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Abstract

Examining and evaluating complex ecological
communites is a popular study area of significant
ecological value. Mutualistic plant-pollinator
networks are an especially important commu-
nity because of the crucial role of pollinator in
food production, yet much is still unkown about
the underlying community structures of these
networks, as well as their stability under env-
iornmental pertubation. We present a method
adapting recommender system collaborative fil-
tering algorithms for the plant-pollinator net-
work in an attempt to quantify pollinator prefer-
ences and tendancies and predict future behav-
ior. We apply an Implicit Feedback Matrix Fac-
torization (IFMF) model originally developed for
a TV show recommender engine and discuss why
this application is ecologically viable. Our re-
sults indicate that IFMF significantly outper-
forms a random-prediction model and is ripe for
further devolopment.

1 Introduction

1.1 Plant-pollinator Networks

Communities in ecological contexts are com-
plex structures. Several types of relationships
between species exist in communities, which cre-
ate layers of interdependance. The study of these
relationships and their effects on the community
structures has significant ecological implications,

both for montane meadows and the general hu-
man population[3].

Mutualistic relationships are especially inter-
esting because of their contrast with competi-
tion or predator-prey-based relationships. Plant-
pollinator networks are a common but ecologi-
ciaclly crucial example of mutualistic relation-
ships. [13]. These mutualistic networks comprise
a large number of diverse plants and pollinators
[2], and they fill an importnat role in many land
ecosystems. Seventy-five percent of leading food
crop production depends on pollinators [8].

Despite the critical enviornmental role of
plant-pollinator networks, there exist many
open questions regarding the community
structure, inter-species dependancies of these
networks, and especially network stability under
enviornmental pertubation such as climate
change [5].

The dualisitc nature of mutualistic networks
lend themselves to bipartie graph represntations.
We can abstract the plant-pollinator nework into
a bipartite graph by treating the plants as one
partition and the pollinators as the other. Many
analyitical methods and algorithms exist specif-
ically for bipartie networks[1], which makes the
abstraction useful for uncovering hidden struc-
tures within the plant-pollinator network.



Figure 1: Bipartite representation of plant-pollinator networks.

Plants are listed in the upper

trophic level, and pollinators are listed on the bottom level.
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1.2 Recommender Systems, Col-

laborative Filtering, and Im-
plicit Feedback

Recommendation systems have immense util-
ity in commercial applications. Numerous sys-
tems involving users and products, for example
movie and music-streaming applications such as
Netflix and Pandora, employ recommender sys-
tems to recommend new products to users. Sim-
ilarly, many product and consumer systems like
Amazon use reccomender systems to calculate
which new produts a user may wish to purchase.
These systems attempt to recommend products
based on that spefic user’s purchase history or
user-entered preferences.

Recommender systems with a large number of
users and products can exercise collaborative fil-
tering methods instead of storing specific user
preferenes. Collaborative filtering utilizes infor-
mation from many different users to calculate
preferences for product-item pairs of one specific
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user. These systems are normally equipped with
a rating system, where users explicitly rate items
either positively or negatively. For example, a 1-
star rating may indicate that the user did not
enjoy the item, while we can infer from a 5-star
rating that the user did enjoy the item.

However, not all currently developed algo-
rithms require explicitly defined user ratings.
One method developed [6] is designed specifically
for implicit feedback. Unlike explicit feedback
such as ratings, implicit feedback is an indirect
measure of user preferences based on behaviors.
For example, abundant implicit feedback can be
gathered from a system involving users and tele-
vision programs. Normally users have no way of
explicitly rating a television program. However,
we can infer from their behavioral patterns that
a user may prefer a certain program if he or she
watches it several times. Hu, Koren, and Volin-
ski’s method was specifically developed for a TV
show recommender engine[6)].

Although implicit feedback systems are sim-



ilar to explicit systems, there exist important
distinctions. Because users never explicitly rate
products, it is difficult to infer which items a
user does not like. For example, a user may not
watch a certain show for several reasons, includ-
ing time conflicts or lack of knowledge about the
program. Similarly, we cannot always infer that
a user enjoys a show because he or she watched
it. Perhaps the user was away from the televi-
sion at that time or watching the show preceding
a favorite program.

For this reason, unlike explicit feedback sys-
tems where the numerical value of a user-item
interaction is an indication of preference, the nu-
merical value in implicit feedback systems in-
dicates a confidence of the interaction. In the
TV show recommendation engine, the numerical
values represent the number of times of a user
watched a certian program. For implicit systems,
a large value does not inherently imply a higher
preference, only a higher frequency of interac-
tion. Therefore, large values in implicit feedback
systems indicate a higher confidence in a user’s
preference for an item.

The implicit feedback system developed by Hu
et al. (2008)[6] is appropriate for application to
plant-pollinator networks. Like the TV show sce-
nario, we have no way of observing any explicit
rating of plant preferences by pollinators. How-
ever, a high-frequency interaction grants a de-
gree of confidence for a pollinator’s preference
for a plant. Similarly, like the TV show recom-
mendation engine, we don’t immediately asso-
ciate a lack of interaction with a negative prefer-
ence. Competition can be seen as a form of time
conflict, which may result in a pollinator not vis-
iting a plant they prefer. Also, we hypothesise
that many interactions may go unobserved due
to weaknesses in data collection methods.

We hypothesize that by applying an implicit
feedback recommender system to the plant-
pollinator network, we can uncover hidden
truths about the structure of the network. By
calculating which plants would be recommended
to the pollinators, we can attempt to detect
which interactions have yet to be observed

Figure 2: Graphic representation of the plant-
pollinator interactions. The shade of red indici-
ates the magnitude of observations of the inter-
action between that specific plant and pollinator
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but are likely to occur. Also, in the event of
environmental changes or extenction of certian
species, we can predict shifts in plant-pollinator
interactions based on the different types of
plants recommmended to each pollinator.

2 Methods

2.1 Data Collection

The data used in this study was collected
during the summer months of 2011 within H.J.
Andrews Experimental Forest, central Cascades
Oregon. Within the forest, several different com-
plexes were defined, each having three separate
but geographically close montane meadows.

Each of these meadows are uniquely classified
within the data-set. Within these meadows, we
sampled from two transects of 3-meter square
plots. These transects are separated by 25 me-
ters, and each transect contains 5 subplots sepa-
rated by 15 meters. The subplots are numbered
1-10 according to their associated transect and
position within the transect. This configuration



of plots and transects is assumed to be repre-
sentative of the dominant characteristics of each
meadow|[14].

2.1.1 Field Methods

Data recording was conducted on an aproxi-
mately weekly basis for each meadow, which con-
sisted of a sampling of flower vegetation levels
and pollinator activity. Our study soley relies
on the pollinator activity data. ¢ To record pol-
linator activity, each plot of each meadow was
surved for a 15 minute interval, or watch. Any
time a potential pollinator made contact with
the reproductive systems of a flower in anthe-
sis, an interaction between the specific pollina-
tor and flower species was recorded. If a plant
or pollinator was not immediatly identifiable, a
sample was collected for later identification.

The time, weather, plot number, and flower
abundances were also recorded for each 15-
minute watch. For a more detalied description
of the data collection methodology and ecologi-
cal justification for design choices, see [14].

2.1.2 Laboratory Methods

Any unidentifiable flower was either sampled
and or photographed for identification. To
identify unknown flowers, we referenced [11].
We then cross-referenced successful identifica-
tions with the H.J. Andrews botanist-conducted
flower surveys and data collected in previous
years.

We attempted collect a sample of each polli-
nator that could not be identifed by sight. How-
ever, because of the vagility of the pollinators,
many entries in the data set are only accurate to
a certian degree of taxonomic presicion.

Once sampled, we pinned each pollinator with
an associated identification number, along with
data about where and by whom the pollinator
was collected. Although we were confident in
identifying some abundant species, most of our
samples were forwarded to Oregon State Univer-
sity entomologist Andy Moldenke for accurate

classification. We entered our data systemati-
cally, associating each observed interaction with
an observer, date, time, weather, location, and
the involved species.

2.2 Implicit Feedback System

2.2.1 IFMF Implementation

The implicit feedback matrix factorization
model (IFMF) was implemented in the R
programming language and is detailed in [6].
This method applies matrix factorization to
decompose the original matrix into two latent
factors, one for users and one for items.

Latent factor models attempt to explain rat-
ings or preferences by charaterizing items and
users on a set of factors inferred from the rat-
ing or preference patterns [9]. For music, the
product latent factor may measure more obvious
dimensions like genre, era, instrumental type, or
typical audience. For our plant-pollinator net-
work, the plant factor may measure phyiscal
dimensions such as plant genus, size, color, or
flower size, while the pollinator factor may rep-
resent pollinator family or genus, flight speed,
mass, or even proboscuis length.

The matrix targeted for decomposition, r,;, is
the observation matrix. The rows correspond to
u users, or pollinators, and the columns corre-
spond to 7 items, or plants. Each r,; entry cor-
responds to the number of interactions observed
between u and ¢ during the observation period.

In addtion to the matrix of interactions, we
also generate a binary matrix p,;, which indi-
cates the intial observed preferences of each pol-
linator u to plant .

_J1
puz— 0

If py; = 1, then we believe that pollinator u
has a preference for plant ¢. If p,; = 0 then we
have no indication of the preference for pollinator
u to plant i. However, these preferences are as-
sociated with a specific confidence. We measure
the confidence of preferences with c,;, a logrith-
mic reduction of r,;

T > 0
:'rm-:O



Table 1: Simplified example of recorded data for plot watches. Complexes can be idetifed based on

the meadow code.

MEADOW DATE OBSERVER PLOT PLTSP_NAME VISSP_NAME
CPM 7/1/2014 RD 1 Zigadenus venenosus ~ Bombus mixtus
LM 6/30/2014 JL 3 Zigadenus venenosus ~ Bombus mixtus
LB 7/10/2014 RM 7 Senecio triangularis Apis mellifera
CPB 7/3/2014 1P 9 Erysimum asperum  Bombylius major

Figure 3: Visual of matrix decomposition. r
refers to the observation matrix, X refers to the
pollinator factors, and Y refers to the plant fac-
tors
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cui = 1+ alog(l 4+ ry;/€) (1)

Both a and € are varibles that can be adjusted
during the training process. Value o = 40 was
found to produce good results, while small values
such as e = 10~ 8 are appropriate [6].

We now need to calculate a latent factor vector
of length f: x, € R/ for pollinators and y; € R/
for plants. Appropriate values for f can be de-
termined by training. Once calculated, the pre-
dicted preferences are assumed to be the inner
products: pu; = zly;

To calculate the latent factors, we must mini-

mize the following cost function:

(S S
(2)

An effiecent optimization stradegy evolves
from alternatively fixing one of the factors while
recomputing the other. After a sufficent number
of sweeps, the factors stabilize on an optimal
solution [6].

With the n item factors fixed, we can gather
them into an n x f matrix Y. Also, for each
user u we can define an n X n matrix C*, where
CH = ¢,; and a vector of preferences p(u) € R™.
Differentiation leads to an solution for the user
factors z,, that minimizes the cost function 1[6].

3)

With the m user factors fixed, we can now
use the same technique to compute the y; item
factors.

. T 2
min E Cui(Pui—Ty ¥i) "+
u,t

T, = (YTOUY + A 'YTCVp(u)

yi = (XTC'X + X' XTCOp(i)  (4)

The )\ parameter prevents overfitting of the
model and can be tuned by appropriate training.
The running time of these equations is O(f?N +
f3m+ f3n) where N is the number of non-zero
observations[6]. This running time is linear with
respect to the size of the inputs, m pollinators
and n plants.

After performing an appropriate number of
sweeps for the factors to stabilize, it is possible



to construct the matrix hatp,; = xfyi, where
hatp,; represents the predicted preference of pol-
linator u for plant i.

2.2.2 Training and Testing

In order to tune training varibles (f, A, «,
€), appropriate training and testing sets are re-
quired. For the TV show recommender engine,
several months of complete data were used to
train these parameters of IFMF, and several dis-
joint months of complete data were used to val-
idate the training.

For our plant-pollinator network, we have split
the data collected during the summer of 2011
into four sets, determined by plot number. We
felt that division at the plot level was more ap-
propriate than the meadow or complex level.
Due to geographical differences in the meadows
and especially complexes such as elevation, tem-
perature, sun exposure, and soil moisture, some
species of plants and pollinators are not present
in all meadows and complexes. Because we can
only make predictions about plants and pollina-
tors that are present in both the training and
testing data sets, we chose to divide the sets by
plot so that a maximal number species from all
complexes and meadows are present in both the
training and testing data sets.

The subtraining matrix r;, consists of plots 2,
5, and 8 across all meadows and complexes and
is used along with the validation matrix 7}, con-
sisting of plots 3, 6, and 9 in order to tune param-
eters. Once the parameters have been tuned ap-
propriately, the training matrix r,; is redefined
as a combination of 7, and r;,, consisting of
plots 2, 3, 5, 6, 8, and 9. The testing matrix rf;
consists of the remaining plots, 1, 4, 7, and 10.

For validation of the method and tuning of
parameters, we implemented a mean percentile
rank (MPR) measure. In contrast to most ex-
plicit feedback recommender systems, we are not
able to track user reactions to recommendations.
Therefore, precision-based metrics are less ap-
propriate because they require knowledge of un-
desierable products [6].

Table 2: Organized explanation of dataset par-
titions

Matrix Notation Plots
subtrain TS 2,5,8
validate To; 3,6,9
train Twi 2,3,5,6,8,9
test rt 1,4,7,10

ui

However, observations are indicitive of prefer-
ence, so recall-oriented meausres such as MPR
are appropriate[6]. Let rank,; represent the
percentile-ranking of a plant ¢ from the list
of prepared plants for pollinator u. That is,
rank,; = 0 indicates a highly recommended
plant, while rank,; = 1 indicates represnts an
undesiriable plant for pollinator u. We then cal-
culate the MPR as follows:

t )
Zu,i TyiTanky;

Zu,i T

rank =

()

We tune the parameters by attempting to min-
imize the value of rank (values of rank > .5
indicates the algorithm performs worse than at
random)[6].

3 Preliminary Results

We first tested several configurations of pa-
rameters. See figure 3 on page 8. As a starting
point, we used the parameters found to perform
well for the TV show recommender engine. A
more-exhaustive parameter search would involve
a grid search or bayseian optimization technique.
From the configurations tested, values of o = 20,
e =108, A = 0.5, f = 30 were found to produce
good results.

A lower bound lb was introduced for perfor-
mance comparison. The [b is calculated by pro-
viding the ranking algorithm the exact ranks of
the testing matrix. An upper bound is also in-



troduced in a similar manner by inverting the
ranking used in [b.

Finally, we graph a comparison of the train-
ing matrix r,; and hatp,; = v1y;, the calculated
preferences determined by IFMF from r,;. See
figure 3 on page 8. Because of the differences in
scaling, the values in the graph of hatp,; expo-
nentiated, allowing a more representitive visual-
ization of the differences in values.

4 Discussion and Future

Work

4.1 Discussion

The TV show recommender engine recom-
mends those shows not previously watched with
the highest computed preferences to the user. In
our plant-pollinator scenario, we attempt to pre-
dict which observations we may have missed in
our data-collection.

IFMF with appropriately-tuned parameters
out-performs both the upperbound worst case
model and the random model. The the most
sensitive parameter seems to be f, the number
of factors. While increasing the number of fac-
tors decreases the value of rank, an excessivly
large number of factors comprimises the ecolog-
ical interpretability of the assignment of latent
factors.

Our current metric for ranking the algorithms
relies solely on that algorithm’s ability to pre-
dict from the training set the rank of all plant-
pollinator interactions in the testing set. How-
ever, it is not difficult or interesting to predict
that a pollinator will revist a plant in the testing
set that it has previously visited in the train-
ing set. Therefore, the next step in algorithm-
analysis is to only consider plants in the testing
set that are not present in the training set.

4.2 Future Work

Although separating training and testing sets
seems ecologically valid in most intances, certian

pollinators visit very few new plants from the
subtraining set (r8,) to the validating set (rZ,).
Because it can be difficult to accurately predict
recommendations on such a specific scale, the
variable parameters (f, A, a, €) may be ill-tuned
for these pollinators.

One suggested solution involvies intentionally
removing observed interactions from the sub-
training set. This will result in a higher number
of new interactions in the validation set, poten-
tially leading to more accurate and useful train-
ing parameters. Additionally, once we feel that
the data from the years 2012-2014 have been ap-
propriately prepared, we can redifine our train-
ing and testing sets to include these interactions.

The TV show recommender engine was
compared against several other recommenda-
tion methods, including a neighborhood and
popularity-based model. IFMF outperformed
both models when applied to the TV show
dataset. It would be interseting to compare the
performance of these algorithms, especially the
popularity-based model, to our plant-pollinator
dataset.

The popularity-based model recommends the
most popular shows to all users. For its sim-
plicty, this model performed suprisingly well
when applied to the TV show dataset, perhaps
because users are drawn to popular shows by
both preferences and word-of-mouth/social pres-
sures. [ hypothesize that the popularity-based
model would also perform well on our plant-
pollinator network. From anecdotal intuition
formed during data collection, many different
types of pollinators are drawn toward a small set
of flowers, perhaps because of their abundance
and nectar rewards.

Additonally, a comparison of the specific
species differences between IFMF and a
popularity-based model could have interesting
ecological implications, such as a connection be-
tween physcial pollinator traits and a calculated
recommendation for non-popular plants.

Lin et al. expand upon the framework
IFMF to include negative implicit feedback
[10]. IFMF2 is developed for a crowdsourcing



Table 3: Examples of configurations of varibles used to tune the algorithm. Lower values of rank,
shown in the right columns, represent better algorithm performance. The actual validation test,
represented by (r°, V) is compared against a lowerbound [b, an upperbound ub and random, the
expected result of a random assignment of preference rank. Finally, the tuning of each parameter
set is applied to the larger training and final testing data sets, (ry;,7%;).

Parameters ‘ rank = M PR(train, test)
a € A f | wb Ib (rs,rv) random  (ryi,rt;)
1 1078 0.1 5 | 0932 0.068 0.288 0.500 0.316
20 1078 0.1 5 | 0932 0.068 0.348 0.500 0.364
20 1078 5 20| 0932 0.068 0.282 0.500 0.293
20 1078 0.5 30| 0.932 0.068 0.245 0.500 0.249

Figure 4: Comparison of the training matrix (left) r,; with the generated recommendation prefer-

ences hatp,; = xLy; (right).
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application, where users are recommended jobs.
Interestingly, IMFM2 accounts for the availibil-
ity of jobs, and interprets a lack of interaction
between a user u and a job ¢ in the presence of
high-availibility of ¢ as negative feedback from u
to .

If applied to our plant-pollinator dataset,
IFMF2 would assume that a lack of interaction
from a pollinator u with a plant ¢ when pre-
sented with an abundance of plant ¢ indicates
a negative preference from pollinator u for
i. It is safe to assume in the crowdsourcing
dataset the absence of an observation between
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u and 7 implies no interaction occured, which
justifies an application of negative implicit
feedback[10]. However, in the plant-pollinator
network, an unobserved interaction between a
plant and pollinator does not necessarily imply
no interaction occured.

It would be interesting to compare the re-
sults and performace of IFMF and IFMF2, which
could validate or invalidate the ecological as-
sumption that lack of observed interactions be-
tween a pollinator and an abundant plant implies
that the pollinator does not prefer that plant.

Physical traits of the pollinators could also be



Figure 5: Ecologically derived probabilites for
plant-pollinator interactions
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an interesting metric for comparison with the re-
comendations of IFMF. Andy Moldenke of Ore-
gon State University has developed a model in-
dicating the probability of a plant-pollinator de-
rived from ecological intuition and rigorous field
expirence. See figure 4.2 page 9[12].

5 Conclusion

We have collected data detaling the flower
abundance and plant-pollinator interactions of
montane meadows in H.J. Andrews Expieremen-
tal Forrest, Western Cascades Oregon.

We have an ecologically viable method that
applies an Implicit Feedback Matrix Factor-
ization algorithm, originally developed for a
TV show recommender engine, to our plant-
pollinator dataset. We have shown that the con-
cept of collecting implicit feedback from users
in the TV show recommender engine is analo-
gous in many ways to our observations of plant-
pollinator interactions.

We have also shown that IFMF applied to
our plant-pollinator dataset performance (0.249)
is significantly better than an expected random
ranking model (0.500). We have also presented
several possible improvements for our method,
including comparisons to other popular models.
Ultimately, we have shown that the novel appli-
cation of IFMF recommendation system collab-
orative filtering algorithms to mutualistic plant-

pollinator networks is ecologicially viable and a
research area worthy of future study.
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