { 

  extract <- c(); 

  q <- normalize(exp(optimized$par)); 

    for(i in 1:10){ 

    extract[i] <- which.max(q); 

    q[which.max(q)] <- 0 

  } 

  return(flowerList2[extract])  

} 

 

removeZeroes <- function(pref) { 

 pref <- pref[which(pref != 0)] 

 return(pref)  

 } 

 

barplot(normalize(exp(test$par))[extractMax], names.arg = flowNames, xlab = "Flower Species", 
ylab = "Flower Desirability", col= "blue", log="y", cex.axis = .01) 

 

#check number of NAs is actually 0 

sum(is.na(FLOWERS)) 

 

 

########################## 



## VALIDATION FUNCTIONS ## 

########################## 

 

checkCountInt <- c(rep(0, length(dwInt))) 

for(i in 1:nrow(intData3)){ 

  if(intData3[i, 'meadowWatchYear'] %in% dwInt){ 

    q <- match(intData3[i, 'meadowWatchYear'], dwInt) 

     

    checkCountInt[q] <- checkCountInt[q] + 1 

  } 

} 

 

checkCountPlant <- c(rep(0, length(dwPlant))) 

cate <- c() 

for(i in 1:nrow(flowersData)){ 

  if(flowersData[i, 'meadowWatchYear'] %in% dwPlant & !flowersData[i, 'meadowWatchYear'] 
%in% cate){ 

    q <- match(flowersData[i, 'meadowWatchYear'], dwPlant) 

     

    checkCountPlant[q] <- checkCountPlant[q] + 1 

  } 

} 

 

#check to make sure flowers appearing in interaction file are in the flower survey 

flowFromInt <- c() 

y <- 1 

for(p in 1:nrow(intData2)){ 

  if(!(intData2[p, 'PLTSP_NAME'] %in% flowFromInt)){ 

    flowFromInt[y] <- intData2[p, 'PLTSP_NAME'] 



    y <- y + 1 

  } 

} 

flowFromInt1 <- sort(flowFromInt) 

flowFromInt2 <- flowFromInt1[-c(1)] 

 

 

length(intersect(flowFromInt2, flowerList2)) 

 

#find out what flowers are in interactions file that aren't in flower survey 

p <- c() 

s <- 1 

for(i in 1:length(flowFromInt2)){ 

  if(!(flowFromInt2[i] %in% flowerList2)){ 

    p[s] <- flowFromInt2[i] 

    s <- s + 1 

  } 

}	
  


