How do the pollinators' flower preferences affect the features of the pollination network?

Disa Yu, Vanderbilt University August 21, 2014 Eco-Informatics Summer Institute, Summer 2014 Pollinators Research Project HJ Andrews Experimental Forest and Oregon State University

Research Question

How is the ecological health of the pollinator network in a montane meadow ecosystem, measured in terms of

- sustaining biodiversity
- stability
- resistance to species extinction
- affected by the composition of generalist and specialist pollinators:
 - all generalists
 - all specialists
 - reality-reflecting combination of specialists and generalists

Method

- Scope of research project: data from 2011-2013
- Size of data: 147 flower species, 466 pollinator species
- R Program:
 - flower abundance, pollinator abundance
 - pollinators' flower preferences
 - all generalist, all specialist, both generalist and specialist according to mentor Andy Moldenke
 - Function that outputs the pollinator-flower interaction matrix: 3 interaction networks based on pollinator preference

```
39
40 - IntMat = function (FlowerAbName, PollAbName, PollPrefName, TotNumPoll, IntMatName) {
      prefmat = read.csv(PollPrefName, row.names = 1)
41
      flowerab = read.csv(FlowerAbName, stringsAsFactors = FALSE)
42
      pollab = read.csv(PollAbName, stringsAsFactors = FALSE)
43
44
      nflower_ab = nrow(flowerab) #147
45
      nflower_pref = ncol(prefmat) #147
46
      npoll_pref = nrow(prefmat) #466
47
      npoll_ab = nrow(pollab) #466
48
49
      if (nflower_ab != nflower_pref){
50 -
51
        stop("Error: number of flower species from the two files must be equivalent")
52
53
54 -
      if (npoll_ab != npoll_pref){
55
        stop("Error: number of pollinator species from the two files must be equivalent")
56
57
58
      intmat = prefmat
      for (x in 1:nflower_pref){
59 -
60
        intmat[,x] = (intmat[,x] * flowerab[x,2])
61
62 -
      for (x in 1:npoll_pref){
63
        intmat[x,] = intmat[x,]/sum(intmat[x,])
64
65 -
      for (y in 1:npoll_pref){
66
        intmat[y,] = as.integer(intmat[y,] * pollab[y,2] * TotNumPoll)
67
68
      write.csv(intmat, file= IntMatName)
69
70
```

```
# Create CSV of Pollinator Abundances (estimate) from 11to13Interactions spreadsheet
 2
 3
    polldata = read.csv("11to13Interactions.csv")
 4
    pollspecies = levels(polldata$VISSP_NAME)
 5
    pollspecies = pollspecies [c(-1)]
 6
    npoll = length(pollspecies)
 8
 9
   totalpoll = length(polldata$VISSP_NAME)
10
11
   install.packages("hash")
   library("hash")
12
13
    pollhash = hash(keys = pollspecies, values = 0)
14
15 - for (poll in 1:length(polldata$VISSP_NAME)) {
      if (nchar(as.character(polldata$VISSP_NAME[poll])) > 0) {
16 -
        pollname = as.character(polldata$VISSP_NAME[poll])
17
18
        pollhash[[pollname]] = pollhash[[pollname]] + 1
19
20
21
22
    pollmatrix = matrix(0, nrow = npoll, ncol = 2)
23 - for (poll in 1:npoll){
      pollmatrix[poll,1] = pollspecies[poll]
24
25
      pollmatrix[poll,2] = pollhash[[pollspecies[poll]]] / totalpoll
26
    header = matrix(c("Poll_SPP", "Abundance"),1,2)
27
    pollmatrix = rbind(header,pollmatrix)
28
29
    sum(as.numeric(pollmatrix[,2][-c(1)]))
30
31
32
    write.table(pollmatrix, file="pollabundances.csv", row.names=FALSE, col.names=FALSE, sep = ",")
33
```


- R Bipartite package:
 - Compute indices: links per species, nestedness, weighted nestedness, niche overlap, and extinction slope
- Sustaining biodiversity : links per species, nestedness, weighted nestedness
- Stability: links per species, niche overlap
- Resistance to species extinction: extinction slope
- Three concepts interrelated, all indices could be used to measure, chosen the most apparently fitting indices to quantify each concept, for simplicity and ease of analysis

Results

 Three interaction matrices based on the three cases of pollinator preference; subsets

					Savifraga oregona	Savifraga so	Sedum oreganum	Sedum.spathulifolium
	Erigeron.foliosus	Eriogonum.compositum	Eriogonum.nudum		Jaxinaga.oregona	Saxinaga.sp	Sedunioregunum	Seddinispathanionani
Megachile melanophaea	25	126	48	Megachile melanophaea	0	0	0	0
Megachile perihirta	178	885	337	Megachile perihirta	0	0	0	0
Megachile pugnata	12	63	24	Megachile pugnata	0	0	C	0
Megachile sp 2	21	105	40	Megachile sp 2	0	0	C	0
Megachile sp 4	4	21	8	Megachile sp 4	0	0	C	0
Megachile sp 5	4	21	8	Megachile sp 5	0	0	C	0
Melanostoma mellinum	38	189	72	Melanostoma mellinum	0	0	C	0
Melissodes rivalis	63	316	120	Melissodes rivalis	0	0	0	0
Melissodes sp 1	63	316	120	Melissodes sp 1	0	0	0	0
Micromoth metallic	76	379	144	Micromoth metallic	0	0	0	0
Mirid sp 1	148	737	280	Mirid sp 1	0	13974	0	0
Mirid sp 10	8	42	16	Mirid sp 10	0	0	0	0
Mirid sp 11	8	42	16	Mirid sp 11	0	0	0	0
Mirid sp 15	8	42	16	Mirid sp 15	0	0	0	0
Mirid sp 16	59	295	112	Mirid sp 16	0	0	C	0

All Generalists

Erigeron.foliosus Eriogonum.compositum Eriogonum.nudum

	Jengerennenesus	2.10Benances besteam	Linegenannaaan
Megachile melanophaea	0	0	0
Megachile perihirta	3505	0	0
Megachile pugnata	250	0	0
Megachile sp 2	21	105	40
Megachile sp 4	4	21	8
Megachile sp 5	4	21	8
Melanostoma mellinum	38	189	72
Melissodes rivalis	0	0	0
Melissodes sp 1	1252	0	0
Micromoth metallic	76	379	144
Mirid sp 1	148	737	280
Mirid sp 10	8	42	16
Mirid sp 11	8	42	16
Mirid sp 15	8	42	16
Mirid sp 16	59	295	112

All Specialists

Generalists and Specialists

Results ------

Indices

	All Generalists	All Specialists	Both	
Links per Species	<u>55.693</u>	0.766	51.873	
Nestedness	5.027	2.02	<u>1.789</u>	
Weighted Nestedness	<u>0.816</u>	NaN	0.782	
Niche Overlap	0.927 - 0.999	<u>0.000 - 0.007</u>	0.868- 0.875	
Extinction Slope	<u>144.972 -</u> <u>82.324</u>	2.784 - 0.991	134.009- 63.100	

Key: Most favorable, Second-Most favorable, Least favorable

Conclusion ------

- Sustaining biodiversity: generalist pollination network, closely followed by mixed pollination network
- Resistance to extinction: generalist pollination network, closely followed by mixed pollination network
- Stability: inconclusive
- Overall most ecologically healthy pollination network: generalist pollination network
 - Pollination network with both generalists and specialists according to reality: reasonably ecologically healthy

Acknowledgements

- I am grateful to the following Eco-Informatics Summer Institute mentors for their lectures, advice, and support.
- Jorge Ramirez, Julia Jones, Rebecca Hutchinson, Tom Dietterich, Andy Moldenke, Eddie Helderop, Vera Pfeiffer, Peggy Lee, Alan Stanton, Desirée Tullos
- I am also grateful for
- EISI REU Program
- NSF funding

References

Byrne, Roger. "Basic Concepts V: Niche Concepts and Ecological Valency." *Geography 148- Biogeography Lecture*. UNIVERSITY OF CALIFORNIA, BERKELEY. Web. 17 Aug. 2014.

Dormann, Carsten. "Networklevel {bipartite}." Inside-R. Revolution Analytics. Web. 17 Aug. 2014. <http://www.inside r.org/packages/cran/bipartite/docs/.networklevel>.

- Dormann, Carsten F., Jochen Frund, Nico Bluthgen, and Bernd Gruber. "Indices, Graphs and Null Models: Analyzing Bipartite Ecological Networks." *The Open Ecology Journal* (2009): 7-24. Print.
- Galeano, Javier, Juan M. Pastor, and Jose M. Iriondo. "Weighted-Interaction Nestedness Estimator (WINE): A New Estimator to Calculate over Frequency Matrices." *Environmental Modelling & Software* 24.11 (2009): 1342-346. Print.
- Pfeiffer, Vera. "EISI Plant-Pollinator Network Project 2014." EISI REU Program. HJ Andrews Experimental Forest, Blue River, OR. 23 June 2014. Lecture.
- Staniczenko, Phillip P. A., Jason C. Kopp, and Stefano Allesina. "The Ghost of Nestedness in Ecological Networks." *Nature Communications*(2013): 1391. Print.

Questions

Thanks for coming!

