Mathematical Modelling for the Natural Sciences

EISI 2010

HJA Experimental Forest
“A mathematical model is a representation of the essential aspects of an existing system which presents knowledge of that system in usable form” [Eykhoff ‘74]

“The purpose of a model is to formulate a description of the mechanism in quantitative terms, and the analysis of it leads to results that can be tested against observations” [Fowler, ’97]

Mathematical modeling provides a systematic way of describing quantitatively and predicting the behavior of processes and systems.

[-- Insert your own definition here --]
Components - Variables
Components - Variables
Components - Variables

Input
(don’t model)

Neglected
Components - Variables

Input
(don’t model)

Output
(model)
Components - Variables

Input
(don’t model)

Neglected

Mathematical relationships

Neglected

Output
(model)
Problem - Model - Solution
Problem - Model - Solution

Physical formulation
Problem - Model - Solution

Physical formulation → Related variables

Related variables → Solution

Friday, June 18, 2010
Problem - Model - Solution

Physical formulation → Related variables → Mathematical formulation

→

Friday, June 18, 2010
Problem - Model - Solution

Physical formulation → Related variables → Mathematical formulation

Solve for output
Problem - Model - Solution

- Physical formulation
- Related variables
- Mathematical formulation

- Physical solution
- Solve for output
Problem - Model - Solution

- Physical formulation
- Related variables
- Mathematical formulation
- Solve for output
- Physical solution
- Test against knowledge
Problem - Model - Solution

Physical formulation → Related variables → Mathematical formulation

Test against knowledge → Physical solution → Solve for output
Problem - Model - Solution

Natural sciences

- Physical formulation
 - Related variables
 - Mathematical formulation
 - Solve for output
 - Physical solution
 - Test against knowledge
Problem - Model - Solution

Natural sciences
- Physical formulation
 - Test against knowledge
- Related variables
- Physical solution
- Mathematical formulation
 - Solve for output

Mathematics
Learning from models

'it is not possible to simultaneously maximize generality, realism and precision” [Levins]
Types of models

Specific
Data driven
Numerical
Stochastic
Microscopic
Discrete
Qualitative

Macroscopic
Quantitative
Conceptual
First principles
Deterministic
Analytical
Continuous
Types of models

Specific
Data driven
Numerical
Stochastic
Microscopic
Discrete
Qualitative

Macroscopic
Quantitative
Conceptual
First principles
Deterministic
Analytical
Continuous
Types of models

Specific
Data driven
Numerical
Stochastic
Microscopic
Discrete
Qualitative

Macroscopic
Quantitative
Conceptual
First principles
Deterministic
Analytical
Continuous
Types of models

- Specific
- Data driven
- Numerical
- Stochastic
- Microscopic
- Discrete
- Qualitative

- Macroscopic
- Quantitative
- Conceptual
- First principles
- Deterministic
- Analytical
- Continuous
Types of models

Specific
Data driven
Numerical
Stochastic
Microscopic
Discrete
Qualitative

Macroscopic
Quantitative
Conceptual
First principles
Deterministic
Analytical
Continuous
Types of models

Specific
- Data driven
- Numerical
- Stochastic
- Microscopic
- Discrete
- Qualitative

Macroscopic
- Quantitative
- Conceptual
- First principles
- Deterministic
- Analytical
- Continuous
Types of models

Specific
Data driven
Numerical
Stochastic
Microscopic
Discrete
Qualitative

Macroscopic
Quantitative
Conceptual
First principles
Deterministic
Analytical
Continuous
Judging Models

There is no such thing as a correct model
Judging Models

There is no such thing as a **correct** model

- consistent
- accurate
- elegant
- optimal
- parsimonious
- robust

Friday, June 18, 2010
There is no such thing as a correct model

consistent accurate
elegant optimal
parsimonious robust

The real question is:
Did we gain any useful understanding while making the model?
Some references

- Mathematical Methods for Engineers and Geoscientists By Olga Wälder, 2008
- An introduction to mathematical modeling By Edward A. Bender, 2000
- The nature of mathematical modeling By Neil A. Gershenfeld, 1999